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1 Introduction

Particle physics is the study of the fundamental particles and forces that constitute
matter. The primary experimental way in which these have been discovered and
their properties measured are the controlled environments of high-energy particle
colliders. Inside them particles are accelerated to velocities close to the speed of
light and then collided, which leads to the creation of new particles from the energy
of the collision. All outgoing particles are then measured by surrounding particle
detectors. Inside this data physicists search for signs of new particles and processes
that might occur under the extreme conditions present in the collisions.
Although the detector only measures the outcome of the collision and not the occur-
ring processes themselves. Models of the occurring processes can be tested through
simulating them, for example through Monte-Carlo event generators, and comparing
the results of the simulations to the data collected in accelerator experiments.
In the last decades thermal (statistical) models have shown remarkable success in
describing the ratios of hadron yields in high energy nucleus-nucleus collisions. The
thermal model describes the yields of produced particles based only on a few thermal
parameters present at the chemical freeze-out of the collision. In this thesis, results
of a thermal model are compared with the measured particle ratios of a wide range
of energies. With this data one of these thermal parameters, the temperature, is
determined.
First the general theory of particle collisions is described in section 2. Then the ex-
perimental approach for the collection of the experimental data is laid out in section
3. Section 4 presents the thermal model used to calculate the theoretical data and
section 5 elaborates on how the thermal parameter is determined through fitting
of the data. Afterwards section 6 gives the mathematical background of the fitting
procedure and section 7 a description of the program used for all the calculations.
This program is written in python and can be received upon requested from A.
Andronic. The results of the fits are analysed and discussed in section 8. Finally,
concluding thoughts will be presented in section 9.
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2 Theoretical Background

This chapter explores the fundamental theory behind high-energy particle collisions,
which is based on the Standard Model of particle physics. The Standard Model pro-
vides our current understanding of the elementary building blocks of matter and
three of the four fundamental forces of nature: the electromagnetic, weak, and
strong interactions. Gravity, while a fundamental force, is not included in the Stan-
dard Model. However, at (sub)atomic scales, its effects are negligible.
Section 2.1 describes the constituents of the standard model and the following sub-
sections explore the fundamental theories used in the description of Relativistic
nucleus-nucleus Collisions.

2.1 The Standard Model

The Standard model of particle physics identifies 17 unique elementary particles,
shown in figure 1, split into two general groups, fermions which are the building
blocks of matter and bosons describing the interactions between particles.

Figure 1: Standard model of particle physics with q being the elec-
tric charge and m the rest energy of the particles. Taken
from[1].

Fermions are classified into quarks and leptons, each appearing in three generations
with distinct charge and mass. Every fermion has a corresponding antiparticle with
the same mass but opposite charge. Quarks q interact via all four fundamental
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forces. Up-type quarks (u, c, t) have an electric charge of +2/3, while down-type
quarks (d, s, b) carry −1/3. They also possess one of three color charges (red, green,
or blue), enabling strong interactions. Antiquarks q̄ carry corresponding anticolors.
Leptons, unlike quarks, lack color charge and do not experience strong interactions.
The charged leptons—electron e, muon µ and tau τ—interact electromagnetically
and weakly. Neutrinos (νe, νµ, ντ ) have no charge and interact only via the weak
force. Bosons are categorized as gauge bosons, which mediate fundamental forces,
and the Higgs boson, which imparts mass to other particles. The photon γ mediates
electromagnetism, the W ± and Z bosons govern the weak force, and gluons g drive
the strong interaction. Unlike photons, gluons carry color charge and can interact
with themselves.
Two or more quarks held together by the strong interaction force are called hadrons.
They can be divided into two broad families: baryons, made up of an odd number
of quarks, and mesons, made of an even number of quarks. Additionally mesons
are always made up of the same amount of quarks and anti-quarks. Below we
will describe the particles of particular interest for this thesis, namely the Kaon,
Pion, Lambda baryon, Phi meson and proton, with a special emphasis on their
strangeness.
The Kaon K is composed of a quark-antiquark-pair and is with that a meson.
The pair is made up of a light u- or d-Quark and a heavier strange Quark. Four
different kinds of Kaons can be formed from these three quarks and their associated
antiquarks, these are shown in table 1.

Table 1: Kaon

K-anti-meson K-meson
K− K̄0 K0 K+

quark-composition
ū d̄ d u

s s s̄ s̄

strangeness S -1 1

The Pion π is also a meson, it is composed of one up and one down quark. There
are three different types of Pions, their compositions are shown in table 2.

Table 2: Pion

π+ π0 π−

quark-composition ud̄ uū−dd̄√
2 ūd

strangeness S 0

The Lambda baryon Λ is, as the name suggests, a baryon, it is made up of one
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up, one down and a third quark from a higher generation. With this there are four
different Lambda baryons, their compositions are shown in table 3. In this thesis
Λ0 will be abbreviated with Λ.

Table 3: Lambda baryon

Λ0 Λ+
c Λ0

b

quark-composition uds udc udb
strangeness S -1 0

The Phi meson Φ is composed of a strange and antistrange quark and has strangeness
zero. Lastly the proton p is a baryon made up of two up and one down quark and
also has strangeness zero. Further information on these particles can be found in
the Particle Listings of the Particle Data Group [2].

2.2 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the fundamental theory of strong interactions
between quarks mediated by gluons. These interactions are determined by the color
charge of the quarks in each interaction.
The development of QCD started when the idea that hadrons are made up of more
fundamental particles was first proposed in 1964 by Gell-Mann[3] and Zweig. The
same year Oscar W. Greenberg introduced color as a three-valued charge degree of
freedom. Color as a gauge symmetry was introduced by Yoichiro Nambu and by Moo
Young Han and Yoichiro Nambu in 1965[4]. 1969 the existence of partons, i.e. parts
of hadrons, was verified in the deep inelastic scattering of electrons on protons at the
Stanford Linear Accelerator Center (SLAC). In 1973 asymptotic freedom, the prop-
erty that the interaction between particles becomes weaker at shorter distances, was
discovered by D. Gross and F. Wilczek[5], and independently by David Politzer[6]
in the same year. Asymptotic freedom conversely also leads to a growing interac-
tion between two strongly interacting particles at greater distances. This growing
interaction can be exemplified by an elastic string. If you pull both ends apart more
and more energy is deposited in the string and if the energy is too great the string
will break into two. The same happens with quarks, but at the breaking point there
is sufficient energy inside the field between the quarks to create a new quark, anti-
quark pair. Figure 2 shows the particle production in the Color-Flux-Tube Model,
which describes the string as a tube like confined region of force-carrying fields,
but the model will not be further discussed here. This spontaneous production of
quarks leads to the phenomenon that color charged particles can not be separated,
i.e., color-confinement.
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Figure 2: Particle production through string fragmentation inside
the Color-Flux-Tube Model, taken from [7]

