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1. Introduction

Presumably until 10−5 s after the Big Bang, the ’quark-gluon plasma’ (QGP) existed.
The QGP is a state of matter in which quarks and gluons are not confined within
hadrons. Its study will help to understand the evolution of the universe from the
Big Bang to the creation of hadrons and atoms. Nowadays, the QGP can be created
under laboratory conditions in heavy-ion collisions, for example at the Large Hadron
Collider (LHC). The produced particles are measured by the detectors of the ALICE
experiment. Not only heavy-ion collisions, but also proton-proton collisions are investi-
gated by ALICE to get reference data and to compare them to the results of heavy-ion
collisions. In the experiment the quark-gluon plasma cannot be directly investigated
because only colorless particles can be measured and therefore no single quarks and
gluons. Due to this fact, special probes are needed which can be used to study the
properties of the quark-gluon plasma. One of these probes are ’prompt photons’, which
will be the topic of this thesis. High energy photons from particle decays form a large
background for prompt photons. The aim of this thesis is to distinguish between prompt
photons and decay photons using a neural network on an event-by-event basis. Since no
initial analysis of this type exists, only proton-proton collisions have been investigated.
Chapter 2 introduces the theoretical basics of particle physics and the QGP. After a
short description of the LHC and ALICE in chapter 3, the theory of artificial neural
networks is presented in chapter 4. In this thesis, special simulated data are needed
to train the neural network. Chapter 5 summarizes the principles of data simulation
and the settings of the used simulations. In chapter 6, the separation of decay photons
and prompt photons in the Monte-Carlo simulations is presented. For this part of the
analysis, the prompt photons and the decay photons are identified by using the ’MC
truth’. After identifying the photons, the input variables for the neural network can
be calculated and the network can be trained. In the experiment, the MC truth is
not available and therefore a different possibility to identify the photons and train the
network is needed. In chapter 7, the identification of decay photons using an invariant
mass analysis is described. Since prompt photons cannot be identified in this way, a
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method to calculate the input variables for prompt photons in ’minimum bias events’ is
presented in chapter 8. Using the results of chapters 7 and 8, a neural network can be
trained with measured data. This network is able to allocate every measured photon
to the set of prompt photons or decay photons.



2. Theoretical Background

In this chapter, the theoretical background which is necessary for the understanding
of this thesis will be presented. After summarizing the Standard Model of Particle
Physics, the creation of a quark-gluon plasma, its properties and signatures will be
briefly explained.

2.1. The Standard Model

In 1808, John Dalton formulated the hypothesis that matter consists of small indivisible
units called ’atoms1’[Dal08]. Nowadays, the hypothesis of atoms is generally accepted
because of many experiments like scanning tunnel microscopy, in which atoms can be
seen indirectly. The atomic substructure was discovered by Ernest Rutherford in 1911
[Rut11]. He explained the results of his scattering experiment by the existence of a pos-
itively charged, massive nucleus inside the atom and negatively charged, light electrons
around the nucleus. The nucleus is composed of protons and neutrons. These were dis-
covered by Rutherford in 1919 and by James Chadwick in 1932 [Cha32], respectively.
In the middle of the 20th century, a lot of other particles were discovered, like π0

and ∆+. In particle accelerator and cosmic ray experiments, particles were observed
which interact strongly with protons and neutrons, but have different masses. Together
with protons and neutrons, these strongly interacting particles are called ’hadrons’. In
1964, Gell-Mann and Zweig explained the existence of the hadrons by new fundamental
particles, called quarks [Gel64, Zwe64]. According to Gell-Mann and Zweig, all hadrons
are composed of quarks and anti-quarks representing different combinations of them.
Nowadays, the Standard Model of Particle Physics describes the fundamental particles
of which matter2 is composed and the forces between the particles.

1From the Greek ατoµoς, which means uncutable or indivisible.
2In this context, ’matter’ means visible matter. Dark Matter is not discussed in this thesis.
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Force Applies to Gauge Boson Mass Range

Strong Color 8 gluons (g) 0 10−15 m
Electromagnetic Electric charge Photon (γ) 0 ∞

Weak Weak charge W± 80.4 GeV/c2 10−18 m
Z0 91.2 GeV/c2

Table 2.1.: Fundamental forces of the Standard Model [PDG11].

Fermions Name Electric Charge Interaction with Mass

Leptons e−

νe

µ−

νµ

τ−

ντ

− 1 e
0
− 1 e
0
− 1 e
0

Weak and e.m.
Weak
Weak and e.m.
Weak
Weak and e.m.
Weak

0.511 MeV/c2

< 2 eV/c2

105 MeV/c2

< 0.19 MeV/c2

1.78 GeV/c2

< 18.2 MeV/c2

Quarks u

d

c

+ 2/3 e
− 1/3 e
+ 2/3 e

Strong, weak
and e.m.

1.7 - 3.1 MeV/c2

4.1 - 5.7 MeV/c2

1.2 - 1.3 GeV/c2

s

t

b

− 1/3 e
+ 2/3 e
− 1/3 e

80 - 130 MeV/c2

173 - 174 GeV/c2

4.1 - 4.9 GeV/c2

Table 2.2.: Fundamental particles of the Standard Model [PDG11]. For each particle,
a corresponding anti-particle exists with same multiplicative quantum num-
bers (e.g. same spin), but opposite additive quantum numbers (e.g. the
electric charge for electron (e−) and positron (e+)).

As listed in tables 2.1 and 2.2, the Standard Model contains 12 fermions (particles with
half-integer spin) as well as the gauge bosons photon, W±, Z0, and gluons (bosons
are particles with integer spin). The fermions form the matter we are surrounded by
whereas the gauge bosons act as mediators of the forces.
The fundamental fermionic particles can be subdivided into quarks and leptons. In this
model, 6 quarks with different ’flavors’ exist: up-quark (u), down-quark (d), charm-
quark (c), strange-quark (s), top-quark (t), and bottom-(or beauty-)quark (b). In ad-
dition, 6 corresponding anti-quarks exist: anti-up-quark (u), anti-down-quark (d), anti-
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charm-quark (c), anti-strange-quark (s), anti-top-quark (t), and anti-bottom-quark (b).
The quarks carry ’color’, which is in the strong force the analogon to the electric charge
in the electromagnetic force. Three different colors (blue, red, and green) exist in the
strong force and together, they cancel each other out like positive and negative electric
charges. Particles that carry color cannot be isolated (they are confined), only particles
without color can be observed directly and therefore only hadrons, which are neutral in
color, can be measured in experiments. Hadrons are classified into baryons and mesons.
Baryons consist of three quarks, like the proton p = uud, and mesons consist of a quark
and an anti-quark, like the pion π+ = ud . In baryons, the three quarks carry different
colors (red, green, and blue) which sum up to no color (red + green + blue = white
= colorless); in mesons, the quark carries color and the anti-quark carries anti-color,
which also sum up to no color (e.g. red + anti-red = white).
The leptons are electron (e−), muon (µ−), and tau (τ−) and the corresponding neutrinos
νe (electron-neutrino), νµ (muon-neutrino), and ντ (tau-neutrino). The anti-leptons are
positron (e+), anti-muon (µ+), anti-tau (τ+), anti-electron-neutrino (νe), anti-muon-
neutrino (νµ), and anti-tau-neutrino (ντ ). Contrary to quarks, leptons do not interact
strongly; they are only affected by the weak force, and the charged ones additionally
by the electromagnetic force.
The gauge boson of the electromagnetic force is the photon (γ), the quantization of the
electromagnetic field, which is described by quantum electrodynamics (QED). Using
the condition that the Lagrangian of this theory has to be invariant under a local U(1)
transformation, it can be seen that the photon carries no electric charge and has no
mass. Therefore, the electromagnetic force has an infinite range as in Coulomb’s law.
The gauge bosons of the weak force are the W+-, W−-, and the Z0-boson. They can
change the flavor of a fermion (e.g. the β-decay: d → u + e− + νe) and have large
masses resulting in a short range of the weak force. An explicit mass term in the La-
grangian of the (electro-)weak theory would violate the gauge invariance, therefore, the
masses of the gauge bosons are created by the ’Higgs mechanism’ by adding a ’Higgs
field’ to the Lagrangian. At the LHC, the experiments ATLAS and CMS are searching
for the corresponding particle of the Higgs field, the Higgs boson.
The gauge bosons of the strong force are the gluons, which are massless. The gluons in-
teract via color and are described by quantum chromodynamics (QCD, chroma =̂ color).
The underlying symmetry group of QCD is SU(3), which is resulting in 3 different col-
ors and 32-1 = 8 gluons. Since SU(3) is a non-abelian group, the gluons carry color
and anti-color and interact with each other. This limits the range of the strong force to
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the size of a proton (≈ 1 fm). The potential V (r) between a quark and an anti-quark
can be estimated by analyzing the charmonium, a bound system of a c- and a c-quark.

Figure 2.1.: Strong coupling constant αs as
a function of the momentum
transfer Q [Bet09].

For small distances r of the c-quarks, the
charmonium is similar to the positron-
ium, a bound system of an electron and a
positron, which results in a Coulomb-like
summand in the potential, V (r) ∝ 1/r.
Up to now, no free, colored particle was
observed. This confinement of the quarks
within hadrons is taken into account by
adding a summand ∝ r to the potential.
The ansatz for the potential is given by
[Pov09]

V (r) = −4
3
αs(Q2)~c

r
+ k · r, (2.1)

where k is a constant and αs(Q2) is the
coupling constant of the strong force. Due
to the polarization of the vacuum3 by glu-
ons, αs depends on the momentum trans-
fer Q2. In first order of perturbation the-
ory in QCD, αs(Q2) is given by [Hal84]

αs(Q2) = 12π
(33− 12nf ) · ln(Q2/Λ2) , (2.2)

where nf is the number of the involved types of quarks and Λ is a scale parameter of the
QCD (Λ ≈ 250 MeV [Pov09]). For momentum transfers Q � Λ, the coupling constant
becomes � 1 and QCD processes can be calculated using perturbation theory (see
figure 2.1). The decrease of αs with increasing momentum transfer is called ’asymptotic
freedom’.

2.2. The Quark-Gluon Plasma

As mentioned in section 2.1, quarks are confined within hadrons under normal condi-
tions. In certain QCD calculations [Cab75], it can be shown that for high temperatures
T or a high baryochemical potential µB, the quarks are not confined anymore. This

3See appendix A.3.
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new state of matter is called quark-gluon plasma (QGP). It is assumed that the QGP
exists in neutron stars nowadays and that it existed until approximately 10−5 s after
the Big Bang [BM07].

Figure 2.2.: The phase diagram of QCD. The solid line represents a first order phase
transition, the dashed lines indicate crossover transitions. Neither the exact
position of the critical point nor its existence has yet been measured [Sah10].

The study of the QGP will help to understand the evolution of the universe from the Big
Bang to the creation of hadrons and atoms. It is also a test for some non-perturbative
QCD calculations, so-called ’lattice QCD’. In figure 2.2, the phase diagram of strongly
interacting matter is shown. For different temperatures T and baryochemical poten-
tials µB, different states of matter exist. For small temperatures and baryochemical
potentials, the quarks and gluons (also called partons) are confined within hadrons and
form a hadron gas. The semi-circle at zero temperature represents the atomic nucleus,
the ground state of nuclear matter. For a small baryochemical potential, the transition
to the QGP is a smooth crossover, while it is a first order phase transition for a high
baryochemical potential. The full circle in the diagram is the critical point, where the
first order phase transition ends and the smooth crossover begins. Neither the exact
position of the critical point nor its existence has yet been measured. In figure 2.3, the
reduced energy density εred = ε

T 4 is plotted against the temperature of a hadron gas
or QGP, calculated with lattice QCD. The calculations were done for different number
of flavors, 2 (3) flavors means calculations by taking into consideration 2 (3) degen-
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Figure 2.3.: The reduced energy density εred = ε
T 4 plotted against the temperature T .

For T = Tc, a phase transition of the hadron gas occurred and a QGP is
formed [Kar02].

erated quark masses and 2 + 1 flavors means calculations with 2 degenerated quark
masses and 1 heavier quark. For a critical temperature Tc, the reduced energy density
increases without increase of the temperature, which is characteristic of a phase transi-
tion. For an ideal gas, the energy density ε can be calculated by the Stefan-Boltzmann
law, εSB ∝ T 4. The reduced energy density εred of an ideal gas does not depend on the
temperature and is shown in figure 2.3 in the upper right corner. It can be seen that also
for high temperatures, the reduced energy density does not reach the Stefan-Boltzmann
limit and therefore, the QGP is not an ideal gas.

2.3. The Quark-Gluon Plasma in the Laboratory

The quark-gluon plasma can be produced in the laboratory in ultra-relativistic heavy-
ion collisions, for example at the LHC, where lead ions are accelerated up to a center-
of-mass energy per nucleon pair of √sNN = 5.5 TeV, which is much higher than the rest
mass of a nucleon. Due to Lorentz contraction, an ultra-relativistic lead ion is deformed
into a thin disc in the laboratory frame. The collisions can be classified in different
centralities described by the impact parameter b, which is small for very central collisions
and large for peripheral collisions (compare figure 2.4). In central collisions, the two
nuclei overlap very much and a lot of protons and neutrons participate in the collision.
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Figure 2.4.: Schematic view of the collision in the participant-spectator model [KB04].

Figure 2.5.: Space-time evolution of an
ultra-relativistic heavy-ion
collision with a quark-gluon
plasma [KB04].

These nucleons are called participants,
the remaining nucleons are called specta-
tors. In the collision, the quarks and glu-
ons of the participants interact with each
other and form the ’fireball’.
In figure 2.5, the space-time evolution of
an ultra-relativistic heavy-ion collision is
shown [Bjo83]. At the beginning (time
t = 0) of the collision, the partons scat-
ter hard and highly excited matter is
formed. In the proceeding process, the
fireball reaches a thermal equilibrium and
it is possible that a quark-gluon plasma
arises. The quark-gluon plasma cools
down while expanding and after a pos-
sible mixed phase, the quarks and gluons

are confined again within hadrons and a hadron gas is formed. These hadrons scat-
ter inelastically and their composition changes until the chemical freeze-out is reached.
Then, the composition of the hadron gas is fixed and the hadrons scatter only elasti-
cally. After the thermal freeze-out, also the elastic scattering stops and the momenta of
the particles are fixed. These hadrons are measured in the detectors of the experiment.
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2.4. Signatures of the Quark-Gluon Plasma

In the experiment, only colorless particles, like hadrons and leptons, can be measured,
but no quarks and gluons. To get an evidence for a quark-gluon plasma, several signa-
tures exist. Each of these signatures could come from another non-QGP scenario. In
consequence, only combinations of the signatures can be an evidence for a quark-gluon
plasma.
In collisions with protons instead of lead ions, no quark-gluon plasma is produced. To
study the modification of the measurements due to a medium, the measured data in
heavy-ion experiments are compared with data measured in proton-proton collisions.

Figure 2.6.: Example of an RAA mea-
sured by the ALICE exper-
iment. Shown are central
(0-5%) and peripheral (70-
80%) lead-lead collisions with
a center-of-mass energy per nu-
cleon of √sNN = 2.76 TeV
[ALI10].

