

-Bachelorarbeit-

Mechanische Eigenschaften von stark plastisch deformiertem Nickel

Mechanical Properties of Severely Deformed Nickel

vorgelegt von Simon Hannibal

Münster, Juni 2011

Institut für Materialphysik Westfälische Wilhelms-Universität Münster

Inhaltsverzeichnis

1.	Einle	eitung	1
2.	Expe 2.1. 2.2. 2.3. 2.4. 2.5.	erimentelle Methoden "High Pressure Torsion" (HPT) Mikrohärtemessung nach Vickers Transmissions-Elektronenmikroskop (TEM) Dynamische Differenzkalorimetrie (DSC) Fehlerabschätzung der experimentellen Verfahren	3 3 4 6 7 7
3.	Hers	stellung der Proben	10
4.	Dars 4.1. 4.2. 4.3.	Stellung und Auswertung der ErgebnisseMessung der Mikrohärte auf HPT-Proben4.1.1. Entwicklung von Homogenität auf den hergestellten Proben4.1.2. Mikrohärtemessungen in Abhängigkeit der HPT-ParameterEntwicklung der Mikrohärte nach Temperaturbehandlung4.2.1. Temperaturabhängigkeit der Härteverteilung4.2.2. Zeitabhängigkeit der HärteverteilungMikrostrukturuntersuchungen mittels TEM4.3.1. Mikrostruktur einer "as prepared" Probe4.3.2. Mikrostruktur der bei 500K ausgelagerten Probe4.3.3. Mikrostruktur der bei 700K ausgelagerten ProbeErgebnisse der DSC-Messung	 13 13 17 19 22 25 25 26 28 31
5. Diskussion der Ergebnisse		ussion der Ergebnisse	32
_	5.1.5.2.5.3.5.4.	Entwicklung von Homogenität beim HPT-Prozess Mechanische Eigenschaften bei Auslagerung 5.2.1. DSC-Messung Kinetik der Rekristallisation Hall-Petch-Beziehung	32 33 36 37 38
6.	Zusa	ammenfassung und Ausblick	40
An	hang A. B.	Das Johnson-Mehl-Avrami-Kolmogorov-Modell	42 42 44