Although this picture of color-confinement ”is supported strongly by the numerical
calculations[...], at the moment there is no analytic approach or approximation that
describes the behavior of QCD at large distances” [8]. Without this we are lacking a
full descriptions of the strong interaction of particles. The Clay Mathematics Insti-
tute of Cambridge even included ”Yang-Mills Existence and the mass gap” as one of
its seven millennium problems, each allocated with a prize money of 1 M Dollar[9].
A solution to this problem would be a big step into proving color-confinement in
QCD[10].
In the context of relativistic heavy-Ion collisions QCD can only be used to describe
sub-processes or to deliver an input for modeling since a complete description of a
collision based exclusively on first principles is impossible in practice.

2.3 Quark-Gluon-Plasma

(a) by Cabibbo and Parisi in 1975 (b) conjectured as of 2024[11]

Figure 3: Phase Diagram of strongly interacting matter

Through the asymptotic freedom of particles QCD predicts a phase transition at
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high temperature and/or increasing density where quarks and gluons gain absolute
freedom. In such a state the color-confinement of quarks would be broken, i.e.,
quarks and gluons flow independently and ordinary hadrons do not exist anymore. In
1975 Cabibbo and Parisi identified the limiting temperature for this phase transition
as the Hagedorn temperature, named after Rolf Hagedorn who had the idea that
hadronic matter has a ”melting point” in the 1960s[12]. They also sketched the
first phase diagram of strongly interacting matter, see figure 3a. In the same year
Collins and Perry argued that ”superdense matter (found in neutron star cores,
exploding black holes, and the early big-bang universe) consists of quarks rather
than of hadrons”[13]. On February 10, 2000, CERN presented it evidence for ”a
new state of matter” and Professor Luciano Maiani, CERN Director General, said
”The combined data coming from the seven experiments on CERN’s Heavy Ion
programs have given a clear picture of a new state of matter. This result verifies an
important prediction of the present theory of fundamental forces between quarks. It
is also an important step forward in the understanding of the early evolution of the
universe. We now have evidence of a new state of matter where quarks and gluons
are not confined.”[14]. Although this state of matter can not be directly observed
it’s effects such as the absorption of jets and high level of thermalization can be
studied.
The general idea of the phase Diagram of strongly interacting matter has since
proven to be correct, but a lot of nuances of the transition have been found. After
being revised and changed quite a lot over the last four decades figure 3b shows one
of the latest iterations of the phase diagram by Toshihiro Nonaka.

2.4 Phases of Relativistic nucleus-nucleus Collisions

Figure 4: The space-time evolution of heavy Ion collisions [15]

In relativistic Heavy-Ion collisions the conditions, as shown in figure 3b, for the
creation of QGP can be fulfilled. Figure 4 shows the evolution of the QGP in several
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phases with four important phase transitions, namely thermalization, reconfinement,
chemical and thermal freeze-out. Otherwise
Thermalization describes the evolution of the two nuclei into QGP. This strong
interacting system then expands over time, therefore its density decreases and tem-
perature drops. This leads first to the reconfinement of the Quarks and Gluons. This
process is not instant and as such one may consider three phases in the reconfine-
ment process, first to a good approximation the matter is an expanding quark-gluon
plasma, later it is a mix of plasma and hadron gas and finally it becomes a pure
hadron gas. The system keeps expanding and cooling, while the composition is still
able to change through inelastic hadron collisions. The point where the chemical
composition of the system stops changing is when inelastic scattering ceases. This
is called the chemical freeze-out. Wether this point is the same for all particles or
different freeze-out conditions exist for different particles is still a topic of research.
With further expansion the density of the formed hadronic gas keeps decreasing and
the mean free path of particles increases. Eventually this leads to the decoupling
of hadrons from the system, i.e., collisions, and with that inelastic scattering, be-
tween the hadrons stop and they travel freely to the detectors. Since after that the
momenta of the particles are fixed it is called the kinetic freeze-out. Just like the
reconfinement the process of decoupling happens over time, e.g., particles may de-
couple at very high densities, if the expansion rate of the system is much larger than
the scattering rate, and different types of particles may decouple at different times.
To address the differing freeze-out points a hierarchy of different freeze-out points
can be introduced to describe this complicated dynamic process [8], the usefulness
of this approach for the chemical freeze-out in this case is discussed in section 8.

2.5 Theoretical models for relativistic nucleus-nucleus col-
lisions

In central Au+Au collisions at the highest possible beam energies at RHIC (√sNN =
200), a total charged particle multiplicity of approximately 5300 was achieved[8].
This means that the number of particles measured after the collision exceeds the
number of particles in the beams by a factor of 10. Since the quantity of particles
involved in these collisions can be very big theoretical models are used which de-
scribe large macroscopic systems, such as thermodynamics, hydrodynamics, kinetic
gas theory, field theory at finite temperatures and densities, non-equilibrium field
theory, as well as Monte Carlo simulations [8].
In general these models use simple thermodynamic or hydrodynamic concepts. Thus
they can be divided into two groups, dependent on the concepts they are based on.
Thermodynamic approaches are used to try to explain the relative abundance of

7



hadrons, i.e the ratios of hadron multiplicities, whereas hydro-inspired models focus
on the analysis of the hadronic transverse-momentum spectra. The first group can
also be subdivided into thermal and statistical models.
Using a few thermodynamic parameters, the thermal models usually do a very good
job in describing the relative yields of many hadronic species at the chemical freeze-
out. For example, within the grand canonical version of the thermal model many
successful fits were obtained with only two independent parameters, Tchem and µB

chem,
which are the values of the temperature and baryon chemical potential at the chem-
ical freeze-out[8]. The exact implementation of this approach for the model used to
calculate the theoretical data in this thesis is discussed in section 4.
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3 Experimental approach

The data for this thesis encompasses a wide range of energies and stems from four
different particle accelerators. These each provided the data for a certain energy
regime:

2-6 GeV Alternating Gradient Synchrotron (AGS) at Brookhaven National
Laboratory

6-20 GeV Super Proton Synchrotron (SPS)
20-200 GeV Relativistic Heavy Ion Collider (RHIC) at Brookhaven National