This comparison can be done directly
by using the ’nuclear modification fac-
tor’ RAA. It is defined as

RAA =
d2N
dydpT

|A+A

Ncoll · d2N
dydpT

|p+p
. (2.3)

d2N
dydpT

|A+A is the number of measured par-
ticles in a certain rapidity and transverse
momentum interval4 in nucleus-nucleus
collisions. d2N

dydpT
|p+p is the number of

measured particles in a certain rapid-
ity and transverse momentum interval in
proton-proton collisions. Ncoll is the num-
ber of independent nucleon-nucleon colli-
sions.
In case the nuclear modification factor is
equal to one, no medium effects influ-
ence the number of produced particles.
For RAA < 1, the number of produced
particles per nucleon-nucleon collision is
smaller in nucleus-nucleus collisions than
in proton-proton collisions. In figure 2.6,
the RAA, measured by the ALICE experi-
ment, is plotted as a function of the trans-
verse momentum pT . The RAA is plotted for peripheral (70-80%) lead-lead collisions,

4Compare appendix A.1 for rapidity and transverse momentum.
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expecting no quark-gluon plasma, and for central (0-5%) lead-lead collisions. A strong
suppression of particles is measured in central collisions. This alone is not an evidence
for a quark-gluon plasma, since the suppression could originate from the influence of
e.g. ’Cold Nuclear Matter’. To estimate this influence, proton-nucleus collisions can be
investigated.
The scaling of the number of produced particles with Ncoll is not valid for low-pT
particles (pT . 2 GeV/c). The particles with a small pT scale with the number of
participants of the collision Npart. Therefore, the RAA is smaller than one for particles
with pT . 2 GeV/c.
The direct comparison of the different collision types by the nuclear modification fac-
tor implies that, for high pT particles, a nucleus-nucleus collision can be described as
a proton-proton collision scaled by the number of independent nucleon-nucleon colli-
sions Ncoll. To check this assumption, special probes are needed which do not interact
strongly and are therefore not influenced by a medium. Two possible probes are pho-
tons and leptons. These probes travel through the medium without further collisions,
therefore, they carry information about the stage of the collision in which they were
produced. Some sources of leptons (l) are the Drell-Yan mechanism, a first hard scat-
tering of two quarks and the creation of an ll̄-pair via a virtual photon, semi-leptonic
decay of charm or beauty mesons5, and thermal leptons created in the plasma.
Photons can be divided into ’decay photons’ and ’direct photons’. Direct photons are
all photons not originating from decays and can be subdivided into ’thermal photons’
and ’prompt photons’. The source of thermal photons is the hot medium, the prompt
photons arise in hard parton-parton scatterings directly after the collision.

Besides thermal photons and the behavior of the reduced energy density εred as a
function of the temperature T (see figure 2.3), the suppression and enhancement of
J/Ψ is another signature of a quark-gluon plasma. The J/Ψ-meson is a charmonium
(JPC = 1−−) with a c-c̄-potential V (r) described by equation 2.1 under normal condi-
tions. Inside a quark-gluon plasma, the color of the quarks is screened, similar to the
electromagnetic screening in a normal plasma, and the potential V (r) is changed to a
Yukawa potential

V (r, T ) = −4
3
αs(Q2)~c

r
e
− r
rD(T ) , (2.4)

where rD(T ) is the temperature-dependent Debye-radius, a parameter of the screening.
5Charm and beauty mesons are mesons with a charm-quark and a beauty-quark, respectively, and a
light quark.
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The Debye-radius decreases with increasing temperature and will be less than the J/Ψ
binding radius for a certain temperature. The quarks are not confined anymore in this
case, the mesons dissolve, and the number of J/Ψs is reduced.
This is only verified for low energies, like at RHIC. The Relativistic Heavy-Ion Collider
(RHIC) is a particle accelerator at the Brookhaven National Laboratory (BNL) on Long
Island. For high energies, like at the LHC, more c-c̄-pairs are produced. Due to the
Debye screening, the c-c̄-pairs melt and the c (c̄) can move independently through the
plasma and recombine with other c̄ (c) to J/Ψ. This results in an enhancement of J/Ψs,
in case the charm-quarks are not confined and can travel freely for a certain distance.
Therefore, the enhancement of J/Ψs is an indication for a quark-gluon plasma.

Figure 2.7.: Schematic view of a high-energy collision. Two protons collide (black),
two partons scatter hard and two jets with high pT are created (blue).
In addition, two other jets with smaller pT are produced (red). Due to
gluon radiation, initial- and final-state showers arise. Colorless, principally
measurable particles are drawn green [GO09].

In the beginning of Pb-Pb collisions, as well as in the beginning of proton-proton colli-
sions, the partons of the colliding nucleons scatter hard against each other and e.g. two
partons with high transverse momentum can be produced, which are flying in opposite
directions. The two partons (e.g. q and q̄) carry color and, due to the potential between
them (see equation 2.1), the energy which is necessary to separate them from each other
increases with increasing distance. The potential between the two partons is described



17 2.5 Photons and Jets

by a ’color flux string’ (q-q̄), similar to an elastic band. At a certain energy, the string
breaks and two additional partons (e.g. q̄′ and q′) are produced. Between the original
and the additional partons, two new strings arise (q-q̄′ and q̄-q′). The two additional
partons are flying approximately in the same direction as the original parton, but with
a smaller momentum. Therefore, the distance between the original and the additional
parton increases and the new string breaks at a certain distance. This results in a
production of particles and therefore in a lot of high-energetic hadrons, which are flying
approximately in the same direction as the original parton. This cluster of hadrons is
called ’jet’. A jet is defined by the output of a special algorithm, called jet-finder. In
figure 2.7, a schematic view of a high-energy proton-proton collision is shown. Among
others, two high pT jets are created.
In heavy-ion collisions, partons also scatter hard and partons with high transverse mo-
mentum are produced. These partons have to travel through a medium, interact with
it and therefore they will lose energy. This results in a suppression of high pT particles6

and jets. This phenomenon is called ’jet-quenching’.

2.5. Photons and Jets

The sources of prompt photons are hard scatterings of partons at the beginning of the
collision.

Figure 2.8.: Leading order Feynman diagrams of parton-parton scatterings which result
in γ-jet events [Die06].

In figure 2.8, the Feynman diagrams of the origin of prompt photons are shown. Two
partons of the colliding protons (or lead ions) scatter and due to annihilation or gluon

6Compare figure 2.6.
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Compton scattering, a prompt photon and a parton are produced. The parton carries
color and will therefore create a jet by fragmenting to hadrons. This fragmentation can-
not be calculated in perturbative QCD because the momentum transfer Q is too small in
these processes and hence the coupling constant of the strong force αs is too large. To
describe the creation of hadrons, a phenomenological fragmentation function is used.
The cross section σ for the formation of a hadron h is given by [Boe02]

E
dσ

d3~p
(p+ p→ h+X) =

∑
a,b,c,d

∫ 1

0
dxa

∫ 1

0
dxbf

p
a (xa, Q2)fpb (xb, Q2)

× (dσ
dt

(ab→ cd))Dc
h(z,Q2)dz, (2.5)

where E is the energy and ~p the three-momentum. X are the other produced particles
except h. a,b,c, and d are different types of partons. xa and xb are the Bjorken scal-
ing variables. Q2 is the momentum transfer, fpa (xa, Q2) and fpb (xb, Q2) are the parton
distribution functions of the colliding protons. t is a Mandelstam variable7, Dc

h(z,Q2)
is the fragmentation function, and z is the ratio of the hadron momentum ph and the
momentum of the original parton pc, z := ph

pc
.

According to equation 2.5, the fragmentation function can be interpreted as the proba-
bility to find a particle in the interval [z,z+dz]. The fragmentation function Dc

h(z,Q2)
depends on the momentum fraction z and therefore the momentum of the measured
hadron h and the momentum of the immeasurable parton c are needed to calculate
Dc
h(z,Q2). To detect the momentum of the parton c, a prompt photon can be used.

The transverse momentum of the scattering partons inside the two colliding protons is
almost equal to zero and therefore the transverse momentum of the created parton is
approximately the same as the transverse momentum of the prompt photon. Due to
the conservation of momentum, the prompt photon and the parton are back-to-back
correlated in the azimuthal angle ϕ. This means that the parton (the produced jet) has
an azimuthal angle ϕjet ≈ ϕγ ± π in case the prompt photon has an azimuthal angle
ϕγ . The sum of the longitudinal momenta pL of the scattering partons inside the two
colliding protons is different from zero and therefore the jet and the prompt photon are
not correlated in the pseudorapidity η; they can be boosted.

7See appendix A.1.
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Figure 2.9.: Leading order Feynman diagrams of parton-parton scatterings which result
in jet-jet events [Die06].

In figure 2.9, the Feynman diagrams of the origin of jet-jet events are shown. Two par-
tons of the colliding protons (or Pb ions) scatter and due to annihilation, quark-quark
scattering or quark-gluon scattering, two partons are produced which will fragment to
hadrons and will produce two jets. These jets are also back-to-back correlated in ϕ and
can be boosted in η. Two light neutral hadrons are the π0-meson and the η-meson,
which will be produced very frequently. The π0 decays have a branching ratio of 98.8%
into two photons and a branching ratio of 1.2% into an electron, a positron, and a
photon. The η also decays into two photons (branching ratio = 39.3%), but also into
3 π0s (branching ratio = 32.1%), which will most likely decay into photons. The decays
of π0s and ηs are the main source of decay photons.
For π0s or ηs with a high momentum, the opening angle of the two photons is very
small and the photons are detected close to each other. Due to the finite resolution of
the detectors PHOS and EMCal8, it is difficult to separate the two photons for very
high momenta and it is possible that they are identified as a single high-energy photon
which looks like a prompt photon. Using the transverse momentum of the wrongly
identified photons as the parton momentum pc in the momentum fraction z will lead to
incorrect calculations of the fragmentation function. Therefore, a method to separate
prompt photons and decay photons is needed. This method is the aim of this thesis
and will be explained in detail in chapter 6.

8Compare section 3.2.1.





3. The LHC and ALICE

To produce a quark-gluon plasma in the laboratory, ultra-relativistic heavy-ion collisions
are needed. This is realized at the LHC. The produced particles are measured by
the detectors of the ALICE experiment. In this chapter, the LHC and the ALICE
experiment will be shortly presented.

3.1. The Large Hadron Collider

Figure 3.1.: Schematic view of the LHC and the experiments [CER11].

The Large Hadron Collider (LHC) at CERN is the world’s biggest particle accelerator
and is located under the Swiss-French border, 50 - 175 m below ground. It has a
circumference of about 27 km and is designed to accelerate protons up to 7 TeV and
lead ions up to 2.76 TeV per nucleon [LHC11]. The main goals of the LHC are [LHC11]

21



22

• finding the Higgs boson,

• testing the theory of supersymmetry,

• finding out what ’Dark Matter’ (and ’Dark Energy’) is,

• explaining the matter-antimatter imbalance in the universe, and

• studying the ’quark-gluon plasma’.

The LHC is a synchrotron with two beam pipes accelerating particles in opposite di-
rections. Therefore, the total design collision energy is

√
s = 14 TeV for proton-proton

collisions and √sNN = 5.5 TeV for lead-lead collisions. The current total collision en-
ergy for proton-proton collisions is

√
s = 7 TeV. In each beam pipe, 2808 bunches with

1.1 × 1011 protons per bunch travel around the accelerator ring. The LHC has 1232
dipole magnets to bend the beams around the ring, 392 main quadrupole magnets to
focus the bunches, and 8 cavities per beam to accelerate and focus the bunches. At
four points, the bunches collide with a design luminosity1 L = 1034 cm−2s−1 for proton-
proton collisions and L = 1027 cm−2s−1 for lead-lead collisions. At these four points,
six experiments are installed:

ALICE (A Large Ion Collider Experiment) [ALI95] studies the quark-gluon
plasma, which is generated in Pb-Pb collisions, as well as proton-proton collisions to
get reference data. The ALICE experiment will be described in detail in section 3.2.

ATLAS (A Toroidal LHC ApparatuS) [ATL99] and CMS (Compact Muon
Solenoid) [CMS06] are experiments to explore physics at the TeV scale. The prime
goals are the discovery of the Higgs boson and heavy particles which are postulated
by the theory of supersymmetry. ATLAS is the largest experiment at the LHC and
also the largest particle detector in the world. It consists of inner detectors, forward
detectors, a hadronic and an electromagnetic calorimeter, a muon spectrometer, and a
magnet system. ATLAS and CMS have the same goals, but use different techniques.
Therefore, results can be checked against each other.

1The luminosity is given by L = f ·N1 ·N2 ·n/A with n bunches in each beam, N1 and N2 particles per
bunch, a cross-sectional area A of the beams and circulation frequency f . For a given cross section
σ, the rate of a process dN/dt can be calculated with the luminosity: dN/dt = L σ.
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LHCb (Large Hadron Collider beauty experiment) [LHCb05] studies the CP-
symmetry violation in b-quark hadrons. This is possible because of the large bb produc-
tion cross section at the LHC energies.

LHCf (Large Hadron Collider forward experiment) [LHCf05] is close to ATLAS
and measures forward particles, which are created in the collisions, to test models for
the high energy region of cosmic rays.

TOTEM (TOTal Elastic and diffractive cross section Measurement) [TOT04]
measures the total cross section of proton-proton collisions. It also studies elastic scat-
tering and diffractive dissociation at the LHC.

3.2. The ALICE Experiment

Figure 3.2.: ALICE detectors [Wil09]

A Large Ion Collider Experiment (ALICE) is a particle detector with the aim to ex-
plore the phase transition between normal nuclear matter and a quark-gluon plasma. It
studies Pb-Pb collisions, in which the quark-gluon plasma is generated and also proton-
proton collisions to compare the result with Pb-Pb data. The detector has a size of
16 m × 16 m × 26 m and it weights about 10,000 t.
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ALICE is developed to measure 4000 charged particles per unit of η (dNch/dη = 4000),
but it is able to handle events with a much higher multiplicity (up to dNch/dη = 8000).
It has the special feature to detect different particles (hadrons, electrons, muons, and
photons), reconstruct their tracks over a large range of momenta (from 100 MeV/c up
to over 100 GeV/c), and identify them [ALI95].
The ALICE detector can be divided into the ’central barrel’ located around the col-
lision point from η = −0.9 to η = 0.9, the ’Muon Arm’ at a pseudorapidity region
−4.0 ≤ η ≤ −2.5, and other ’forward detectors’. The central barrel is surrounded by a
solenoid magnet, called ’L3’, which creates a homogeneous magnetic field of B = ±0.5 T
at room temperature. The subdetectors of the central barrel are ITS, TPC, TRD, TOF,
PHOS, EMCal, and HMPID; they are explained in section 3.2.1. The Muon Arm and
the forward detectors are explained in section 3.2.2.

3.2.1. The Central Barrel

ITS (Inner Tracking System): The ITS is the innermost detector of ALICE. Its
tasks are the reconstruction of the primary vertex of the collision and the reconstruction
of the secondary decay vertices of D-, B-mesons, and hyperons. Using the specific
energy loss (dE/dx), it is able to identify particles and their tracks for low momenta
(p ≤ 100 MeV/c) [ITS99]. The ITS consists of six layers of silicon detectors. The
two innermost layers are Silicon Pixel Detectors (SPD) which are able to handle an
expected track density of 80 tracks/cm2 [ALI04]. The following two layers are Silicon
Drift Detectors (SDD) and the outermost layers are Silicon Strip Detectors (SSD).

TPC (Time Projection Chamber): The TPC is a gas detector with a volume of
90 m3 and a gas mixture of 90% Ne and 10% CO2. The task of the TPC is the tracking
of particles. It measures the specific energy loss dE/dx (see figure 3.3) and has the
capability to reconstruct and identify 20,000 tracks per event. The TPC is able to
measure the momentum and the production vertex of a particle with a momentum
between 100 MeV/c and 100 GeV/c and can identify it [TPC00, GO09]. The charged
particles will ionize the gas and produce free electrons. These electrons drift in an
electrostatic field to the end caps. Due to the drift time of about 90 µs, the TPC is the
slowest detector in ALICE [ALI08].