Laboratory
>200 GeV Large Hadron Collider LHC at the ”Conseil Européen pour la

Recherche Nucléaire” (Cern)

All four particle accelerators are synchrotrons and their basic functionality is the
same. They each consist of two independent, parallel rings in which positively
charged particles are accelerated in bunches, these bunches are put behind each
other with as little space as possible to form beams of particles. These beams move
in opposite directions in the two rings, in one ring running clockwise and in the other
anticlockwise, and are guided by strong magnets. In general, the bigger the circum-
ference of the rings the higher the achievable maximum energy per beam, because
the strength of the magnets which guide the beams are limited. A bigger radius
lowers the bending radius of each individual magnet, although more are required,
and with that increases the momentum at which circular motion of a particle can be
maintained. To collide the beams in the two rings all synchrotrons have Interaction
Points (IP), although their number varies. Around these IPs the particle detectors
are constructed to measure the results of beam collisions.
The next subsections will look at two important descriptors of a collision, the cen-
trality and the rapidity, with which the results can be characterized.

3.1 Centrality

The outcome of a collision depends among other things on the number of partici-
pating nucleons, as nuclei are extended objects a measure of how many nucleons of
the colliding nucleus participate is needed. Figure 5 illustrates the collision of two
nuclei. The distance between the centers of the two nuclei is given by the impact
parameter b and the smaller this value the more nucleons collide. The centrality c
is defined as a fraction of geometrical cross sections of the colliding nuclei:

c = σ(b)
σ(bmax) = b2

4R2
A

, (1)
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Figure 5: Collision between two ions viewed as disks, taken from [17].

with b being the impact parameter and RA the nuclear radius of the colliding nuclei.
Experimentally the impact parameter can not be observed directly, but central col-
lisions have the most interacting particles and with that produce the most particles.
With this the collisions with the highest number of measured charged particles,
charged-particle multiplicity, are assigned to be the most central collisions, while
collisions with low multiplicities are interpreted as peripheral[16].

3.2 Rapidity

Rapidity is used to express angles of a detected particle with respect to the axis of
the colliding beams, depicted in figure 5 by the black arrows of the two disk pointing
toward each other. It is defined as

y = 1
2 ln

(
E + p||

)
(
E − p||

) = arctanh
(

p||

E

)
= arctanh

(
v||

c

)
, (2)

where p|| and v|| are the components of the momentum and velocity parallel to
the axis of the beam and E =

√
m2 + p⃗2, with the mass of the particle m and its

momentum p⃗, is the total energy of a particle[8]. Rapidity has the value zero for
particle trajectories that are perpendicular to the beam, and positive or negative
values for those at an angle to the beam. The rapidity distribution of particle yields
can roughly be described by rather broad Gaussians centered at zero[8]. With this
background we can define yields at mid-rapidity as the number of particles traveling
close to perpendicular to the beam axis.
In a similar way to the rapidity one can define the pseudorapidity variable η as:

η = 1
2 ln

(
|p⃗| + p||

)
(
|p⃗| − p||

) = ln
(

cot θ

2

)
= − ln

(
tan θ

2

)
, (3)
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which has the advantage that the particle does not need to be known to calculate
it[8]. This is of special interests for particles at mid- rapidity because in this region
they are approximately equal, y ≈ η ≈ 0[8].
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4 Model Description

This chapter goes over the general model used by A. Andronic to calculate the
theoretical data used in this thesis. Specific assumptions and the implementation of
the model for the theoretical data is explained in the next section.
The freeze-out is the process of thermalisation of the system after the collision. After
this the system of hadrons has reached chemical and thermal equilibrium. We want
a way to predict the microstate, a specific configuration of a system that describes
the precise positions and momenta of all the individual particles or components
that make up the system, of this system at thermodynamic (chemical and thermal)
equilibrium.
In statistical mechanics there is a statistical ensemble that represents all possible
states of a mechanical system in thermal equilibrium with a energy reservoir, the
canonical ensemble. A given canonical ensemble is characterized by three constant
variables, the number of particles N in the system, the systems volume V and the
absolute temperature T. It assigns each distinct microstate a probability P, given
by the function:

P = exp (F − E)/(kT ). (4)

E is the total energy of the microstate, k is the Boltzmann constant and F is the
Helmholtz free energy, which describes the thermodynamic potential of a closed sys-
tem at a constant temperature. With this probability we can predict the microstates
of the system at thermal equilibrium.
Since the possible states after freeze-out can differ in both their total energy and
total number of particles, because they can be converted into each other, we need
to generalize the canonical ensemble. The grand canonical ensemble is just that, a
statistical ensemble which represents all possible states of a mechanical system in
thermodynamic equilibrium with a energy/particle reservoir. The thermodynamic
variables characterizing the grand canonical ensemble are chemical potential µ, abso-
lute temperature T and the system’s volume V. Analogous to the canonical ensemble
the grand canonical ensemble represents all possible states by assigning each distinct
microstate a probability given by the function:

P = exp(Ω+µN−E)/(kT ) . (5)

Here N is the number of particles in the system, E is the total energy in the system,
k is the Boltzmann constant and Ω is the grand potential. The grand potential is a
constant of the system, which characterizes the system as a whole and is defined as:

Ω(T, V, µ) = F (T, V, N) − µN, (6)
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which is the Legendre transform of F, where the natural variable N is replaced by
µ, [18] chapter 5.4. In case of s particles, which vary in number, the probability
expression can be generalized to

P = exp(Ω+µ1N1+µ2N2+···+µsNs−E)/(kT ) (7)

Most thermodynamic variables can be expressed in terms of the partition function,
a function which describes the statistical properties of a system in thermodynamic
equilibrium, or its derivatives. As such for each particular statistical ensemble a
partition function can be crafted which represents that ensemble. For the grand
canonical ensemble the partition function is

Z = exp−Ω/(kT ), (8)

see [18] chapter 10.2, with this the probability can be rewritten as

P = 1
Z

exp(µN−E)/(kT ) . (9)

A statistical ensemble in quantum mechanics is represented by a density matrix,
denoted by p̂. With E = ⟨Ĥ⟩, N = ⟨N̂⟩ and β = 1/kT the grand canonical density
matrix is

p̂ = exp−β(Ĥ−µN̂)

Z
, (10)

with the partition function

Z = Tr[exp−β(Ĥ−µN̂)], (11)

see [18] chapter 12.3. In general the chemical potential µi of strongly interacting
matter can be described as a linear combination of the the baryon number µB, the
strangeness µS, charm µC and isospin µI3 . These are treated as model parameters
which control the net baryon number NB, strangeness S, charmness C and total
isospin I tot

3 of the system. The i-th hadron can thus be described through its baryon
number Bi, strangeness Si, charmness Ci and third component of the isospin I3i

[19]. With these we define the overall chemical potential of the i-th hadron as:

µi = BiµB + SiµS + I3iµI3 + µCCi (12)

The use of the chemical potentials µB, µS, µC and µQ allows for the satisfaction
of the appropriate conservation laws. Assuming the matter at freeze-out originates
from the initial nuclear matter of the two colliding nuclei the total strangeness and
the ratio of the electric charge to the baryon number at freeze-out have to be the

13



same as the ones of the colliding nuclei, because particles can only be produced in
particle anti-particle pairs [20]. Since the strangeness and charmness of a nucleus is
zero the strangeness/charmness conservation can be written as:

∑
i

ni(T, µB, µS, µQ)Si = Net S = 0, (13)
∑

i

ni(T, µB, µS, µQ)Ci = Net C = 0. (14)

For the total isospin and net baryon number ratio of the colliding nuclei, which are
also conserved during the formation and subsequent evolution of the system created
in RNNC, we can write their conservation through their ratio in the colliding nuclei:

R = Net I

Net B
= I tot

3
NB

(15)

with that we get:

∑
i

ni(T, µB, µS, µI3 , µC)I3i = R
∑

i

ni(TµB, µS, µQ)Bi. (16)

The net baryon number and total isospin of the system need to be specified according
to the colliding nuclei studied. ”The degree of stopping of the colliding nuclei, which
is energy dependent and cannot be precisely determined experimentally, brings some
uncertainty in the choice of NB and I tot

3 . In our case, as we study central collisions
of heavy nuclei (Au or Pb), but focus on the data at mid-rapidity, we have chosen
NB=200 and I tot

3 =-20.”[19] Using these values and all the conservation laws the
produced matter may be characterized only through the baryon chemical potential
µi and the absolute temperature T. The partition function in the grand canonical
ensemble with these is written as:

ZGC(T, V, µ) = Tr
[
e−β(Ĥ−(BµB+SµS+I3µI3 +µCC))

]
. (17)

The Hamiltonian in the partition function is usually taken such as to describe a
hadron resonance gas because ”it contains all relevant degrees off freedom of the
confined, strongly interacting medium and implicitly includes interactions that result
in resonance formation. Secondly, this model is consistent with the equation state
obtained from LGT below the critical temperature”[21] The hadron mass spectrum
contains all contributions from all hadrons listed in the Particle Data Group Particle
Listings [2]. The grand potential of a hadron resonance gas can, if baryon number,
strangeness, charm and isopsin conservation are included, be written as the sum of
grand potentials of all particles of the hadron mass spectrum. With this we can
rewrite the partition function in terms of all statistical ensembles of the individual
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particles i:

Z(T, V, µ) = e−βΩ (18)
= e−β(Ω1+Ω2+··· )

=
∏

i

e−βΩi

=
∏

i

e−β(Ei−(BiµB+SiµS+I3iµI3 +µC)

=
∏

i

e−β(Ei−µi)

=
∏

i

Zi(T, V, µi)

Here Ei is the total energy of a given particle i and µi its chemical potential. We
see that the partition function is the product of all individual partition functions of
the individual particles. With the normal logarithm we get:

ln Z(T, V, µ) =
∑

i

ln Zi(T, V, µi) (19)

These individual partition functions for a species i with ℏ = c = 1 and a spin-isospin
degeneracy factor gi = (2Ji + 1), where Ji is the total angular momentum quantum
number of the particle, are defined as:

ln Zi = V gi

2π2

∫ ∞

0
±p2dp ln [1 ± exp (−β(Ei − µi))], (20)

from which the density is then calculated according to:

ni = Ni

V
= −T

V

∂ ln Zi

∂µ
= gi

2π2

∫ ∞

0

p2dp

exp[β(Ei − µi)] ± 1 . (21)

The (+) sign is for fermions and (−) sign is for bosons. The total energy Ei can be
expressed through the impulse and rest energy of the particle

Ei =
√

p2 + m2
i , (22)

these rest energies being the nominal mass mi from the Particle Listings [2] of the
particle i. If the particle i has a finite width Γi the thermal yield of the particle
is more appropriately obtained by weighting equation 21 over the range of masses
to take the mass spread into account[22]. This is taken into account through an
additional integration over the particle mass with a Breit-Wigner distribution:

ni = gi

2π2
1

NBW

∫ ∞

M0
dm

∫ ∞

0

Γ2
i

(m − mi)2 + Γ2
i /4

p2dp

exp [β(Em
i − µi)] ± 1 , (23)
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where NBW is the normalization of the Breit-Wigner distribution and M0 the thresh-
old for the dominant decay channel[19]. Here the energy Ei has to be calculated for
every value of m in the integration step, as such Em

i =
√

p2 + m2 has to be used.
The interaction of the hadrons and resonances are included by implementing a hard
core repulsion, i.e. a Van der Waals-type interaction. This is done by means of a
excluded volume correction implemented in an iterative procedure according to ref.
[23]:

P excel.(T, µ) = P id.gas(T, µ̂); µ̂ = µ − VeigenP excel.(T, µ). (24)

Veigen is calculated for a radius of 0.3 fm and is considered identical for all hadrons
[24].
The model described so far is well suited for a system with a large number of
produced hadrons, but for smaller systems, peripheral nucleus-nucleus collisions and
for low energies, in case of strangeness production, a canonical ensemble treatment
is mandatory[25], which leads to a phase reduction for particle production. This is
called the ”canonical suppression” and can be characterized through a strangeness
suppression factor FS. It gives, with a good approximation, a relation between the
density calculated in the canonical approach, nC

i , and the grand canonical approach,
nGC

i , as described above. For a particle with net strangeness S the relation has been
shown [26] as: nC

i = nGC
i /FS. The factor FS is the ratio between the Bessel function

of the order S, the net strangeness of the yield, and the Bessel function of the order
0:

FS = I0(x)
IS(x) , (25)

where the argument x of the Bessel function is defined as:

x =
∑

i

ni(T, V, µi) · VC , (26)

i.e. the total yield of all strange and antistrange hadrons. This factor is also depen-
dent on the temperature T, energy √

sNN and Volume VC [27].
To obtain the particle yields from the densities nCG

i , obtained through the parti-
tion function as described above, at a given temperature T , volume V and baryon
chemical potential µB, one multiplies them with the volume V of the fireball [28].
Also, because the freeze-out conditions are universal, the yields are the same for all
collisions and they can all be described as one big fireball, where the volume is the
sum of the volume of all individual fireballs. To experimentally measure the yield of
a singular collision, the total number of collisions or Luminosity of the accelerator
has to be measured as well as the total yields. If one looks at ratios of particle yields,
instead of individual particle yields, the volume, as it is the same for all densities,
disappears as a parameter and with that T and µB are the only model parameters of
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the particle ratio. In ratios with non zero net strangeness the strangeness suppres-
sion adds the additional parameter of the canonical Volume VC . Also the number
of collisions in the particle beam becomes totally irrelevant as the ratio is the same
for all collisions and with that is also the same as the ratio of one big fireball.
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5 Fits to experimental data

Figure 6: Energy dependence of the experimental hadron yields from
central collisions at mid-rapidity for the five analyzed par-
ticle ratios.