TRD (Transition Radiation Detector): The tasks of the TRD are the separation
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Figure 3.3.: Specific energy loss (dE/dx) in the TPC as a function of momentum p

[Ali11]. The solid lines represent the Bethe-Bloch lines for various particle
species. The dashed lines show exclusion bands for pions and protons, used
in [Ali11], and are not important in this context. The specific energy loss is
shown for electrons (e), kaons (K), protons (p), deuterons (d) and pions (π).

of electrons and pions with a momentum ≥ 1 GeV/c and serving as a fast trigger on
high pT particles [TRD01]. The TRD is able to identify electrons with an efficiency
of 90% and a pion rejection above 100 [Wil09]. It consists of 18 super-modules, each
one comprising 30 individual detector modules, the ReadOut Chambers [TRD01]. One
super-module is subdivided in five stacks with six layers each.

TOF (Time Of Flight): The TOF detector separates protons and kaons from pions
by measuring the time between the collision and the arrival of the particles at the TOF
detector [TOF00]. Together with the ITS and the TPC, the TOF is able to identify
pions and kaons with a momentum up to 2.5 GeV/c and protons with a momentum up
to 4 GeV/c with a good π/K and K/p separation [ALI08].

The ITS, TPC, TRD, and TOF have an acceptance of |η| ≤ 0.9 and the full azimuth
of ϕ = 360◦.

PHOS (PHOton Spectrometer): The PHOS detector is a calorimeter with an ac-
ceptance |η| ≤ 0.12 and ∆ϕ ≈ 100◦. It is positioned at the bottom of ALICE and
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detects direct photons, π0s, and ηs by measuring their decay products [PHO99]. By
measuring high pT π0s and photons, PHOS and EMCAL allow the study of γ-jet cor-
relations and jet-quenching.

EMCal (ElectroMagnetic Calorimeter): The EMCal is, like PHOS, a calorimeter
to detect photons and is installed approximately opposite to PHOS. It has a bigger
acceptance of |η| ≤ 0.7 and ∆ϕ ≈ 107◦, but a worse resolution [EMC08].

HMPID (High-Momentum Particle IDentification): The task of the HMPID
detector is the identification of hadrons with a high momentum. It has an acceptance
of |η| ≤ 0.6 and 1.2◦ ≤ ϕ ≤ 58.8◦ [HMPID98].

ACORDE (ALICE COsmic Ray DEtector): The ACORDE detector is placed
on the top of the L3 magnet. It studies high-energy cosmic rays and is also used for
calibration and alignment.

3.2.2. The Muon Arm and the Forward Detectors

The muon spectrometer consists of a dipole magnet, absorbers, tracking chambers,
and trigger chambers. It covers a pseudorapidity range of -4.0 ≤ η ≤ -2.5 and the
full azimuth. Its task is to measure quarkonia (J/Ψ, Ψ′ , Υ, Υ′ ,Υ′′) through their di-
muon decays. The mass resolution has to be good enough to separate the single states.
Furthermore, the production of beauty and open charm can be studied.
The forward detectors are ZDC, PMD, FMD, T0, and V0. The ZDC (Zero-Degree
Calorimeter) is located 116 m away from the collision point at both sides. It measures
the energy in beam direction, which is correlated to the number of spectator nucleons
and therefore to the centrality of the collision [ZDC99]. The PMD (Photon Multiplicity
Detector) is 5.8 m away from the collision point and covers an η range of 1.8 ≤ η ≤ 2.6
and full azimuth (opposite to the muon spectrometer). It measures the multiplicity
distribution of photons close to the beam direction [PMD99]. The FMD (Forward
Multiplicity Detector) collects information about the multiplicity of charged particles
in -3.4 ≤ η ≤ -1.7 and 1.7 ≤ η ≤ 5.0. The T0 detector is used as a trigger and creates
the start signal for TOF. The V0 detector is an online trigger for minimum bias events
and centrality with an acceptance of -3.3 ≤ η ≤ -2.9 and 4.5 ≤ η ≤ 5.0 [FWD04].



4. Theory of Artificial Neural Networks

The goal of this thesis is to distinguish between prompt photons and decay photons.
For both kinds of photons, variables exist in which they differ partially. With these
variables, a pattern can be formed which is characteristic of the photons. The patterns
of signal (= prompt photons) and background (= decay photons) form two classes.
An artificial neural network is able to distinguish between classes of patterns. In this
chapter, the theory of artificial neural networks will be presented.

4.1. Introduction

An inspiring example of a neural network is the human brain. It has a lot of abili-
ties which, nowadays, no computer can reach, for instance understanding languages or
developing complicated movements. These advantages over computers are caused by
the capability of learning. Otherwise, computers can perform calculations much faster
than humans. An artificial neural network is the attempt to emulate the properties of
a brain by using the capability of fast calculating.
Typical applications of neural networks are classification of patterns, approximation
of functions, predictions, e.g. of share prices and others [Sch97]. In particle physics,
neural networks are often used for identification of particles [Wil09], reconstruction of
particle tracks and classification of decays [Kun95].
Some advantages of neural networks are learning aptitude, robustness, speed, and gen-
eralization aptitude [Sch97]. An artificial neural network is able to learn which output
it has to produce, depending on the input (learning aptitude). It is also able to handle
noisy data (robustness) and can associate the correct output to unknown input (gener-
alization aptitude). The training of the network will take some time, but after that, the
generating of the output will be fast (speed). A disadvantage is that neural networks
are black boxes. The output is a non-linear function of the input and therefore, it is
not possible to find out which part of an input is responsible for a certain output.
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4.2. The Network Structure

A neural network is composed of ’neurons’ and ’synapses’. The neurons are like small
processors which are able to perform simple calculations, for instance the summation
of the input. The synapses connect the neurons to each other, refer the output of one
neuron to another neuron, and amplify or damp the output meanwhile. This weighting
of the output of a neuron can be done by multiplying a number (weight) to the output
(see figure 4.1). Changing the weight means changing the output of the network. To
solve a certain problem with a neural network, a network topology, a learning algorithm,
some training data, and some validation data are needed.

There are many types of neural networks, which can be divided into feedforward and
feedback networks. Feedforward networks have a hierarchical structure, therefore, the
neurons can be grouped in individual layers. This kind of network has one input layer,
some hidden layers, and one output layer. The synapses only connect different layers,
therefore no connections inside a layer exist (see figure 4.2). These networks are called
perceptrons. The information only flows in one direction from the input layer, through
the hidden layers, to the output layer. The synapses can only connect a layer with the
next layer (first order) or additionally with other higher layers (second order).
In figure 4.2, a multilayer perceptron of first order with one hidden layer is shown.
The following explanations are adapted from references [Wil09] and [Wil04]. The input
neurons Ii can be written as an input vector ~I = (I1,I2,I3,I4), the weights to the hidden
layer wi,j as a matrix (wi,j)

Figure 4.1.: Illustration of a neuron [Wil09]. The input signals are weighted by the
synapses and summed up by the neuron.
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Figure 4.2.: Illustration of a neural network [Wil09]. Shown is a multilayer perceptron
of first order with one hidden layer. The network has four input neurons
Ii, three hidden neurons Hj , and two output neurons Ok. The weights wi,j
and wj,k only connect consecutive layers.

(wi,j) =


w1,1 w1,2 w1,3

w2,1 w2,2 w2,3

w3,1 w3,2 w3,3

w4,1 w4,2 w4,3

 . (4.1)

The output of the hidden neuron Hj is calculated by using a ’propagation function’ hj
and an ’activation function’ f . The propagation function is typically the summation of
the weighted input (another example is the multiplication of the weighted input):

hj :=
4∑
i=1

wi,jIi. (4.2)

The activation function f can be the identity function, the sigmoid function, or others.
In this thesis, a sigmoid function is used as activation function for hidden neurons

Hj = f(hj) = f(
4∑
i=1

wi,jIi) = 1
1 + e−hj

= 1
1 + exp(−(

∑4
i=1wi,jIi))

. (4.3)

These outputs are weighted again by the weights to the output layer (wj,k)

(wj,k) =


w1,1 w1,2

w2,1 w2,2

w3,1 w3,2

 . (4.4)
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For output neurons, the activation function is the softmax function

f(xk) = exk∑
k e

xk
. (4.5)

This ensures that the values of the output neurons are between zero and one and that
their sum is one (compare section 4.6). The output of the network is given by

Ok =
exp

(∑3
j=1wj,kHj

)
∑
k exp

(∑3
j=1wj,kHj

) . (4.6)

Feedback networks have no hierarchical structure. Mostly, a separation of different
layers is not possible and the neurons are connected with any other neurons. This kind
of networks will not be used in this thesis.

4.3. Backpropagation Algorithm

Training of the neural network means changing the weights in such a way that the output
of the network is approaching the target output. In this thesis, the target output of
signal is (t1,t2) = (1,0) and the target output of background is (t1,t2) = (0,1). The
backpropagation algorithm is able to train feedforward networks of first and second
order [Sch97].
In appendix A.4, the backpropagation algorithm is derived. The modification of the
weight wi,j is proportional to the variation of the error εp with the weight,

∆pwi,j := −η ∂εp
∂wi,j

, (4.7)

and can be calculated with

∆pwi,j = η(tp,j − op,j) · f ′(
∑
i

wi,jop,i)op,i (4.8)

for output units and with

∆pwi,j = η(
∑
k

δp,kwj,k) · f ′(
∑
i

wi,jop,i)op,i (4.9)

for other units. tp,j is the target output and op,j the real output of the jth output neuron
for a pattern p. The learning parameter η is a real, constant number and determines the
speed of the training. In this thesis, the class TMultiLayerPerceptron of the analysis
framework ROOT1 is used to create the neural networks. In this class, the training of
the network is done using equation 4.7, which corresponds to equation 4.8 and 4.9.

1More about ROOT can be found in [ROO].
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4.4. Training and Validation

The training of the network starts with the input vector, which is supplied to the
input neurons. The input is multiplied by the weights (which have random values)
and sent to the first layer of hidden neurons. The output of the hidden neurons is
calculated and sent to the next hidden layer or the output layer (feedforward). In this
way, an output for the network is produced. The resulting output is compared with
the target output and the error εp = 1

2
∑
j(tp,j − op,j)2 of the network is calculated.

The modification of each single weight is computed with equation 4.8 and 4.9. First,
the modifications for the output layer are determined, then the modifications for the
previous layer and so on, up to the input layer. The weights are modified from back
to front (backpropagation). The error of the network is a function of the weights and
therefore high-dimensional. The backpropagation algorithm is trying to find the global
minimum of the error function by modifying the weights in such a way that the steepest
slope of the error function is followed (see figure 4.3).

Figure 4.3.: Example of an error function ε(w) for two weights w(1) and w(2) [Sam05].
The modification of the weights follows the steepest slope of the error func-
tion.

To train the network, some training data are needed. The minimization of the error
function is done for every input vector, which means for every pattern of the training
data. A loop over all training patterns is called an ’epoch’. The network is trained
several epochs and after each one, some test data are used to test the generalization
ability2 of the network. The patterns of the test data are propagated through the net-
work and their error is calculated. If the error of the test data becomes larger during

2The ability of the network to identify unknown patterns correctly.
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the training, the generalization ability of the network will decrease. This phenomenon
is called ’Overfitting’ and means an exclusive adaption to the training data. Therefore,
the ability of the network to identify unknown patterns ( = patterns which are not used
for training) correctly is lost and the network can only identify the training patterns.
To validate the separation performance of the neural network, a third data set is needed.
This data set is propagated through the network after the training and the output dis-
tribution of signal and background is plotted. A good separation performance means
well-separated output distribution of signal and background.

4.5. Input Space

Feedforward networks have an input layer with n input neurons. These input neurons
are the basis of the n-dimensional input space.

Figure 4.4.: Left: Example of an input space of a feedforward network with two input
neurons. The patterns of signal and background will form two sets of
numbers in the input space, which are not disjoint in most cases. Right:
Input space with a separation plane, calculated by the neural network.

For two input neurons, a possible input space is shown in figure 4.4. Every pattern of
signal and background is a point in the two-dimensional input space and together they
will form two sets of numbers. The sets of signal and background will partly overlap in
most cases. By training the network, ’separation planes’ will be automatically calculated
in the input space (compare figure 4.4, right). This separation plane is synonymic with
a certain output of the network, e.g. 0.5. On the left (right) side of the line in figure
4.4, the output of the network will be less (greater) than 0.5 and the network will
identify these patterns as background (signal). This separation plane can be a straight
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line as well as a complicated curve. The set of background and signal are not disjoint,
therefore, the neural network cannot completely distinguish between background and
signal. Compared to the use of cuts, the advantage of a neural network is that the ’cut’
on variable 2 is not fixed, but depends on the value of variable 1.
For more input variables (and higher dimensions), it works in the same way, the network
will calculate separation planes in the high-dimensional input space. The main challenge
is to find suitable input variables to disjoin the set of background and signal in the input
space.

4.6. Interpretation of the Network Output as Likelihood

Under certain conditions, the output of a neural network can be interpreted as Bayesian
a posteriori likelihood. That means that the output of the i-th output neuron of the
network, for a certain pattern, is the likelihood that this pattern belongs to the class
of patterns ci. The class of patterns c1 must have the target output (t1,t2) = (1,0) and
the class of patterns c2 must have the target output (t1,t2) = (0,1). The conditions are
[LIP91, Ott96]

• use of a quadratic error function,

• one output neuron per class of patterns,

• the a priori likelihood of all distributions of the training data has to be the same
as in the experiment, and

• the global minimum of the error function must be reached.

The Bayesian a posteriori likelihood that a pattern p belongs to the class of patterns ci
is given by [Ott96]

P (ci|p) = P (p|ci)P (ci)∑
j P (p|cj)P (cj)

. (4.10)

P(p|ci) is the likelihood that the class of patterns ci creates a pattern p, P(ci) is the a
priori likelihood of the class of patterns ci3(i=1,2). As it can be seen in equation 4.10,
the output of the network is generally weighted by the relative frequencies of c1 and c2

in the training data.
For the same relative frequencies of c1 and c2, P(c1) = P(c2), equation 4.10 can be
simplified to

P (ci|p) = P (p|ci)
P (p|c1) + P (p|c2) . (4.11)

3This is equal to the relative frequency of ci in the training data.
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In chapter 6 and 8, the neural networks are trained, tested, and validated using the
same relative frequencies. In chapter 7, the neural networks are trained and tested
using the same relative frequencies and validated using realistic relative frequencies.
Also in the application of the network in measured data realistic relative frequencies
will be used for validation, since more decay photons than prompt photons exist.



5. Monte-Carlo Simulation of Data

In this thesis, a neural network is used to distinguish between prompt photons and
decay photons. To train the neural network and to test it, data with special properties
are needed. The requirements are not fulfilled by the existing simulated data, therefore,
new simulations are implemented. The settings of the simulations are presented in this
chapter.