The ratio yields for the five different ratios analyzed in this thesis were obtained from
central collisions at mid-rapidity. To extract the best temperature TI for the model
we perform fits of the experimental data, shown in 6, with model calculations. The
model data has been calculated based on the theoretical basis discussed in section
4. The temperature is defined as:

T

kB

= Tcf =
T lim

cf

1 + exp [a − ln (√sNN)/b] [28], (27)

with √sNN in GeV and T lim
cf =154.8 MeV. T lim

cf describes the upper bound which can
be seen when looking at the energy dependency of the temperature, see figure 7a.
This was established as the ”line of chemical freeze-out”[21]. With different values
for a and b four different temperature curves were created, see figure 7a, which
will each be characterized through their value at √sNN=2.7 GeV (T0: 63.8 GeV, T1:
74 GeV, T2: 83.6 GeV and T3: 92.6 GeV). For all temperatures the baryon chemical
potential is defined through:

µB = 1307.5 MeV
1 + 0.288√sNN

[28], (28)

with √sNN in GeV, we get figure 7b. With temperature and baryon chemical poten-
tial determined the only free parameter for the model calculations of the four tem-
peratures is the canonical volume. This parameter has been fitted by A. Andronic
for for each temperature, with figure 8 showing the results of those fits. Because
of the error on these values the model calculations are done for three different sets
of Volumes: the ideal volume, V1, as determined by the fit, the upper limit of the
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Figure 7: Parameters T and µB used for model calculations

confidence interval of the volume, V2, and lower limit of the confidence interval of
the volume, V3. Figure 13 shows all relevant theoretical Data below energies of

Figure 8: Volume dependent on particle energy for the four temper-
atures

√sNN=10 GeV. The threshold is introduced because the chemical freeze-out tem-
perature barely varies above it and we want to look specifically at the influence of
the temperature. Each individual subfigure shows the experimental Data together
with the corresponding theoretical graphs for the ideal volume and both ends of the
confidence interval. Here especially the graphs of the ratio p

π+ stick out as it has
no uncertainty, that is because the net strangeness of the ratio is zero. Since the
canonical volume is not a parameter for the calculation of that ratio the uncertainty
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falls away.
The best fit is obtained by minimizing the χ2 distribution. χ2 is defined as:

χ2 =
∑

i

(Rexp
i − Rmod

i )2

σ2 , (29)

where Rexp
i is the measured value of the ratio of hadron yields, σi is the corre-

sponding experimental error and Rmod
i the value from the model calculations. The

experimental error is sum of the squares of the statistical and systematic error

σ =
√

(∆fstatistical)2 + (∆fsystematic)2. (30)

These values of χ2 are plotted dependent on their characterizing temperature and
a parabolic χ2 distribution is assumed. To find the parameters of the parabola the
least squares method as described in section 6.5 is used. The ideal temperature
which characterizes the best fit at √sNN=2.7 GeV, in the same way as T0, T1, T2
and T3 characterize the temperature graphs of the theoretical data, is the minimum
of the fitted parabolic function. The uncertainty of the ideal temperature can be
approximated with:

∆T = ±[T (χ2
min + 1) − T (χ2

min)], (31)

where χ2
min is the value of χ2 at TI [27]. Lastly to evaluate how good the result of

the best fit is we will look at χ2/dof , where dof is defined as:

dof = Ni − Nparameters, (32)

with Ni being the number of data points and Nparameters the number of free param-
eters which are fitted. In our case the only free parameter is the temperature so
Nparameters = 1.
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6 Least squares

The following section is based on the book ”Applied linear algebra and matrix
methods” by Timothy G. Feemann [29]. It will show a basic way to find a solution
to the least squares problem, which can be summarized as follows:

Given a Matrix, A ∈ Rn×m and a Vector, b ∈ Rn. Over all choices of
m × 1 vectors x, minimize the mismatch between Ax and b (i.e., pick
x ∈ Rm to make Ax as much like b as possible).

min
x∈Rm

∥Ax − b∥ (33)

As well as how to use this knowledge for curve fitting. For this we will first go over
a few basics which are needed to solve the problem.

6.1 Angle between two vectors

For two nonzero vectors a and b in RN , the angle θ between them is the angle
between 0 and π radians whose cosine is given by

cos(θ) = a1b1 + a2b2 + · · · + aNbN

∥a∥∥b∥
. (34)

6.2 Inner Product

For two vectors a and b, both in RN , the expression aT b is defined as

aT b =
[
a1 a2 · · · aN

]
·


b1

b2
...

bN

 = a1b1 + a2b2 + · · · + aNbN . (35)

The resulting Scalar is called the inner product of a and b.
Note that bT a = aT b.
With this Definition in mind we can rewrite the formula from 6.1 to

cos(θ) = aT b
∥a∥∥b∥

. (36)

Note that if the inner product is equal to zero the right side is zero and θ is
subsequently equal to 90◦.
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6.3 Column space of a Matrix

This subsection is based on chapter 5.1 of the book[29]. A system of M linear
equations with N unknowns can be represented in matrix form as Ax = b, where:

• A is an M×N matrix of coefficients, denoted by A = [ai,j], where ai,j represents
the element in the i-th row and j-th column of the matrix.

• x = [x1, x2, . . . , xN ]T is the unknown vector in RN , which contains the variables
x1, x2, . . . , xN .

• b = [b1, b2, . . . , bM ]T is a given vector in RM , representing the constants on the
right-hand side of the system of equations.