5.1. Principles of Data Simulation

As mentioned in chapter 3, ALICE measures the final state particles which are created
in proton-proton collisions and Pb-Pb collisions at the LHC. The collisions can be
simulated by using ’event generators’, which are able to simulate the particles and their
interactions among each other. No new physics can be discovered in simulations, but
the event generators can reproduce the particles and their distributions (e.g. their
pT distribution and η distribution), which were measured in earlier experiments or
predicted theoretically.
In the event generator, all produced particles can be identified by their ’PDG code’1.
The PDG code is a numerical code to label the type of the particle (e.g. 111 = π0,
22 = photon). Besides the PDG code, the mother-daughter relationships of every
particle, all kinematic variables like the transverse momentum, global event information
like the pT -hard2, and other information are available.
In this thesis, the event generator PYTHIA is used [PYT06]. PYTHIA simulates the
particles until a short time after the collision. The program GEANT propagates the
particles from PYTHIA to the detector and simulates interactions and particle decays
[GEA3]. GEANT is also able to simulate the detector’s layout and calculates the
interaction of the particles with the detector material when they pass through. The
response of the detector is stored as ’digits’, which can be processed to ’raw data’. These
raw data are also produced by the detectors in ALICE and measured and simulated

1PDG = Particle Data Group.
2See section 5.2.
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raw data should ideally be equal.
The data, measured by ALICE or simulated, are processed using the software framework
AliRoot, which is written in the object-oriented programming language C++ and based
on ROOT. With AliRoot, the raw data can be used to reconstruct ’clusters’, which
represent a set of adjacent signals in the detector generated by the same particle. A
possible track of a particle is created in such a way that the track fits well to the
reconstructed clusters. This track represents the measured particle.

5.2. Pure PYTHIA Simulation

To get prompt photons, a simulation of γ-jet events is needed (see section 2.5). At the
beginning of the collision, two partons scatter hard with a momentum transfer q̂. The
transverse component of q̂ is called ’pT -hard’. The transverse momentum of the prompt
photon (pγ(prompt)

T ) is approximately the same as the pT -hard. In reality, the pT -hard
distribution will follow a power law, which means that it is small in most events and
only rarely high. Usually in simulations, the pT -hard distribution is divided in several
’pT -hard bins’, which means that a high pT -hard is as frequent as a small pT -hard and
the pT -hard follows the power law only inside a pT -hard bin. This is done to get high
statistics of events also for high pT -hard.
As mentioned in section 4.6, it is necessary that the a priori likelihood of all distri-
butions of the training data is the same as in the experiment. That means that the
distribution of the pT -hard (and of pγ(prompt)

T ) for the training data has to be identical
with the pT -hard distribution measured in the experiment. Therefore, a new simulation
of γ-jet events is needed.
In the simulation of γ-jet events, the pT -hard is set to pT -hard ≥ 10 GeV/c in a single
pT -hard bin at a center-of-mass energy of

√
s = 7 TeV. The magnetic field is fixed

to −0.5 Tesla and jet-quenching is switched off. The prompt photons must have a pseu-
dorapidity of |η| ≤ 0.7 and an azimuthal angle ϕ of 79◦ ≤ ϕ ≤ 191◦, which corresponds
to the position of EMCal.
The decays of π0s and ηs are the main source of decay photons. Here, only photons
from π0s are investigated, representative for all decay photons. To get decay photons
with high transverse momentum p

γ(π0)
T , jet-jet events are used. A π0 with high trans-

verse momentum (pT & 10 GeV/c) will be produced only in a jet. Therefore it does not
matter whether the condition that a jet is produced is set or not. As in the existing
γ-jet events, the pT -hard of the existing jet-jet-simulations is divided in several pT -hard
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bins and is not as in reality. Therefore the existing jet-jet events cannot be used. Be-
sides jet-jet events, ’minimum bias’ events exist with a realistic pT -hard distribution.
The requirement for a minimum bias event is that a collision happened. There are no
further requirements, like the creation of a jet or a special pT -hard. In minimum bias
events, the pT spectrum of the produced particles is the same as in the experiment,
therefore, the probability to get a π0 with high pT is very small. To get a realistic
pT -hard distribution and many high pT π0s simultaneously, a new simulation of jet-jet
events is needed.
In the simulation of jet-jet events, the pT -hard is set to pT -hard ≥ 20 GeV/c in a single
pT -hard bin at a center-of-mass energy of

√
s = 7 TeV. The magnetic field is fixed

to −0.5 Tesla and a possible jet-quenching is switched off. The transverse energy3 of
the jet ET has to be between 10 GeV and 1000 GeV, the transverse momentum of at
least one π0 has to be greater than 17 GeV/c, and its η and ϕ have to be in the EMCal
acceptance.
In reference [Bal05], prompt photons with pT ≥ 20 GeV/c were investigated. In this
thesis, photons with a similar value of pT ≥ 17 GeV/c are simulated. The analysis of
this simulated data is a first try of using a neural network for prompt photon identifica-
tion. Therefore, no GEANT detector simulation is done after the PYTHIA simulation.
This simulated data will be used in section 6.1.

5.3. PYTHIA Simulation with a GEANT Detector Simulation

As mentioned in section 5.1, after the PYTHIA simulation, a GEANT detector simu-
lation is usually done to simulate the interaction of the particles with the detector and
the response of the detector. A new PYTHIA simulation of γ-jet and jet-jet events is
done, together with a GEANT detector simulation, to get a more realistic distribution
of the possible input variables for the neural network.
In the PYTHIA simulation of γ-jet events, the pT -hard is set to pT -hard ≥ 7 GeV/c in
a single pT -hard bin. All other settings are the same as in the simulation of γ-jet events
of section 5.2. The complete ALICE experimental setup is simulated by GEANT, in-
cluding all detectors. For the TRD, only seven supermodules are taken into account;
for all other detectors, the final layout is simulated.
In the simulation of jet-jet events, the pT -hard is set to pT -hard ≥ 13 GeV/c in a
single pT -hard bin. The transverse momentum of at least one π0 has to be greater

3The transverse energy ET can be calculated by ET = E · sin(ϑ).
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than 10 GeV/c and its pseudorapidity has to be in the acceptance of the central barrel,
|η| ≤ 0.9. The change of the minimal pT of the π0 from 17 GeV/c to 10 GeV/c is done to
get better statistics of π0s. All other settings are the same as in the simulation of jet-jet
events of section 5.2. For jet-jet events, only a part of the ALICE setup is simulated
by GEANT. The muon spectrometer, its absorber, FMD, PHOS, TRD, ZDC, EMCal,
ACORDE, and the VZERO detector are not simulated because they are not important
for this analysis.
This simulated data will be used in section 6.2.



6. Photon Separation in Monte-Carlo
Simulations

6.1. Photon Separation in a Pure PYTHIA Simulation

In this section, the separation of prompt photons and decay photons created in the pure
PYTHIA simulation is presented. For the settings of the pure PYTHIA simulation, see
section 5.2. After a description of the analysis procedure, the results of the isolation
cut and the neural network are presented.

6.1.1. Analysis Procedure

For the simulation of the high-energy proton-proton collision, PYTHIA 6.4 is used. In
this context, decay photons are all photons originating from a π0, which means that the
mother of the photon has to be a π0. Prompt photons are all photons without a mother
particle. In figure 2.8 in section 2.5, it can be seen that the mother of a prompt photon
should be a quark or a gluon. In this PYTHIA simulation, the mother of a prompt
photon is not set, therefore the prompt photons have no mother. The decay photons
and the prompt photons are called ’trigger photons’. Their transverse momentum1 has
to be greater than 17 GeV/c and they must be in a pseudorapidity interval of |η| ≤ 0.5.
To separate decay photons and prompt photons, an ’isolation cut’ can be used. As
mentioned in section 2.5, the prompt photon and the jet are back-to-back correlated in
ϕ, therefore, no particle with high pT should be in the immediate surrounding of the
prompt photon. In contrast, a π0 with high transverse momentum will be produced
only in a jet, which results in a lot of high pT particles in the immediate surrounding
of the decay photon (compare figure 6.1). The immediate surrounding of the trigger
photon is defined by a cone with a radius Rmax.

1In reference [Bal05], the isolation cut was applied to prompt photons with pT ≥ 20 GeV/c. In this
thesis, the analysis started using a similar value of 17 GeV/c as a first try.

39
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Figure 6.1.: ∆ϕ = ϕparticle - ϕtrigger γ distribution of high pT particles (pT ≥ 2 GeV/c)
for decay photons (left) and prompt photons (right) normalized to the
number of photons. Particles are all charged PYTHIA ’final-states’ in∣∣∣ηparticle∣∣∣ ≤ 0.9 and all final-states photons in the EMCal acceptance ex-
cept the trigger photon and the second decay photon. It can be seen that
the prompt photon and the jet are back-to-back correlated in ϕ and that
a decay photon originating from a π0 with high transverse momentum
(pT & 17 GeV/c) is surrounded by a jet.

The distance R of a particle to the trigger photon is defined as

R =
√

(ηparticle − ηtrigger γ)2 + (ϕparticle − ϕtrigger γ)2. (6.1)

The particles inside the cone, which are called ’associated particles’, fulfill the following
conditions:

• They are charged particles or photons.

• The distance to the trigger photon R is less than Rmax.

• Their transverse momentum is greater than a certain threshold,
p
particle
T ≥ pthresholdT .

• They are PYTHIA ’final-states’2.

• The charged particles have |ηch| ≤ 0.9 and 0 ≤ ϕch ≤ 2π, the photons have∣∣ηγ ∣∣ ≤ 0.7 and 79◦ ≤ ϕγ ≤ 191◦ (EMCal acceptance).

• The photon is not the trigger photon.
2PYTHIA final-states are particles which are not decayed in the PYTHIA simulation.
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• The photon is not the second decay photon originating from the same π0 as the
trigger photon3.

In this thesis, the isolation cut is done by investigating the number of particles inside
the cone. In case no particle with p

particle
T ≥ pthresholdT is inside the cone with radius

Rmax, the trigger photon is identified as a prompt photon, otherwise it is identified
as a decay photon. The isolation cut can be done with a different cut value and with
other variables, like ’sum of pT of all particles inside the cone’. For the neural network,
different variables are tested.
Due to the fact that photons are only taken into account if they are in the EMCal
acceptance, the performance of the isolation cut and the neural network will depend on
the azimuthal angle ϕ in this section. This dependence is not investigated, since using
an isolation cut and a neural network to identify prompt photons is a first try in this
section.
In figure 6.2, the pT spectrum of the simulated decay photons and prompt photons,
respectively, is plotted.

Figure 6.2.: Left: pT spectrum of all simulated photons from π0s in |η| ≤ 0.5. Right:
pT spectrum of all simulated prompt photons in |η| ≤ 0.5.

In the left plot, it can be seen that the number of decay photons is almost uniformly
distributed for 10 GeV/c ≤ pT (γ) ≤ 17 GeV/c. The uniform distribution of decay
photons occurs because in every event the transverse momentum of at least one π0 has
to be greater than 17 GeV/c and because the distribution of the asymmetry of the decay
photon energies is a flat distribution if both photons originate from the same π0 (see

3As mentioned in section 2.5, the second decay photon is difficult to separate.
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[KB04]). In the right plot, it can be seen that a maximum occurs for the pT spectrum
around 10 GeV/c. The reason for this is that the pT -hard of the collision of the γ-jet
events is set to pT -hard ≥ 10 GeV/c in a single pT -hard bin. Both distributions follow
a power law and are realistic for pT ≥ 17 Gev/c.
Above 17 Gev/c, 38020 prompt photons and 38880 decay photons exist which can be
used to train, test, and validate the neural network.

6.1.2. Results of the Isolation Cut

Figure 6.3.: Performance plot of the investigated isolation cuts. The signal efficiency is
plotted against the improvement of the signal to background ratio. Every
triangle corresponds to a certain cone size and a certain pthresholdT .

In figure 6.3, the performance of the investigated isolation cuts is plotted. Different
cone sizes and different pT -cuts (pthresholdT ) are tested. The cone size is varied between
Rmax = 0.1 and Rmax = 0.8 in steps of 0.1. In addition to these cones, a very large
isolation region of the trigger photon is tested. For this region, the distance in ϕ

has to be smaller than π
2 (|∆ϕ| =

∣∣∣ϕparticle − ϕtrigger γ ∣∣∣ ≤ π
2 ), and the distance in η

has to be smaller than 1.4 (|∆η| =
∣∣∣ηparticle − ηtrigger γ ∣∣∣ ≤ 1.4). The pthresholdT of
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the associated particles is simultaneously varied between pthresholdT = 0.0 GeV/c and
pthresholdT = 2.0 GeV/c in steps of 0.1 GeV/c. All combinations of the cone size Rmax

and pthresholdT are tested for the isolation cut. Every triangle in figure 6.3 corresponds
to a certain radius and a certain pthresholdT .
The prompt photon efficiency εprompt is defined by

εprompt = number of prompt photons after the cut
number of prompt photons before the cut (6.2)

and describes the fraction of correctly identified prompt photons. The decay photon
efficiency επ0 is defined by

επ0 = number of decay photons which are identified as prompt photons, after the cut
number of decay photons before the cut

(6.3)
and describes the fraction of misidentified decay photons. Starting from nprompt prompt
photons and nπ0 decay photons before the cut, the ratio of signal to background before
the cut v1 is given by

v1 =
nprompt
nπ0

. (6.4)

The ratio of signal to background after the cut v2 is given by

v2 =
nprompt · εprompt

nπ0 · επ0
. (6.5)

The improvement of the ratio of signal to background is given by

v2
v1

=
εprompt
επ0

, (6.6)

which is plotted on the x-axis of figure 6.3. It can be seen that for a prompt photon
efficiency of e.g. 80%, an improvement of the ratio of signal to background up to 40 is
reached by using the isolation cut.
The uncertainties of εprompt and επ0 are determined by assuming a binomial distribution

σεprompt =
√

1
nprompt

εprompt(1− εprompt),

σεπ0 =
√

1
nπ0

επ0(1− επ0). (6.7)

The uncertainty of the improvement of the ratio of signal to background is calculated
using the Gaussian law of propagation of uncertainty

εprompt
επ0

=: G,
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∆G =
√

( ∂G

∂εprompt
· σεprompt)2 + ( ∂G

∂επ0
· σεπ0 )2

=

√√√√ 1
ε2π0

σ2
εprompt +

ε2prompt
ε4π0

σ2
επ0 . (6.8)

In figure 6.3, it can be seen that the uncertainty of the improvement of the ratio of
signal to background, ∆G, is much larger than the uncertainty of the signal efficiency,
σεprompt , although σεπ0 is of the same order of magnitude as σεprompt . The reason for
this is that επ0 , which is very small, is in the denominator in equation 6.8.

6.1.3. Results Using a Neural Network

As mentioned in section 4.5, the network will automatically calculate separation planes
in the high-dimensional input space and the main challenge is to find suitable input
variables to disjoin the set of background and signal in the input space. For the sepa-
ration performance of the neural network, some possible input variables are tested:
The network has to distinguish between particles forming a jet and particles forming
the underlying event. In this context, the underlying event is defined as everything
except the particles originating from the hard scattering partons at the beginning of
the collision. This hard scattering results in the production of two jets or in the pro-
duction of a prompt photon and a jet. The underlying event consists of initial and
final-state radiation and of remnants of the two beams (compare figure 2.7 in section
2.4 and compare section 2.5).
A jet consists of a lot of high pT particles being close together, whereas the underlying
event consists of a few low pT particles homogeneously distributed in a large region.
Therefore, e.g. the overall pT (and the number) of the particles nearby a decay photon
should be greater than the overall pT (and the number) of the particles nearby a prompt
photon. The overall distance,

∑
(R), of the particles should be similar for prompt pho-

tons and decay photons. On the one hand the particles are close to the decay photon
but on the other hand a lot of particles exist, resulting in a medium overall distance.
The distance of the associated particles to a prompt photon should be large, but only a
few particles exist, also resulting in a medium overall distance. Therefore the variable∑

(R) of the particles should be similar for both photon species. In contrast, the vari-
able mean distance (=

∑
(R) of the particles / Number of particles) should be larger

for prompt photons than for decay photons. With these considerations in mind, the
following variables are tested:
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For particles with pT ≥ pthresholdT inside the cone:

•
∑

(pT ) of the particles

• Number of particles

• Mean distance of the particles

•
∑

(pT /R) of the particles
pT of a particles should be large, whereas R of a particles should be small for
decay photons. Therefore

∑
(pT /R) should be large for decay photons and small

for prompt photons.

•
∑

(pT ×R) of the particles
This variable should be similar for decay photons and prompt photons. Never-
theless, it is tested for completeness.

•
∑

(ET ) of photons
It is possible that photons carry a larger (smaller) energy fraction of a jet than of
the underlying event.

•
∑

(ET ) of the particles

• Distance to the particle with maximum pT

The particle with maximum pT should be closer to a decay photon than to a
prompt photon. In case no particle with pT ≥ pthresholdT is inside the cone, the
variable is set to 4.

• pT of the particle with maximum pT

The pT of the particle with maximum pT should be larger for decay photons than
for prompt photons. In case no particle with pT ≥ pthresholdT is inside the cone,
the variable is set to 0.

And in addition:

• Distance R to the closest particle with pT ≥ pthresholdT in |∆ϕ| ≤ π
2 and |∆η| ≤ 1.4

The closest particle to the trigger photon should be closer for decay photons
than for prompt photons. In case no particle with pT ≥ pthresholdT is inside the
surrounding, the variable is set to 4.

• pT of the closest particle pT ≥ pthresholdT in |∆ϕ| ≤ π
2 and |∆η| ≤ 1.4

The pT of the closest particle should be larger for decay photons than for prompt
photons.
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• pT of the trigger photon
It is possible that correlations exist between pT of the trigger photon and the
other variables. For example,

∑
(pT ) of the particles should be large for large pT

of the trigger photon, since the pT of the original parton is large.

All these variables are tested for different cone sizes and different pT -cuts. In the same
way as for the isolation cut in section 6.1.2, the cone size is varied between Rmax = 0.1
and Rmax = 0.8 in steps of 0.1 and in addition to these cones, a very large isolation
region of the trigger photon (|∆ϕ| ≤ π

2 , |∆η| ≤ 1.4) is tested. Also the pthresholdT of
the associated particles is simultaneously varied between pthresholdT = 0.0 GeV/c and
pthresholdT = 2.0 GeV/c in steps of 0.1 GeV/c. The cone size and the pthresholdT can
be independently changed and the neural network can have input variables which are
calculated for different cone sizes and different pthresholdT .
Due to the nine different cone sizes and twenty-one pT -cuts, almost two thousand dif-
ferent input variables are possible for the neural network. The more input neurons, the
more weights between the neurons exist, which have to be calculated with equation 4.8
and equation 4.9, respectively for every pattern. This results in a long duration of the
training; therefore, the best input variables have to be identified.
To determine which input variables result in a good performance of the neural network,
a network with one input variable is trained at first. All possible variables are tested as
input and their performance is calculated. Only the best variable, var1, is used further
as input variable one. The best variable is identified by adding up the improvements
of the ratio of signal to background, G(εprompt), for every signal efficiency εprompt.
This is done for signal efficiencies between 1.00 and 0.70 in steps of 0.01 and for signal
efficiencies between 1.00 and 0.40 in steps of 0.01.

GA =
1.00∑

εprompt=0.70
G(εprompt) = G(0.70) +G(0.71) + ...+G(0.99) +G(1.00). (6.9)

GB =
1.00∑

εprompt=0.40
G(εprompt) = G(0.40) +G(0.41) + ...+G(0.99) +G(1.00). (6.10)

GA or GB has to be larger for var1 than for any other variable to call var1 ’best
variable’. The choice whether GA or GB is used as well as the upper and lower limits
(0.40, 0.70, and 1.00) is not determined. In this thesis, GA or GB are chosen in such a
way that G(εprompt) is large between 1.00 and 0.70 as well as between 0.70 and 0.40.
After identifying var1, a network with two input variables is trained. Besides var1,
all other possible variables are tested and only the best pair of variables, (var1, var2),
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is used in the following. In this way the best input variables are determined. The
performance of the neural network should increase for more input neurons and saturate
at a certain number. In this section, four input variables are used for the network, since
its performance is not significantly improving for more input neurons. The four best
input variables are:

• var1:
∑

(pT /R) of the particles in a cone with radius Rmax = 0.4,
p
particle
T ≥ 1.0 GeV/c

• var2:
∑

(pT /R), Rmax = 0.6, pparticleT ≥ 0.0 GeV/c

• var3: Mean distance, in |∆ϕ| ≤ π
2 and |∆η| ≤ 1.4,

p
particle
T ≥ 0.4 GeV/c

• var4: pT of the trigger photon

In figure 6.4, the structure of the used neural network is plotted. Besides four input
neurons (left side) for the four input variables, two hidden layers and one output layer
(right side) can be seen.

Figure 6.4.: Structure of the used neural network. The blue dots represent the neurons,
the lines between the neurons represent the synapses. A thick line means a
high absolute value of the weight. The network consists of one input layer
(left side) with four input neurons, two hidden layers with seven and five
neurons, respectively, and one output layer with two output neurons.
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The output layer consists of two output neurons, since signal (= prompt photons)
and background (= decay photons) form two classes of patterns. The network has two
hidden layers with seven and five neurons, respectively. The lines represent the synapses
and their thickness the absolute value of the weight. In this thesis all neural networks
consist of one input layer, two hidden layers and one output layer.
In figure 6.5, the output distribution of the first output neuron of the neural network is
plotted. As mentioned in section 4.3, the target output of signal is (t1,t2) = (1,0) and
the target output of background is (t1,t2) = (0,1). Therefore signal patterns should
ideally create a 1 and background patterns a 0 in this plot.

Figure 6.5.: Output distribution of the neural network. Since the outputs of the output
neurons of the network have to sum up to 1, only the distribution of the
first output neuron is plotted.

To calculate a certain prompt photon efficiency and a certain decay photon efficiency,
it is necessary to distinguish between patterns identified as background and patterns
identified as signal. This can be done by defining a cut in the output of the network. In
figure 6.5, this cut is set to 0.7 in the output distribution. All patterns with an output
greater than 0.7 are identified as signal, all patterns with an output less than 0.7 are
identified as background. The efficiency of signal and background, and as a consequence
the improvement of the ratio of signal to background, can be changed by changing the
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cut in the output of the network.
In figure 6.6, the performance of the neural network together with the investigated
isolation cuts are plotted. The results of the neural network are shown as red stars.
Every star corresponds to a certain cut in the output of the neural network. It can
be seen that the improvement of the signal to background ratio for the same prompt
photon efficiency is higher for the neural network than for any isolation cut.

Figure 6.6.: Performance plot of the investigated isolation cuts and the neural network.
The signal efficiency is plotted against the improvement of the ratio of
signal to background.

6.2. Photon Separation in a PYTHIA and GEANT Simulation

In this section, the separation of prompt photons and decay photons is presented. The
data used are created by a PYTHIA simulation with a GEANT detector simulation.
For the settings of the simulation, see section 5.3.

The identification of prompt photons and decay photons is done in the same way as
described in section 6.1.1. Prompt photons are all photons without a mother particle,
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decay photons are all photons originating from a π0. In the experiment, the trigger
photon can be measured with EMCal/PHOS or via conversion4. If the photon from
the π0 is measured via conversion, the second decay photon will probably not be mea-
sured, since the probability of conversion is very small (≈ 8%) and only the transverse
momentum of the photon is known, but not the pT of the π0. If the photon from the π0

is measured by PHOS or EMCal, both decay photons will be measured. The single sig-
nals are difficult to separate and only the pT of the π0 is known, but not the transverse
momenta of the single photons. In principle, it is possible that the first decay photon is
measured by PHOS or EMCal and the second decay photon converts before it reaches
EMCal/PHOS. In this case, only the transverse momentum of the photon is known. In
reality, this case cannot be distinguished from the case that both photons are measured
with EMCal/PHOS. Therefore, this case is not taken into account separately.
One neural network is trained using the pT of the trigger photon (for photons identi-
fied via conversion) and a second neural network is trained using the pT of the π0 for
background and the pT of the prompt photon for signal (for photons identified using
EMCal/PHOS). A third neural network is trained using neither the pT of the photon
nor the pT of the π0. This neural network is used to test the possibility of using ’ran-
dom cones’ instead of simulated prompt photons to get the patterns for signal (compare
chapter 8).
For the first and third network, the transverse momenta of the photons have to be
greater than 10 GeV/c. For the second network, the pT of the π0 and the pT of the
prompt photon have to be greater than 10 GeV/c. The trigger particles must have
|η| ≤ 0.5 and for the prompt photons, the azimuthal angle ϕ has to be in the EMCal
acceptance.
The associated particles are all reconstructed tracks, except the daughter particles of
the trigger photon. The trigger photons themselves and the second decay photon are
excluded, since photons carry no electric charge and are therefore not part of the re-
constructed tracks.
Independently from the measurement of the trigger photon, the second decay photon
can be measured with EMCal/PHOS, it can convert, or it is not measured. Only in
the case that the second decay photon converts, it will have daughters (electron and
positron), which contribute to the associated particles.
The isolation cut is done in the same way as in section 6.1.1 and 6.1.2. Only the

4A photon can create an electron-positron pair by pair production. The charged particles can be
measured with the TPC and reconstructed to a photon. See section 7 for details.
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number of particles inside the cone is investigated for the isolation cut for different
cone sizes (Rmax = 0.1, 0.2, ..., 0.8 and |∆ϕ| ≤ π

2 , |∆η| ≤ 1.4) and different pT -cuts
(pthresholdT = 0.0 GeV/c, 0.1 GeV/c, ..., 2.0 GeV/c) in all combinations. In case no par-
ticle with pparticleT ≥ pthresholdT is inside the cone with radius Rmax, the trigger photon
is identified as a prompt photon, otherwise it is identified as a decay photon.

Figure 6.7.: Performance plot of the investigated isolation cuts and three neural net-
works. The signal efficiency is plotted against the improvement of the ratio
of signal to background.

The separation using a neural network is done in a similar way as described in section
6.1.3. One difference in this analysis is that the input variable ’sum of ET of photons’
cannot be used, since photons are not part of the associated particles. In figure 6.7,
the performance of the three neural networks together with the investigated isolation
cuts is plotted. The results of the neural networks are shown as red stars (conversion),
yellow squares (EMCal/PHOS), and green circles (without pT ), respectively. It can
be seen that the improvement of the signal to background ratio for the same prompt
photon efficiency is higher for the neural networks than for any isolation cut.
The five best input variables determined by the optimization algorithm, which is ex-
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plained in section 6.1.3, are:
For the neural network using the pT of the trigger photon:

•
∑

(pT /R), Rmax = 0.5, pparticleT ≥ 0.0 GeV/c

• pT of the trigger photon

•
∑
pT , Rmax = 0.6, pparticleT ≥ 0.0 GeV/c

• Distance to the particle with maximum pT , Rmax = 0.6, pparticleT ≥ 0.3 GeV/c

• Number of particles in |∆ϕ| ≤ π
2 and |∆η| ≤ 1.4, pparticleT ≥ 0.7 GeV/c

For the neural network using the pT of the π0 for background and the pT of the prompt
photon for signal:

•
∑

(pT /R), Rmax = 0.7, pparticleT ≥ 0.1 GeV/c

• pT of the π0 and pT of the prompt photon, respectively

• Distance to the closest particle in |∆ϕ| ≤ π
2 and |∆η| ≤ 1.4, pparticleT ≥ 1.2 GeV/c

• pT of the particle with maximum pT , Rmax = 0.3, pparticleT ≥ 0.3 GeV/c

• Mean distance of the particles in |∆ϕ| ≤ π
2 and |∆η| ≤ 1.4, pparticleT ≥ 0.8 GeV/c

For the neural network without using pT :

•
∑

(pT /R), Rmax = 0.5, pparticleT ≥ 0.0 GeV/c

• Mean distance of the particles, Rmax = 0.5, pparticleT ≥ 1.1 GeV/c

• Number of particles, Rmax = 0.7, pparticleT ≥ 0.1 GeV/c

• Number of particles in |∆ϕ| ≤ π
2 and |∆η| ≤ 1.4, pparticleT ≥ 0.6 GeV/c

• Number of particles in |∆ϕ| ≤ π
2 and |∆η| ≤ 1.4, pparticleT ≥ 0.0 GeV/c

In figure 6.7, the improvement of the signal to background ratio is lower compared to
section 6.1.3. The reasons for this is that in this section photons are not part of the
associated particles, detector effects are taken into account, and the minimum pT of
the trigger photon is changed from 17 GeV/c to 10 GeV/c. Changing the minimum
pT of the trigger photon to a lower value is probably the main reason for the lower
performance.
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The variables
∑

(pT /R), pT of the trigger photon, mean distance, and number of par-
ticles are used more than once in this section and in section 6.1.3. As described in
section 6.1.3, it was expected that these variables are different for decay photons and
prompt photons. However, the choice of the variables, the cone sizes, and pthresholdT is
not determined and depends on the choice of GA or GB and the upper and lower limits
in the optimization algorithm.
In figure 6.8, the performance of the neural network without using pT is shown for differ-
ent number of input neurons. The input neurons are determined using the optimization
algorithm, which is explained in section 6.1.3.

Figure 6.8.: Improvement of the signal to background ratio for εprompt = 0.5 versus
different number of input neurons for the neural network without using pT .
It can be seen that the performance of the networks converges after an
increasing.

It can be seen that the improvement of the signal to background ratio increases for a
larger number of input neurons, since more information is available for the network.
For five or six input neurons, the performance saturates and a larger number of input
neurons will not lead to a larger improvement of the signal to background ratio.
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Figure 6.9.: Improvement of the signal to background ratio for εprompt = 0.5 versus
number of pattern used for training and testing. The performance of the
neural network without using pT is investigated. It can be seen that the
performance increases slowly for more than 800 patterns.

In figure 6.9, the performance of the neural network without using pT is shown for differ-
ent number of patterns. Half of the patterns are used to train and half are used to test
the network. It is validated with around 7000 patterns, independent from the number
of patterns for training and testing. It can be seen that the performance increases fast
for a small number of patterns. For more than 800 patterns the performance increases
only slowly and will perhaps saturate at a certain number.



7. Identification of Photons from π0s

In chapter 6, the separation of prompt photons and decay photons in Monte-Carlo
simulations was presented. In the analyses of these simulations, the prompt photons
and the decay photons were identified by using the PDG code of the particles. In
the experiment, this information is not available and a different possibility to identify
the photons is needed. One possibility to identify decay photons will be presented in
this chapter. After identifying the decay photons, their input variables for the neural
network can be calculated not only in simulated data, but also in measured data.

7.1. Secondary Vertex Algorithm - V0s

Using the ITS and the TPC, charged particles can be measured and identified, their
tracks can be reconstructed and propagated back to the vertex. The direct measure-
ment of neutral particles can be done by the two calorimeters EMCal and PHOS, but
these detectors are not used in this analysis. Some sorts of neutral particles (mainly
K0
S , Λ, and Λ) decay into charged particles and can be detected by the ITS and the

TPC by measuring the decay products. Photons, which are also neutral particles, can
create an electron-positron pair in matter by pair production. This pair production is
not a decay of a particle, it is called ’conversion’ of the photon. Due to conversion,
photons can be measured indirectly by the ITS and the TPC.
The reconstruction of the neutral particle by measuring its charged daughters is done
by the ’secondary vertex algorithm’. The outputs of this algorithm are ’V0s’, which
represent the neutral particle candidates. For the reconstruction of V0s, an ’On-the-
fly-Finder’ and an ’Offline-Finder’ exist. The Offline-Finder starts to reconstruct V0s
after the reconstruction of all tracks, whereas the On-the-fly-Finder starts during the
reconstruction of the tracks. Both finders will partly find the same V0s, therefore, only
one finder can be used in an analysis. In this analysis, only the On-the-fly-Finder is
used. In the following, the Offline-Finder will be shortly explained, since this finder is
easier to understand [ALI06]. The On-the-fly-Finder works in a similar way, but can
use more track-parameters, because it starts during the reconstruction of the tracks.