The left-hand side Ax can also be interpreted as a sum of numerical multiples of
the column vectors of A. Specifically, if A is written as:

A =


| | . . . |

a1 a2 . . . aN

| | . . . |

 (37)

where each column aj is a column vector in RM , the product Ax can be expanded
as:

Ax = x1a1 + x2a2 + · · · + xNaN (38)

This means that the vector Ax is a linear combination of the columns of A, with
the scalar coefficients being the corresponding components of the vector x.

In other words, each component of the vector b, represented as bi for i =
1, 2, . . . , M , is a result of the combination of the coefficients ai,j from matrix A,
weighted by the unknowns xj. Therefore, the system of equations describes how the
vector b can be obtained by linearly combining the column vectors of A using the
unknowns in the vector x.

A solution to Ax = b are the specific values of x that result in a true equation.
This is only possible if the right hand side b is a linear combination of the column
vectors of A. In other words b has to be part of the column space Col(A), i.e. the
span of the collection of the column vectors, and conversely the column space is the
set of all vectors b for which the system Ax = b has a solution.

22



6.4 Least squares

This subsection is based on chapter 5.2 of the book[29]. Suppose we have a system
as described in 6.3 and b is a vector in RM , but not in Col(A). Thus, the system
Ax = b does not have a solution, otherwise the solution be calculated directly and
no minimization would be needed.
To approximately solve the system, we look for a vector x̂ such that Ax̂ is closest to
b among all vectors in Col(A). That is, we wish to find a vector x̂ ∈ RN such that

∥Ax − b∥ = min
x∈RN

∥Ax − b∥. (39)

This is the least squares problem as described in the beginning. A vector x̂ that
satisfies the equation 39 is called a least squares solution to the problem.

Figure 9: For b not in Col(A), a least squares solution x̂ has the
property that Ax̂ − b is orthogonal to Col(A).[30]

Geometrically, the vector Ax̂ is the projection of the vector b onto the column
space of A. The difference Ax̂ − b, which represents the ”error” or the vector of
residuals, must be orthogonal to the column space of A. That way, we have a right
triangle with b as its hypotenuse and the vectors Ax̂ and (Ax̂ − b) as the adjacent
sides, see figure 9. This ensures that Ax̂ is the closest point to b in Col(A). Since
the difference vector Ax̂ − b is orthogonal to the column space of A, it must have
an inner product 6.2 of zero with every column vector aj of the matrix A.

aT
j (Ax̂ − b) = 0 (40)

This condition can be rewritten in matrix form and we obtain the following
matrix equation:
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AT (Ax̂ − b) = 0. (41)

This equation represents the condition for x̂ to be the least squares solution to
the problem and can be expanded to:

AT Ax̂ = AT b. (42)

This is known as the normal equation. It is a key result in the least squares
problem, as it provides a way to solve for the vector x̂ that minimizes the squared
error ∥Ax̂ − b∥2. In practice, solving the normal equation allows us to find the best
approximation of b within the column space of A.

6.5 Multiple Linear Regression

This subsection is based on chapter 5.3.1 of the book [29]. Suppose we have N input
variables X1, X2, ..., XN and an output variable Y , and we suspect that there my be
a linear relationship between them of the form

β0 + β1X1 + β2X2 + · · · + βNXN ≈ Y, (43)

where the parameters βi are constants which we want to determine. With a sample
of M observations, where each observation includes measurements of all the input
variables along with the output variable, we can write the i-th observation as

β0 + β1xi,1 + β2xi,2 + · · · + βNxi,N ≈ yi. (44)

Here the i-th measurement of the j-th input variable Xj is denoted by xi,j and the
corresponding i-th measurement of Y by yi. To express this in matrix form we set
the output as a vector y, and take xj to be the column vector of measured values of
the variable Xj where Xj with j ∈ [1, · · · , N ] are the column vectors of A. When
the parameters βi are also expressed as vector β we get

A =
[
1M X1 · · · XN

]
, β =


β0

β1
...

βN

 and y =


y0

y1
...

yM

 . (45)

The conjecture is that Aβ ≈ y. The least squares solution is a vector β̂ that satisfies
the normal equation 42:

AT Aβ̂ = AT y. (46)
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To assess how well the model explains the data from the sample we compare the
error ∥Aβ̂ −y∥, which represents the difference between the predicted values Aβ̂ and
the observed values y, to the overall variability in y without considering the input
variables Xj. If this error from the estimation is not significantly smaller than the
intrinsic variability in y, the regression model does not provide much value. The
total variability in a given sample is the sum of the squared differences between each
observed value and the mean. The mean is defined as

ȳ = y1 + · · · + yM

M
. (47)

With that the sum of the squared differences or total sum of squares (TSS) is defined
as

TSS = (y1 − ȳ)2 + · · · + (yM − ȳ)2 = ∥y − ȳ∥2. (48)

Statisticians use a metric called R2 to compare TSS with the sum of squared errors
(SSE) resulting from the least squares solution, which is defined as

R2 = 1 − SSE

TSS
= ∥Aβ̂ − y∥2

∥y − ȳ∥2 (49)

If regression estimates are perfect, then R2 = 1. If the regression errors are large,
then R2 will be close to 0.
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7 Program structure

The program works in four major steps: read files, filter data, calculate error and
fitting, which are executed in series. Exactly one experimental dataset is required
while the number of theoretical Datasets can be varied as desired. The Name of
the input files is irrelevant, since they will be accessed through their file paths, but
they have to be CSV-files. These input files are described in more detail in the next
subsection. Each Function in the program will be performed independently from
others, and the output should be stored in a designated variable for ease of use later.

7.1 Input files

As stated before the inputs have to be CSV-files, but the separator, right now
designated as double spaces, can be swapped. The amount and order of the columns
in the files are fixed. Although the columns do not need to be named the order of
columns should be the same as the formats described below.
For the experimental data the current format is

√
sNN ratio uncertainty

where:
√sNN — energy per particle in the particle beam in GeV,
ratio — ratio at the given energy,
uncertainty — uncertainty of the given ratio

and for the theoretical data the current format is
√

sNN V1 V2 V3

where:
√sNN — energy per particle in the particle beam in GeV,
V1 — ratio at the given energy and a given Volume V,
V2 — ratio at the given energy and the upper end of the confidence interval of

the volume (V+∆V)
V3 — ratio at the given energy and the lower end of the confidence interval of

the Volume (V-∆V).

From now on we will refer to the contents of one such file as a set, which corresponds
to the data of a given temperature and ratio for all energies. Furthermore a ratio-set
is all sets through all temperatures of a given ratio and a temperature-set is a all
sets of a given temperature.
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7.2 Read files

This step just takes the data of all input files and puts them in two dictionaries, one
for the experimental data and one for the theoretical data. For that it is important
that they are grouped correctly and there is the same order of ratios in every group.
First the names of the ratios are listed, this also determines the order of the ratios in
each group. The groups are the experimental sets and the individual temperature-
sets, each group consists of the list of paths which refer to the individual input files,
which are ordered after the order of the list of ratio names. Lastly the temperature-
sets also each receive a name through a list. Lastly the groups of temperature-sets
are put into a list, which has the same order as the names list.
The two dictionaries that are created have the names data_E, for the experimental
data, and data_T, for the theoretical data.

7.3 Filter data

This step has three individual Functions:

energy_limits — energy per particle in the particle beam in GeV limited by lower
and upper bonds

targeted_energy_limits — energy per particle in the particle beam in GeV lim-
ited by lower and upper bonds for a given ratio

get_theoretical_values — match theoretical data of all temperature-sets to the
energies present in the experimental data

The inputs for the functions are as follows:

energy_limits (experimental data set, lower bound, upper bound)
targeted_energy_limits (experimental data set, ratio(s), lower bound, upper

bound)
get_theoretical_values (experimental data, correct_p2pip)

energy_limits filters out all data which is not inside the bounds and gives out a new
data set. targeted_energy_limits functions the same way but the bound is only
applied to a given ratio or a list of ratios. Both Functions can be used in succession
as often as ones wants and if one inputs contradictory bounds a whole ratio can be
excluded.
get_theoretical_values filters all temperature-sets in data_T such that only ratios
with energy values remain that correspond to ones in the experimental set. If the-
oretical values in any temperature-set are missing the temperature-set, ratio and
energy of the missing value are printed into the console. If there are no missing the-
oretical values the statement: ”The experimental data has corresponding theoretical
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data for all temperatures.” is printed. Only then can the filtered theoretical data be
used in the calculate error functions! This function also has a second option (input is
a boolean, default is False) which specifically corrects an error in the ratio-set p/π+

of the here given theoretical data, where the values for the ends of the confidence
interval of the volume are very outlandish, even though they should be the same as
the ones of the mean volume. If this option is True the ratios of the mean volume
will be used for all three columns

7.4 Calculate error

For this step there are five Functions:

error_extensive — calculates χ2 with equation 7
error_E — sums χ2 over all energies
error_E_dof — sums χ2 over all energies and divides it by the degrees of freedom
error_ER — sums χ2 over all energies and ratios
error_ER_dof — sums χ2 over all energies and ratios and divides it by the

degrees of freedom

The inputs for the functions are as follows:

error_extensive (experimental data, theoretical data)
error_E (experimental data, theoretical data)
error_E_dof (experimental data, theoretical data, parameters)
error_ER (experimental data, theoretical data)
error_ER_dof (experimental data, theoretical data, parameters)

All Functions only work when there is the same number of energy values per
ratio in each temperature-set as in the experimental set. This is achieved with
get_theoretical_values function from section 7.3, so that Function has to be used
first and its output is the input for these Functions. The output of error_extensive
is in the same format as the theoretical data it was generated from. error_E sums
the values from error_extensive over all energies and outputs three error values in
a List for every ratio of every temperature. The first value of the List is the error of
V1, the second the error of V2 and the third the error of V3. Lastly error_ER sums
the values from error_extensive over all energies and outputs three error values in a
list for every temperature. The list has the same structure as the ones from error_E.
For error_E and error_ER there is also a corresponding function which calculates
χ2/dof , with dof as defined in 5. The output has the same form as the two original
functions, but to calculate dof a third input is needed which is the amount of free
parameters.
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All five functions also exist for δ2 as error_delta_extensiv, error_delta_E, er-
ror_delta_E_dof, error_delta_ER and error_delta_ER_dof with exactly the same
properties as the ones for χ2. The Formula for δ2 is

δ2 = (Rexp − Rtheo)2

(Rexp)2 (50)

7.5 Fitting

For this step there are three Functions:

temperature_analysis — creates a parabolic fit dependent on temperature
temperature_analysis_ratios — creates a parabolic fit dependent on tempera-

ture for each ratio individually
plot_ideal_temperature — plots the ideal temperatures with their uncertainties

The inputs for the functions are as follows:

temperature_analysis (error data, temperatures, initial guess, show, dof)
temperature_analysis_ratios (error data, temperatures, initial guess, show,

dof)
plot_ideal_temperature (ideal temperatures of ratios, ideal temperature)

temperature_analysis takes the error summed over the energies and ratios as input,
as such any output of error_E, error_E_dof or its counterparts for δ2 can be used
as input. After that the temperatures of the individual temperature-sets have to
be provided as a list of real numbers with the same order as the list of names of
the temperature-sets. Lastly an initial guess has to be given. This is also a list of
real numbers. The first number is the ideal temperature with the smallest error,
the second number is the value of the smallest error and the third is the steepness
of the curve. In other words the first two values are describing the position of the
vertex and the third is the value of a of a parabolic function:

f(x) = ax2 + bx + c. (51)

After that are two optional inputs ”dof” and ”show”. ”dof” is for the naming of
the y axis. If it is set to false it will just be χ2 and if true χ2/dof , this should be
set according to the input error data. The default value of dof is False. ”show”
determines if the plot should be displayed, the default is True. The coordinates of
the vertex of the fitted function and the uncertainty of the ideal temperature are
printed in the terminal.
temperature_analysis_ratios has the same inputs but the inputs for ”temperatures”
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and ”initial guess” have to be modified such that they are a list of lists, where the
first list is for the first ratio, the second for the second ratio and so on. The length of
these lists naturally has to be the same as the amount of ratios. Each individual list
for a given ratio is formulated the same as the ones for temperature_analysis, they
are just grouped into one big list for the input. ”dof” and ”show” work just like they
do for temperature_analysis. The coordinates of the vertices of the fitted functions
and the uncertainties of the ideal temperatures are printed in the terminal.
Both temperature_analysis and temperature_analysis_ratios also output their cal-
culated ideal temperatures with their corresponding uncertainties as lists. These
lists are the inputs for plot_ideal_temperature. The optional input ”show” in the
previous functions is exactly to suppress the display of the plots until all three are
created, so that one can look at them all at the same time.
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8 Results