55
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Figure 7.1.: Geometrical selections for secondary vertex reconstruction [ALI06]. The
impact parameter b, the DCA, the position, and the pointing angle must
fulfill certain conditions to accept the V0.

The charged particles will create tracks in the ITS and in the TPC. These tracks are
propagated back to the primary vertex and the impact parameter b is calculated. The
impact parameter is the closest distance of the track to the primary vertex (compare
figure 7.1). Secondary tracks, that means tracks which do not originate from the pri-
mary vertex but e.g. from a particle decay, will have larger impact parameters than
primary tracks. Only tracks with an impact parameter greater than a certain value
will be taken into account for the creation of V0s. All selected tracks with opposite
charges1 are combined and the distance of closest approach (DCA) of the two tracks is
calculated. Tracks originating from the same neutral particle will have a small DCA.
Therefore, only V0s with a DCA smaller than a certain value are accepted.
The pointing angle θ is the angle between the reconstructed momentum of the neutral
particle and the vector to the position of the DCA. For small θ, the momentum of the
neutral particle points well to the primary vertex. Therefore, the pointing angle has to
be smaller than a certain value to accept the combined tracks as a V0.
Beside the impact parameters, DCA and pointing angle, the momentum, the invariant
mass, η, ϕ, and other parameters of the V0 can be calculated.

1The charge of a track can be detected by the orientation of the curvature of the track. The curve is
created due to the Lorentz force on a moving, charged particle in a magnetic field.
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7.2. Identification of Photons from V0s

As described in section 7.1, converted photons can be measured by using the secondary
vertex algorithm. Besides converted photons, the decay of K0

S , Λ, and Λ can result
in a reconstruction of a V0. Therefore, a V0 can represent one of these particles and
a method is needed to identify the photons from V0s. Moreover, it is possible that
two tracks are combined to a V0 which do not originate from the same particle. This
kind of V0 is called ’fake-V0’. For the identification of photons, V0s from converted
photons are defined as signal, whereas fake-V0s and V0s from K0

S , Λ, and Λ are defined
as background in this part of the analysis.

For signal and background, some variables exist in which they differ partially. The
investigated variables are

• cosine of the pointing angle of the V0,

• position, pT , and η of the V0,

• ΨPair of the V0,

• invariant mass of the V0,

• χ2/NDF of the V0,

• Armenteros variables α and qT of the V0,

• DCA of the two combined tracks,

• TPC refit of the two combined tracks,

• number of clusters in the TPC of the two combined tracks,

• χ2 per TPC cluster of the two combined tracks,

• found number of TPC clusters divided by the findable number of TPC clusters of
the two combined tracks,

• kinks, charge, dE/dx, pT , and η of the two combined tracks,

• number of contributors of the primary vertex of the event,

• the particle identification (PID) response of the TPC.
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ΨPair of a V0 is the angle between the plane perpendicular to the magnetic field and
the plane which is defined by the V0-daughter momenta.
The invariant mass minv of a V0 can be calculated with (c = 1)

minv = m2
1 +m2

2 + 2E1E2 − 2~p1~p2, (7.1)

where mi, Ei, and ~pi are the mass, the energy, and the momentum of the V0-daughter
i (i=1,2). The mass and the energy of a particle are not measured. Therefore, it
is necessary to assume the species of the V0-daughter particles. The neutral particle
decays, which can create a V0 are

• K0
S → π+π−,

• Λ → pπ−,

• Λ → pπ+,

• γ → e−e+.

For the different neutral particle decays, the known masses of π+, π−, p, p, e−, and e+,
respectively, are used to calculate the invariant mass of the V0.
For the reconstruction of the decayed particle, a Kalman Filter can be used to fit the
decayed particles [CBM07]. The quality of the fit is described by χ2 and by the number
of degrees of freedom (NDF). For χ2/NDF ≈ 1, the fit matches the data well.
The Armenteros variables α and qT of the V0 are defined by

α = |~pL+| − |~pL−|
|~pL+|+ |~pL−|

, (7.2)

where ~pL+ (~pL−) is the longitudinal momentum of the positive (negative) V0-daughter
and

qT = |~p+| · sin(ϑ+), (7.3)

where ϑ+ = arccos(~p+ · ~p/ |~p+| · |~p|) is the angle between the momentum of the positive
V0-daughter, ~p+, and the momentum of the V0, ~p.
The track of a particle is reconstructed for each detector. Afterwards, the track is
refitted to the next (previous) detector. The variable ’TPC refit’ is the output of this
algorithm and describes whether the refit of the track matches a track in a different
detector.
If a particle crosses a sensitive element of a detector, it will create a signal. A cluster is
a set of adjacent signals generated by the same particle. For a high number of clusters,
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the track of a particle can be reconstructed more easily.
χ2 per TPC cluster is the χ2 of the track reconstruction divided by the number of
clusters in the TPC, which are created by the particle.
The findable number of TPC clusters is equal to the number of crossings of the track
with the pad rows of the TPC.
In figure 7.2, the origin of kinks of a track is shown. A charged particle decays into
a charged particle and a neutral particle (e.g. π− → µ− + νµ ). Only the charged
particles will be measured and they will look like a single track with a kink.

Figure 7.2.: Schematic view of the origin of kinks. A charged particle decays into a
charged particle and a neutral particle. The neutral particle will not be
measured, therefore the decay looks like a single track with a kink.

For the identification of photons from V0s, two existing methods and two neural net-
works are tested. In the ALICE analysis framework, the class AliESDv0KineCuts can
be used to identify γs, K0

Ss, Λs, and Λs from V0s and the function NextV0 from the class
AliV0Reader can be used to identify only γs from V0s. The class AliESDv0KineCuts

uses only kinematic information of the V0 and no detector information about the iden-
tity of the V0-daughters, whereas the function NextV0 is not subjected to these re-
strictions. For this analysis, minimum bias Monte-Carlo events are used at a center-
of-mass energy of

√
s = 7 TeV and a magnetic field of −0.5 Tesla (production number

LHC10f6a). The investigated V0s have to be found by the On-the-fly-Finder and their
pseudorapidity must be in the acceptance of the central barrel, |η| ≤ 0.9. There is no
pT -cut on the V0s and also no pT -cut on the reconstructed tracks, which means that
the pT spectrum of the V0s is as it is generated in minimum bias Monte-Carlo events
(compare figure 7.3).
The performance of the method AliESDv0KineCuts and the method NextV0 are com-
pared with the performance of a neural network, whereas the input variables of the
neural network are the same variables of the method AliESDv0KineCuts and NextV0,
respectively. The seventeen input variables of the neural network, which will be com-
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pared with the method AliESDv0KineCuts, are listed in appendix A.7. Cuts2 on the
same variables are done in the method AliESDv0KineCuts to identify γs.
The twenty-six input variables of the neural network, which will be compared with the
method NextV0, are also listed in appendix A.7. Cuts on the same variables are done
in the method NextV03. Additionally, for the method NextV0 and the corresponding
neural network, some other variables exist. Cuts are done on these variables for both
NextV0 and the corresponding neural network, since the value of the variables is almost
always the same. Using these variables as input for the neural network would result in
a longer duration of the training without significant improvement of the performance
of the network. The variables are the kink-index of the positive and negative track, the
charge of the first track times the charge of the second track, and the TPC refit of the
positive and negative track.

Figure 7.3.: pT spectrum of all converted photons (signal) and pT spectrum of all other
V0s (background) created in a minimum bias Monte-Carlo simulation. It
can be seen that more background V0s than photons exist, especially for
high pT . 8,787,519 events are used, production number LHC10f6a.

2The standard cuts of AliESDv0KineCuts are used here. See class AliESDv0KineCuts of the AliRoot
version v5-01-Rev-08.

3Cut-Number 90036620801003321136000000090.
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Variables which are used in the method NextV0 but not in the class AliESDv0KineCuts

are some detector information (TPC response and TPC dE/dx), event information
(number of contributors of the primary vertex), and some global information of the
V0 and the tracks (z-position, momenta, and η value). Variables which are used in
the method AliESDv0KineCuts but not in the method NextV0 are some kinematic
information (cosine of the pointing angle, DCA, ΨPair, Armenteros variable α, and
invariant mass of the V0 for e−/e+) and some information about the quality of the
tracks (found number of TPC clusters divided by the findable number of TPC clusters
and χ2 per TPC cluster). That means that both methods do not use all available
information and both methods can be further improved.
In figure 7.4, the performance of the method AliESDv0KineCuts and the method NextV0

compared with the performance of the associated neural network for identifying γs from
V0s is plotted. The contamination of the signal, depending on the signal efficiencies, is
shown for different pT of the V0. The contamination of the signal is defined as

contamination =

1− number of real photons from V0s after the cut
number of accepted V0s after the cut . (7.4)

The accepted V0s after the cut are all V0s which are identified as photons.
The efficiency of the signal is defined as

efficiency = number of real photons from V0s after the cut
number of all real photons from V0s before the cut . (7.5)

In figure 7.4 it can be seen that the contamination of the signal is much lower for the neu-
ral network with input from AliESDv0KineCuts (red stars) than for AliESDv0KineCuts

(red triangle) itself. This is true for the same signal efficiency and also for higher ef-
ficiencies, for pT (V0) ≤ 5.5 GeV/c (see appendix A.8 for the performance plots of
all investigated pT bins). Except for 1.5 GeV/c ≤ pT (V0) ≤ 2.5 GeV/c, the neural
network with input from NextV0 (blue stars) also has a better performance than the
corresponding method NextV0 (blue triangle). For pT (V0) ≥ 5.5 GeV/c, the statistical
uncertainties are too big to compare the different methods.
In the lower plot of figure 7.4, some steps in the contamination can be seen. Only a small
number of high pT V0s are used for this plot and therefore the number of background
V0s for an efficiency of e.g. 0.1 is very small. The contamination for this efficiency only
consists of a few background V0s and a step in the contamination occurs every time
one more background V0 belongs to the contamination.
The minimum contamination, which is reached with the neural networks, is plotted in



62

Figure 7.4.: Performance of the method AliESDv0KineCuts and the method NextV0

compared with the performance of the associated neural network for iden-
tifying γs from V0s. The contamination of the signal is plotted against the
signal efficiency for different pT of the V0. Only statistical uncertainties
are shown. See appendix A.8 for the performance plots of all investigated
pT bins.
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figure 7.5 for different pT of the V0. The minimum contamination is defined as the low-
est reached contamination, independent from the efficiency. For pT (V0) ≤ 9.5 GeV/c,
the minimum contamination is on a low level (. 10%), but increases exponentially up
to roughly 60% for 12.5 GeV/c ≤ pT (V0) ≤ 13.5 GeV/c. The statistical uncertainties
are the same as the uncertainties of the lowest contamination of figure 7.4.
In this analysis, the two neural networks are trained with minimum bias data. In this
data, the photons have a pT spectrum as shown in figure 7.3. Therefore the networks
are trained with V0s which predominantly have a small pT . Using different networks
for different pT bins could result in a lower contamination for high pT photons.

Figure 7.5.: Minimum contamination of signal for the neural network with input from
AliESDv0KineCuts (red stars) and NextV0 (blue stars) versus pT of the
V0. Only statistical uncertainties are shown. It can be seen that the
contamination is low for small pT of the V0 and increases exponentially for
higher pT .

In figure 7.6, the TPC dE/dx for measured data is plotted. The TPC dE/dx is shown
for the negative daughters of all V0s (upper plot) and for the negative daughters of
the V0s which are identified as photons using the neural network with input from
AliESDv0KineCuts (left plot) and with input from NextV0 (right plot). In addition,
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solid lines are shown representing the Bethe-Bloch lines for electrons (e), protons (p),
and pions (π) to guide the readers eye.

Figure 7.6.: Measured TPC dE/dx for negative V0-daughters (data: LHC10b.pass2,
LHC10c.pass2, LHC10d.pass2, LHC10e.pass2). Upper plot: Negative
daughters of all V0s. Left (right) plot: Negative daughters of all V0s
which are identified as photons using the neural network with input from
AliESDv0KineCuts (NextV0). The Bethe-Bloch lines are shown for elec-
trons (e), protons (p), and pions (π) to guide the readers eye. Most of
the V0-daughters are pions (dE/dx around 40-60) and electrons (dE/dx
around 70-80). See also figure 3.3.

In the upper plot, it can be seen that most of the V0-daughters are pions (dE/dx
around 40-60) and electrons (dE/dx around 70-80) (see also figure 3.3). It can be
concluded that the two neural networks are also able to identify photons from V0s in
measured data with a low contamination, since almost only electrons remain in the two
lower plots. See appendix A.5 for a direct comparison of Monte-Carlo simulation and
measured data.
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7.3. Identification of π0s and Photons from π0s

For the identification of decay photons, it is necessary to know whether a photon is
originating from a π0 or not, since photons from π0s are representative for all decay
photons in this thesis. For this, an invariant mass analysis can be used: The photons
are identified by using the PDG code of the particles and by using the neural network
with input from AliESDv0KineCuts, and NextV0, respectively. See appendix A.6 for a
comparison of Monte-Carlo simulation and measured data. Two photons are combined
and their invariant mass minv is calculated (c = 1)

minv = m2
1 +m2

2 + 2E1E2 − 2~p1~p2, (7.6)

where mi, Ei, and ~pi are the mass, the energy, and the momentum of the photon i

(i=1,2). The mass of a photon should be equal to 0 and the energy should be equal
to the absolute value of the momentum times speed of light. To ensure this, the
mass is constrained to 0 in the reconstruction of the photons. For two photons orig-
inating from the same π0, their invariant mass should be the rest mass of the π0,
mπ0 = (134.9766 ± 0.0006) MeV/c2 [PDG11]. Two photons originating from different
particles will not have a determined invariant mass. These photon pairs form the ’com-
binatorial background’. In figure 7.7, the invariant mass of all photon pairs is shown.
These spectra consist of three contributions: a peak at mγγ ≈ 0.135 GeV/c2, which cor-
responds to two photons originating from the same π0; a peak at mγγ ≈ 0.550 GeV/c2,
which corresponds to two photons originating from the same η4; and a smooth curve,
which corresponds to the combinatorial background (see also appendix A.6). Photon
pairs with an invariant mass of around 0.135 GeV/c2 can originate from the same π0,
but it is also possible that two photons originating from different particles have an
invariant mass of around 0.135 GeV/c2. To identify decay photons with a high purity,
the combinatorial background has to be reduced.
In this analysis, only photons originating from a high pT π0 (pT (π0) ≥ 10 GeV/c) are
investigated. Therefore, the invariant mass spectrum has to be only considered for
photon pairs with an overall pT of more than 10 GeV/c,

|~pT (γ1) + ~pT (γ2)| ≥ 10 GeV/c, (7.7)

where ~pT (γi) is the transverse momentum of photon i (i=1,2).

4mη = (547.853 ± 0.024) MeV/c2 [PDG11].
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Figure 7.7.: Invariant mass distribution of all photon pairs. The photons are identified
by using the PDG code of the particles (upper plot), the neural network
with input from AliESDv0KineCuts (left plot), and NextV0 (right plot), re-
spectively. The pseudorapidity of both photons has to be in the acceptance
of the central barrel, |η| ≤ 0.9, and the V0 has to be found by the On-the-fly-
Finder. 4.24× 108 minimum bias Monte-Carlo events are used (production
numbers LHC10d1, LHC10d2, LHC10d4, LHC10d4a, LHC10f6, LHC10f6a,
LHC10e20, LHC10e21).
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In the 4.24× 108 minimum bias Monte-Carlo events which are used for figure 7.7, only
68 π0 exist where

• both photons are converted and found by the On-the-fly-Finder,

• |~pT (γ1) + ~pT (γ2)| is greater than 10 GeV/c, and

• |η(γ1,2)| is smaller than 0.9.

To train a neural network with such photons from π0s as trigger photons, roughly
103-104 photons are needed, which corresponds to 104 · 4.24 × 108/68 ≈ 6 × 1010

minimum bias events. This large amount of simulated events does not exist in the
ALICE repository. The neural network can also be trained with measured data5. In
this case, a high pT electron trigger can be used to select events with high pT electrons
and therefore, probably with converted high pT photons. This trigger will be elaborated
by Uwe Westerhoff in his Ph.D. thesis.
In figure 7.8, the invariant mass of all photon pairs with an overall pT of more than
10 GeV/c and a distance smaller than R = 0.05 is plotted. The photons are identified
by using the neural network with input from AliESDv0KineCuts (left plot), and NextV0

(right plot), respectively.

Figure 7.8.: Invariant mass distribution of all photon pairs with |~pT (γ1) + ~pT (γ2)| is
greater than 10 GeV/c, the distance of the two photons in (η,ϕ) is smaller
than R = 0.05, and |η(γ1,2)| is smaller than 0.9. The V0 has to be found
by the On-the-fly-Finder. Left: Using the neural network with input from
AliESDv0KineCuts. Right: Using the neural network with input from
NextV0. 4.24 × 108 minimum bias Monte-Carlo events are used. See ap-
pendix A.6 for the same plots in measured data.

5See chapter 8 for a method to calculate prompt photon patterns.
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Besides the combinatorial background of two photons, another source of contamination
for decay photons exists. Due to the fact that a certain contamination of neutral
particles other than photons and fake-V0s exists for the two neural networks, a photon
can be combined with a background V0 or two background V0s can be combined. These
combinations also will not a have a determined invariant mass and will contribute to
the combinatorial background. At mγγ ≈ 0 GeV/c2 another peak occurs in the left plot
of figure 7.8. This peak originates from photon pairs combining photons with pairwise
permuted electrons/positrons or from photon pairs combining identical photons.
Using the neural network with input from AliESDv0KineCuts (NextV0), 29 (24) true
photon pairs originating from the same π0 exist in the π0 peak6. In addition, 1 (2)
true photon pairs originating from the different particles and 0 (4) pairs with at least
one background V0 exist in the π0 peak. This results in a contamination of 1

1+29 ≈ 3%
( 2+4

2+4+24 = 20%) for identifiying π0s. The π0s can be used to train a neural network for
photons identified using EMCal/PHOS (using the pT of the π0 for background and the
pT of the prompt photon for signal).
To train a neural network for photons identified via conversion, it is necessary to know
how many of the V0s are photons originating from a π0. Here, only the first V0s of the
two combined V0s are investigated, since only these V0s are used as trigger photons. To
identify π0s, the overall pT of the two V0s has to be greater than 10 GeV/c. For photons
identified via conversion, the transverse momentum of the first V0 has to be greater
than 10 GeV, whereas the pT of the second V0 is not subjected to any restrictions.
With this condition, the invariant mass of the accepted V0 pairs is calculated. Using
the neural network with input from AliESDv0KineCuts (NextV0), 5 of 5 (2 of 5) first
V0s in the π0 peak are photons originating from a π0. For the network with input
from NextV0, 2 of the first V0s are fake-V0s and 1 V0 is a Λ particle. This results in
a contamination of 0% and 60%, respectively. However, due to the low statistics, the
uncertainties of the contaminations are very large.

7.4. Contamination Studies

In section 7.3, it was concluded that decay photons can be identified with a certain
contamination due to combinatorial background of two photons, fake-V0s, and neu-
tral particles other than photons. To investigate the effect of contamination on the

6The invariant mass of the photon pairs in the π0 peak has to be in [0.115 GeV/c2, 0.145 GeV/c2],
0.115 GeV/c2 ≤ mγγ ≤ 0.145 GeV/c2.
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separation performance, different neural networks are trained with different contamina-
tions for background. The contamination is investigated for the neural network without
using pT (see section 6.2), since this neural network is used to test the possibility of
using ’random cones’ instead of simulated prompt photons to get the patterns for signal
(compare chapter 8). The five input variables of the networks are:

•
∑

(pT /R), Rmax = 0.5, pparticleT ≥ 0.0 GeV/c

• Mean distance of the particles, Rmax = 0.5, pparticleT ≥ 1.1 GeV/c

• Number of particles, Rmax = 0.7, pparticleT ≥ 0.1 GeV/c

• Number of particles in |∆ϕ| ≤ π
2 and |∆η| ≤ 1.4, pparticleT ≥ 0.6 GeV/c

• Number of particles in |∆ϕ| ≤ π
2 and |∆η| ≤ 1.4, pparticleT ≥ 0.0 GeV/c

The networks are trained and tested using (1−x1−x2) × 6700 decay photons, x1 × 6700
V0s, and x2 × 6700 prompt photons for background and 6700 prompt photons for
signal. The x1 × 6700 V0s are fake-V0s and neutral particles other than photons. The
contamination due to V0s, x1, is varied between 0.01 and 0.5, whereas the contamination
due to prompt photons, x2, is varied between 0.00 and 0.06, since V0s will contribute
more to the contamination than prompt photons and only a small number of prompt
photons exist.
The transverse momentum of the V0s/photons must be greater than 10 GeV/c, they
must be found by the On-the-fly-Finder and they must be in the acceptance of the
central barrel (|η| ≤ 0.9). All networks are trained and validated using prompt photons
simulated in γ-jet events (see section 5.3) for signal as in section 6.2. For background,
the networks are validated using decay photons as trigger photons (see section 5.3).
In figure 7.9, the improvement of the signal to background ratio for εprompt = 0.5 is
plotted versus different contaminations due to V0s, x1, for two different contaminations
due to prompt photons, x2 = 0.00 and x2 = 0.06, respectively. It can be seen that
the performance of the networks is almost constant for contaminations due to V0s, x1,
smaller than 0.16, decreases for larger contaminations, and does not depend on the
contaminations due to prompt photons, x2, in the tested range.
In figure 7.10, the performance of different neural networks is shown. The first network
is trained using converted decay photons for background (red stars, ’neural network
using decay photons for training’). In section 6.2, the neural networks are trained and
tested using 6728 simulated decay photons and 6728 simulated prompt photons. In
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the 4.24 × 108 minimum bias Monte-Carlo events only 1813 converted decay photons
with pT ≥ 10 GeV/c exist. These 1813 photons are used to train, test, and validate
the network. Therefore, the first network is trained and tested with 1188 patterns
for signal and 1188 patterns for background instead of 6728 patterns. The network
is validated using the 625 remaining decay photons for background and 625 simulated
prompt photons for signal.

Figure 7.9.: Improvement of the signal to background ratio for εprompt = 0.5 versus
different contaminations due to V0s x1 for two different contaminations
due to prompt photons x2 = 0.00 (blue) and x2 = 0.06 (red), respectively.

To check whether the decay photons have to be identified using an invariant mass anal-
ysis, two neural networks are trained using the accepted V0s for background. The V0s
have to be accepted by the neural networks with input from AliESDv0KineCuts (yellow
squares, ’neural network using NN KineCuts for training’) and NextV0 (green circles,
’neural network using NN NextV0 for training’), respectively. The cut in the output
the networks is set to 0.99 and 0.96, respectively. The two networks are trained and
tested using 1188 accepted V0s for background and 1188 simulated prompt photons for
signal. They are validated using 625 decay photons and 625 prompt photons. In figure
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7.10, it can be seen that independent of training with all accepted V0s for background
or training without contamination the ability of separating decay photons and prompt
photons is equal within the uncertainties. That means that the decay photons do not
have to be identified using an invariant mass analysis, but all accepted V0s can be used
as background to train the network.

Figure 7.10.: Performance plot of different neural networks to study the effect of con-
tamination. The first neural network is trained without background con-
tamination (red stars). Two neural networks are trained using NN Kine-
Cuts (NN NextV0) for background (yellow squares and green circles, re-
spectively). A fourth network is trained using all V0s for background (blue
triangles).

To check whether the photons have to be identified at all, a neural network is trained
and tested using 1188 V0s for background (blue triangles, ’neural network using V0s
for training’) and 1188 simulated prompt photons for signal. The network is validated
using 625 decay photons and 625 prompt photons. In figure 7.10, it can be seen that the
performance of this network is similar to the performance of the neural network without
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contamination. That means that the photons from V0s do not have to be identified to
use them as background for the neural network. However, due to the low statistics the
calculated performances are only rough estimations and further studies are necessary
to verify these results.



8. Prompt Photon Patterns in Minimum
Bias Events

In chapter 7, the identification of decay photons using an invariant mass analysis was
presented. After the identification of the trigger photon, the associated particles in
its immediate surrounding can be used to calculate the input variables for the neural
network. These input variables will form the characteristic patterns for background
(= decay photons). Since prompt photons cannot be identified, a different possibility
to calculate the characteristic patterns for signal is needed. One possibility to estimate
these patterns will be presented in this chapter.

As mentioned in section 2.5, the prompt photon and the jet are back-to-back correlated
in ϕ (compare also figure 6.1 in section 6.1.1). Therefore the immediate surrounding
of a prompt photon should only consist of particles from the underlying event and no
particles from a jet should appear. To get particles from the underlying event and
to calculate the characteristic patterns for signal, minimum bias events can be used.
The creation of a jet is not a requirement for a minimum bias event, therefore no jet
will be produced in a lot of these events, but only the underlying event. The ’trigger
direction’, defined by the prompt photon up to now, can be imitated by using ’random
cones’. For the η and the ϕ-value of the cone axis, uniformly distributed pseudo random
numbers in the interval η = ]-0.5, 0.5] and ϕ = ]0, 2π] are used. The patterns inside
the random cone in minimum bias events are formed by the particles inside the cone.
These patterns have to be equal to the patterns in a cone around a prompt photon to
estimate the patterns for prompt photons with random cones in minimum bias events.
In case it is possible to calculate prompt photon patterns in minimum bias events in
simulated data, it should also be possible in measured data, if the random cones are
chosen without too strict conditions.
In figure 8.1, the number of reconstructed tracks in simulated γ-jet events is shown
(red). See section 5.3 for the settings of the γ-jet simulation. It can be seen that in
most of the events, the number of reconstructed tracks in an event is roughly between 10

73



74

and 100 and that the distribution looks similar to a Landau distribution. The number
of reconstructed tracks in minimum bias events is shown in yellow in figure 8.1.

Figure 8.1.: Red: Number of reconstructed tracks in simulated γ-jet events. See section
5.3 for the settings of the simulation. Yellow: Number of reconstructed
tracks in minimum bias events. Blue: Number of reconstructed tracks in
selected minimum bias events. The events are chosen in such a way that
the number of reconstructed tracks distribution is nearly the same as in
γ-jet events.

It can be seen that the number of reconstructed tracks will very often be smaller than
in γ-jet events. To estimate the characteristic patterns for signal with random cones
in minimum bias events, the events are chosen in such a way that the distribution of
the number of reconstructed tracks is nearly the same as in γ-jet events. The exact
distribution is shown in blue in figure 8.1. Using these minimum bias events and the
cone axis of the random cones, the five input variables from section 6.2 are calculated:

•
∑

(pT /R), Rmax = 0.5, pparticleT ≥ 0.0 GeV/c

• Mean distance of the particles, Rmax = 0.5, pparticleT ≥ 1.1 GeV/c

• Number of particles, Rmax = 0.7, pparticleT ≥ 0.1 GeV/c
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• Number of particles in |∆ϕ| ≤ π
2 and |∆η| ≤ 1.4, pparticleT ≥ 0.6 GeV/c

• Number of particles in |∆ϕ| ≤ π
2 and |∆η| ≤ 1.4, pparticleT ≥ 0.0 GeV/c

Figure 8.2.: Distribution of the first input variable from section 6.2. The input vari-
able is calculated in γ-jet events (red) and in selected minimum bias events
(blue). The events are chosen in such a way that the distribution of num-
ber of reconstructed tracks is nearly the same as in γ-jet events. Yellow:
Distribution of the first input variable from section 6.2 in minimum bias
events which are not selected in a special way. Black: Distribution of the
first input variable for background. See appendix A.9 for the distribution
of the other input variables.

The transverse momentum of the trigger photon is not used, because no trigger photon
exists. To calculate this input variable, the pT spectrum of prompt photons has to be
fitted and the generated values must be used as input in consideration of all correlation
to the other input variables. This is not done and therefore, the transverse momentum
of the trigger photon is not used for the following studies.
In figure 8.2, the calculation of the first input variable is shown. The distribution of
the input variable calculated in γ-jet events is shown in red. It can be seen that the
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distribution is nearly the same as in selected minimum bias events (blue), whereas the
distribution of the input variable calculated in minimum bias events which are not
selected in a special way (yellow) differs from the distribution of the input variable
calculated in γ-jet events. However, both distributions differ from the distribution of
the input variable for background (black). Therefore, the neural network should be able
to distinguish between signal and background.
To calculate the patterns of prompt photons, random cones in selected minimum bias
events can be used. The minimum bias events are chosen in such a way that the
distribution of number of reconstructed tracks is nearly the same as in γ-jet events.
The number of reconstructed tracks of γ-jet events is not known in measured data.
Therefore the selection of minimum bias events in this way is a too strict condition to
the random cones and cannot be used in measured data.

Figure 8.3.: Performance plot of the three neural networks.

To check whether only random cones in the selected minimum bias events or also ran-
dom cones in normal minimum bias events can be used as a substitute for prompt
photon patterns, three neural networks are trained. The first network is trained and
validated with input variables for signal, which are calculated in γ-jet events (’using
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MC for training’) and the second (third) network is trained with input variables for
signal which are calculated in selected (normal) minimum bias events (’using random
cones for training’) and validated with input variables for signal which are calculated in
γ-jet events. The input variables for background are calculated in jet-jet events, which
are described in section 5.3, for all three networks.
In figure 8.3, the performance of the three neural networks is plotted. Independent of
training with input variables from γ-jet events or training with input variables from
(selected or normal) minimum bias events, the ability of separating decay photons and
prompt photons is almost equal.
It should be explicitly mentioned that the neural network which is trained with input
variables calculated in normal minimum bias events has the same ability of separating
decay photons and prompt photons as the other two networks, although the training
patterns differ from the validating patterns. This clearly shows the robustness and
generalization aptitude of the neural network and is a natural advantage compared to
using cuts.





9. Summary and Outlook

In this thesis, the separation of decay photons and prompt photons in simulated proton-
proton collisions at

√
s = 7 TeV in the ALICE experiment was presented.