Before looking at the temperature we will first talk about the influence of the canon-
ical Volume on the model data. For higher energies the suppression factor and with
that the influence of the canonical volume on the error of the model calculations
decreases as the hadron multiplicity increases and the system becomes big enough to
warrant a grand canonical approach. This energy dependence can be seen in figure
14 through the shrinking differences between the errors of the mean and the bounds
of the confidence interval of the volume, because even though the standard deviation
gets bigger, see figure 8, these have shrinking influence on the error. Looking only at
the errors of energies below 10 GeV all ratios seem to additionally show the tendency
that throughout the different temperatures the influence of the suppression factor
scales with the observed error.
For Λ/π− the error seems to grow continuously with higher temperatures and with
growing temperature the difference between the error of the different volumes in-
creases, even though there is no big difference between the standard deviations at
these small energies, insinuating a growing influence of the canonical volume. Al-
though Φ/K− has the opposite tendency, lower error with higher temperatures, the
influence of the suppression factor scales with the error. The only exception is the
lowest energy of K+/π+, where it seems to be low even though the error is high.
The ability of the volume to offset error this strongly could indicate an elliptical
contour plot of temperature and volume, where small changes in volume have a big
impact, but changes in temperature can be offset through the volume.

(a) All ratios and energies (b) Without Λ/π−

Figure 10: Error dependent on Temperature and Volume

Figure 10a shows χ2 added over all energies and ratios and it becomes apparent
that the lowest volume almost universally gives a better description of the experi-
mental data. Only for 63.8 MeV does the highest volume have the best agreement
with the data. This shows again how tight the cone of agreement is for the volume.
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Figure 11: χ2 distribution of energies below 10 GeV

Looking at Fig. 15 we can see that the biggest errors coincide with the errors of
Λ/π− and if we exclude this ratio from the sum, see figure 10b, we get drastically
lower χ2 values, but the trend of growing χ2 with higher temperatures remains.
The comparatively giant χ2 of this ratio, and those few points more specifically, is
because of the small error of the experimental data at those energies, which can’t
even be shown in figure 6. Because of that a small deviation from the experimental
data leads to big values of χ2. The χ2 distribution of all volumes together is shown
in figure 11. From it we get Tcf = 69.72 ± 1.37 MeV, with χ2/dof =118.82/36.
Although the error of the temperature is very low, the quality of the fit is not very
good. Fitting each volume individually we get a much better result with V3, the
outcome of all fits is summarized in Table 4.

Table 4: Summary of the results of the fits for different volumes

fitted volumes T (MeV) ∆T (MeV) χ2/Ndf

V1 & V2 & V3 69.72 1.37 118.82/36

V1 69.99 1.41 112.12/36

V2 64.77 1.17 115.91/36

V3 79.47 1.67 76.16/36

While the fit is better it is still not very good, also the error on the temperature
increased marginally, but is still very small. Additionally we can see a trend in
the results in table 4, with shrinking volume the fit quality increases, but the error
increases as well. If this trend continues good results might be achieved with even
smaller volumes. It is important to note that this trend is happening because the
smaller volumes disproportionally affect the higher temperatures and if we look
at the ideal temperatures of the individual ratios for V3, see figure 12, it is clear
that only ratios with strangeness suppression have such high ideal temperatures.
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This implies at least a double kinetic freeze-out scenario, with different freeze-out
temperatures for strange and non strange particles. This scenario is consistent with
[31, 32]. With this we get an ideal temperature of 80.21 ± 1.69 MeV for the strange
particles, which is practically the same as the one with all ratios because we only
looked at one non strange ratios. Although the quality of the fit is slightly worse, see
table 5, the fit for the non strange ratio is very good. The ideal temperature for non
strange particles is equivalent with the ideal temperature of 54.72 ± 9.77 MeV form
the p/π+ particle ratio. As stated before this particular fit is very good, but a sample
size of one is meaningless and other particle ratios need to be added. Fitting the

Figure 12: Ideal temperature of the individual ratios at the smallest
volume

ratios individually has varying success, see table 5. Except for K−/π− and Λ/π− the
individual fits are really good. Even K−/π− is manageable, but Λ/π− has such big
values for χ2 at lower energies, because of reasons discussed above, that the results
are not very good. The very similar ideal temperatures for the different strange
particle ratios make a multi stage freeze-out very unlikely, but a triple freeze-out, as
described in [33], can not be excluded, because only single strangeness ratios were
looked at.

Table 5: Summary of the results of the fits for different ratios at
volume V3

fitted ratios T (MeV) ∆T (MeV) χ2/Ndf

K+/π+ 86.95 3.54 3.28/7
K−/π− 79.41 4.12 16.5/6
Λ/π− 77.86 2.21 37.75/7
Φ/K− 78.9 13.75 2.05/5
p/π+ 54.72 9.77 4.95/7

all strange 80.21 1.69 64.6/28
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9 Conclusion

In this thesis five different particle ratio yields of central nucleus-nucleus collisions
measured in particle accelerators were compared with results from a thermal model.
The focus was on finding the ideal temperature at which the model gives the best
description of the measured data.
For all temperatures, except for the lowest one, the best agreement was achieved
with the smallest canonical volumes. Using V3 the best description of the experi-
mental data was achieved with a double kinetic freeze-out, where the strange and
non-strange particles have two different freeze-out points. For the non-strange par-
ticles we found an ideal temperature of 54.72 ± 9.77 MeV and 80.21 ± 1.69 MeV
for strange particles. The sample size for both particle categories, especially non-
strange, is very small. Because of this the possibility that this result is caused by the
choice of the ratios can not be ruled out. Also since no ratios with net strangeness
|S| > 1 were analyzed we can not make a statement about the existence of a triple
freeze-out.
To improve the accuracy of the fits canonical volumes lower than V3 need to be
explored and additional temperature in between T1 and T2 should be added. The
results also imply that the canonical volume has a far bigger impact on strange par-
ticle ratios than the temperature, calculations for temperatures over 92.6 MeV and
under 64.8 MeV might be useful to explore that connection between temperature
and volume further.
Lastly it has to be mentioned that a two dimensional fit where the temperature and
volume are fitted simultaneously would be the best way to find the ideal tempera-
tures, because of the interconnectedness of those two parameters.
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A Appendix

Figure 13: Comparison of experimental data (X) to Theoretical data
of energies smaller than 10 GeV, where black is the mean
Volume V , blue V + ∆V and red V − ∆V
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Figure 14: Error of theoretical value for all energies separate for V1
(black), V2 (blue) and V3 (red)
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Figure 15: Error of theoretical value for all energies below 10 GeV
separate for V1 (black), V2 (blue) and V3 (red)
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