The ALICE experiment studies the quark-gluon plasma (QGP), a state of matter which
is generated in Pb-Pb collisions at the LHC and presumably existed until 10−5 s after
the Big Bang. The quarks and gluons of the QGP cannot be directly observed, since
only colorless particles can be measured. Therefore, some probes are needed to investi-
gate the QGP, for example prompt photons. Using prompt photons, the fragmentation
function of hadrons can be calculated in γ-jet events and also jet-quenching in Pb-Pb
collisions can be investigated. The aim of this thesis was to separate prompt photons
from the large background of decay photons on an event-by-event basis using a neural
network.
Contrary to the conventional method (isolation cut), a neural network is able to take
correlations of different variables into account. For the training of the neural network,
some training patterns for signal and background are needed.
To get training patterns, the prompt photons and decay photons were identified in
Monte-Carlo simulations using the PDG code of the particles. The training patterns
are formed by the particles in the immediate surrounding of the trigger photon. In
section 6.2, the neural networks were trained with these patterns and it was concluded
that the separation performance is higher for the networks than for the investigated
isolation cuts.
In chapter 7, the identification of decay photons using an invariant mass analysis was
presented. Two neural networks were trained to identify photons from V0s and com-
pared to two existing methods. It was concluded that photons can be identified with
a higher efficiency and a lower purity using these networks instead of the conventional
methods. The invariant mass of photon pairs was calculated and photons from π0s were
identified. Training patterns of decay photons can be calculated not only in simulated
data, but also in measured data, using the invariant mass analysis or only the two
neural networks to identify photons from V0s.
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To train the neural network using measured data, the training patterns of prompt pho-
tons have to be calculated. In chapter 8, a method was presented to estimate these
patterns in minimum bias events. Despite the patterns calculated in minimum bias
events differs from the prompt photon patterns, the neural network is able to identify
prompt photons without loss of performance. This robustness and generalization apti-
tude of the network is a natural advantage compared to using cuts.
Using the results of chapters 7 and 8 a neural network can be trained using measured
data. A high pT electron trigger can be used to select events with converted high pT
photons to get enough high pT converted photons.
To study jet-quenching and other phenomenons, this analysis can also be done in Pb-Pb
collisions. Some possible problems are the identification of photons from V0s with a
small contamination of fake-V0s, the jet-quenching itself, and the much larger under-
lying event. Further studies are needed to reduce and estimate the influence of these
problems to the separation performance.



A. Appendix

A.1. Kinematic Variables

In special relativity, the ’four-momentum’ P of a particle is defined by1

P = (E, ~p) = (E, px, py, pz),

where E is the energy of the particle and ~p its ’three-momentum’. The square of P can
be calculated using the Minkowski metric ηµν = diag(+1,-1,-1,-1):

P 2 = ηµνP
µP ν = E2 − p2. (A.1)

The relation between the energy and the three-momentum of a particle with rest mass
m0 is given by

E2 = p2 +m2
0.

In a 2→ 2 scattering process, it is useful to define the ’Mandelstam variables’ s,t, and u,

s = (P1 + P2)2 = (P3 + P4)2,

t = (P1 − P3)2 = (P2 − P4)2,

u = (P1 − P4)2 = (P2 − P3)2,

where P1 and P2 are the four-momenta of the incoming particles and P3 and P4 are
the four-momenta of the outgoing particles.

√
s is the total energy of a reaction in the

center-of-mass system and
√
t the momentum transfer.

The particle’s momentum ~p can be split into a longitudinal component ~pL, which points
in the direction of the beam axis, and a transverse component ~pT , which is in the plane
perpendicular to the beam axis. Using the polar angle ϑ of the ALICE coordinate
system (see appendix A.2), pL and pT can be written as

pL = |~pL| = p · cos(ϑ) = pz,

1In all equations is set: ~ = 1 = c.
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pT = |~pT | = p · sin(ϑ) =
√
p2
x + p2

y,

where p is

p = |~p| =
√
p2
L + p2

T .

The transverse momentum is invariant under Lorentz transformation, the longitudinal
momentum is not. Therefore, the rapidity y, defined as

y = 1
2 ln(E + pL

E − pL
),

is often used. The rapidity y is additive under Lorentz transformation, that means

y = y
′ + yS′ ,

where y is the rapidity in system S, y′ is the rapidity in system S
′ , and yS′ is the

rapidity of S′ as measured in S.
For E � m0, the rapidity is approximately equal to the pseudorapidity η,

y ≈ 1
2 ln(p+ pL

p− pL
) = − ln[tan(ϑ2 )] := η.

Contrary to y, η only depends on the polar angle ϑ and can be measured for every
particle without identifying it.
In figure A.1, the pseudorapidity η can be seen in the ALICE coordinate system.

Figure A.1.: Schematic view of the ALICE coordinate system angles



83 A.2 The ALICE Coordinate System

A.2. The ALICE Coordinate System

Figure A.2.: The ALICE Coordinate System [GO09].

The point of origin of the ALICE coordinate system is the beam interaction point
[ALI03], it is defined as x,y,z = 0. The coordinate system is a right-handed orthogonal
Cartesian system. The individual axes and angles are defined as follows:

• x-axis: The x-axis is perpendicular to the beam direction and parallel to the local
horizon. Positive x is from the point of origin towards the accelerator center.

• y-axis: The y-axis is perpendicular to the beam direction and perpendicular to
the x axis. Positive y is from the point of origin upward.

• z-axis: The z-axis is parallel to the beam direction. Negative z is from the point
of origin towards the Muon Arm.

• azimuthal angle ϕ: ϕ is the angle between the positive x-axis and the positive
y-axis. ϕ = 0 means y = 0 and ϕ = π/2 means x = 0.

• polar angle ϑ: ϑ increases from the positive z-axis (ϑ = 0) to the x-y-plane
(ϑ = π/2) to the negative z-axis (ϑ = π).



84

A.3. Vacuum Polarization

Figure A.3.: Measuring the electric charge [Hal84].

Figure A.4.: Schematic view of the screen-
ing of an electron and the anti-
screening of a quark.

In quantum field theory, an electron
can emit a photon that converts to an
electron-positron pair. Therefore, every
electron is surrounded by some of these
electron-positron pairs and due to the at-
traction of opposite charges, the positrons
will be closer to the electron (compare fig-
ure A.3). This results in a screening of the
charge of the electron by a polarization of
the vacuum. Measuring the charge of the
electron by using a test charge, the result
will depend on the distance R of the test
charge to the original electron. For large distances, the screened electric charge will be
measured, for small distances, the non-screened electric charge.
For color-charged particles, the situation is different. A red-colored quark will emit
gluons, which can turn into pairs of gluons because of the SU(3) invariance of the QCD
Lagrangian. Due to the fact that gluons carry color, the quark is not only surrounded
by anti-red-colored anti-quarks, but also by red-colored gluons. This results in an ’anti-
screening’ of the color charge of the original quark and the measured color will be
stronger for large distances.
In optics, the angular resolution of an object depends on the wavelength of the incoming
light. For small wavelengths, the resolution is high and small details of an object can
be resolved. In scattering experiments, like in Rutherford scattering, high energy of an
incoming particle means small distance to the target particle and a good resolution of
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the target. The coupling constant of the strong force αs is proportional to the square
of the color charge g, αs ∝ g2. Therefore, the coupling constant measured in scattering
experiments will be higher for small energies (or momentum transfers) and smaller for
high energies.

A.4. Backpropagation Algorithm

The following derivation is adapted from reference [Rum85]. The error εp of the network
for a pattern p is given by

εp := 1
2
∑
j

(tp,j − op,j)2. (A.2)

tp,j is the target output and op,j the real output of the j-th output neuron for a pattern p.
The weight from the i-th to the j-th neuron is called wi,j and ∆pwi,j is the modification
of this weight due to pattern p. The new weight wnewi,j is given by

wnewi,j := wi,j + ∆pwi,j . (A.3)

The modification of the weight wi,j is proportional to the variation of the error with
the weight,

∆pwi,j := −η ∂εp
∂wi,j

. (A.4)

The learning parameter η is a real, constant number and determines the speed of the
training. Applying the chain rule, the derivation of εp can be written as

∂εp
∂wi,j

= ∂εp
∂op,j

∂op,j
∂wi,j

. (A.5)

With equation A.2 follows

∂εp
∂op,j

= op,j − tp,j =: −δp,j . (A.6)

In case the activation function is the identity function, op,j is given by

op,j =
∑
i

wi,jip,i. (A.7)

ip,i is the input of the i-th input neuron for pattern p. Then, for the derivation of op,j ,
it follows

∂op,j
∂wi,j

= ip,i (A.8)

and for the derivation of εp
∂εp
∂wi,j

= −δp,jip,i. (A.9)
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For activation functions f , which are not the identity, op,j is given by

op,j = f(
∑
i

wi,jop,i), (A.10)

where f is differentiable and op,i equal to ip,i if i is an input unit. The derivation of εp
is then

∂εp
∂wi,j

= ∂εp
∂(
∑
iwi,jop,i)

∂(
∑
iwi,jop,i)
∂wi,j

. (A.11)

The second factor can be directly calculated,
∂(
∑
iwi,jop,i)
∂wi,j

= op,i. (A.12)

Consistent with equation A.6, δp,j is defined as

δp,j := − ∂εp
∂(
∑
iwi,jop,i)

(A.13)

and can be written as

δp,j := − ∂εp
∂(
∑
iwi,jop,i)

= − ∂εp
∂op,j

∂op,j
∂(
∑
iwi,jop,i)

. (A.14)

Then the modification of the weight is given by

∆pwi,j = ηδp,jop,i. (A.15)

Using equation A.10, it can be seen that
∂op,j

∂(
∑
iwi,jop,i)

= f ′(
∑
i

wi,jop,i), (A.16)

which is the derivative of the function f. For output units, the first factor of equation
A.14 is given by

∂εp
∂op,j

= −(tp,j − op,j). (A.17)

For other units, the chain rule can be applied to calculate the derivative of εp
∂εp
∂op,j

=
∑
k

∂εp
∂(
∑
iwi,kop,i)

∂(
∑
iwi,kop,i)
∂op,j

=
∑
k

∂εp
∂(
∑
iwi,kop,i)

wj,k =
∑
k

δp,kwj,k.

(A.18)
Using equation A.15 - A.18, the modification of the weight can be calculated with

∆pwi,j = η(tp,j − op,j) · f ′(
∑
i

wi,jop,i)op,i (A.19)

for output units and with

∆pwi,j = η(
∑
k

δp,kwj,k) · f ′(
∑
i

wi,jop,i)op,i (A.20)

for other units.
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A.5. TPC dE/dx Plots

Figure A.5.: TPC dE/dx for negative V0-daughters. Left: For a Monte-Carlo simu-
lation. Right: For measured data. From top to bottom: negative V0-
daughters of all V0s, negative daughters of all V0s which are identified as
photons using the neural network with input from AliESDv0KineCuts and
NextV0, respectively. The Bethe-Bloch lines are shown for electrons (e),
protons (p), and pions (π) to guide the readers eye. It can be seen that
simulation and measured data are very similar and that the identification
of photons from V0s is a little bit better in the simulation than in the
measured data, since less pions remain in the left plots.
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A.6. Invariant Mass Plots

Figure A.6.: Invariant mass distribution of all photon pairs. The photons are identified
by using the neural network with input from AliESDv0KineCuts (upper
plots) and NextV0 (lower plots). The pseudorapidity of both photons has
to be in the acceptance of the central barrel, |η| ≤ 0.9, and the V0 has to
be found by the On-the-fly-Finder. 4.24 × 108 minimum bias Monte-Carlo
events (left plots) and 4.43 × 108 measured minimum bias events (right
plots) are used, respectively. It can be seen that π0s can be identified using
the neural network for both simulated and measured data.
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Figure A.7.: Invariant mass distribution of all photon pairs with same mother (left) and
same π0 as mother (right). The photons are identified by using the PDG
code of the particles. The pseudorapidity of both photons has to be in the
acceptance of the central barrel, |η| ≤ 0.9, and the V0 has to be found
by the On-the-fly-Finder. 4.24 × 108 minimum bias Monte-Carlo events
are used. It can be seen that for photon pairs with the same mother, no
combinatorial background occurs and that photon pairs with the same π0

as mother have an invariant mass of mγγ ≈ 0.135 GeV/c2.

Figure A.8.: Invariant mass distribution of all photon pairs with |~pT (γ1) + ~pT (γ2)| is
greater than 10 GeV/c, the distance of the two photons in (η,ϕ) is smaller
than R = 0.05, and |η(γ1,2)| is smaller than 0.9. The V0 has to be
found by the On-the-fly-Finder. Left: Using the neural network with
input from AliESDv0KineCuts. Right: Using the neural network with
input from NextV0. 4.43 × 108 measured minimum bias events are used
(LHC10b.pass2, LHC10c.pass2, LHC10d.pass2, LHC10e.pass2). It can be
seen that background is larger compared to simulation data (figure 7.8),
but decay photons can still be identified.
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A.7. Input Variables for the two Neural Networks to Identify
Photons from V0s

The seventeen input variables of the neural network, which will be compared with the
method AliESDv0KineCuts, are

• the invariant mass of the V0 for e−/e+ as V0-daughter,

• the cosine of the pointing angle of the V0,

• the DCA of the two combined tracks,

• the distance of the V0 to the primary vertex for z=0,

• ΨPair of the V0,

• χ2/NDF of the V0,

• the number of clusters in the TPC of the positive track,

• the number of clusters in the TPC of the negative track,

• χ2 per TPC cluster of the positive track,

• χ2 per TPC cluster of the negative track,

• found number of TPC clusters divided by the findable number of TPC clusters of
the positive track,

• found number of TPC clusters divided by the findable number of TPC clusters of
the negative track,

• the kink-index of the positive track,

• the kink-index of the negative track,

• the Armenteros variables α and qT of the V0,

• the charge of the positive track times the charge of the negative track.

The twenty-six input variables of the neural network, which will be compared with the
method NextV0, are

• the radial distance of the V0 to the primary vertex for z=0,
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• the absolute value of the z position of the V0,

• (|z|·tan(2 arctan(e−0.9)))-7 (some regions of the detector are not used for recon-
struction in the method NextV0)

• the number of sigmas distance of the dE/dx of the positive/negative V0-daughter
to the e−/+ dE/dx for the given momentum of the particle,

• the number of sigmas distance of the dE/dx of the positive/negative V0-daughter
to the π−/+ dE/dx for the given momentum of the particle,

• the number of sigmas distance of the dE/dx of the positive/negative V0-daughter
to the K−/+ dE/dx for the given momentum of the particle,

• the number of sigmas distance of the dE/dx of the positive/negative V0-daughter
to the proton dE/dx for the given momentum of the particle,

• the momentum of the positive V0-daughter,

• the momentum of the negative V0-daughter,

• the Armenteros variable qT of the V0,

• the pT of the V0,

• the number of contributors of the primary vertex of the event,

• the probability that the negative particle is an electron (using the TPC),

• the probability that the positive particle is a positron (using the TPC),

• the number of clusters in the TPC of the positive track,

• the number of clusters in the TPC of the negative track,

• the pT of the positive V0-daughter,

• the pT of the negative V0-daughter,

• χ2/NDF of the V0,

• η of the V0, the positive and the negative V0-daughter.
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A.8. Performance Plots of the two Neural Networks to
Identify Photons from V0s
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Figure A.9.: Performance of the method AliESDv0KineCuts and the method NextV0

compared with the performance of the associated neural network for iden-
tifying γs from V0s. The contamination of the signal is plotted against the
signal efficiency for different pT of the V0. Only statistical uncertainties
are shown.
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A.9. Distribution of the Input Variables

Figure A.10.: Distribution of two input variables from section 6.2 for γ-jet events (red),
selected minimum bias events (blue), normal minimum bias events (yel-
low), and jet-jet events (black).
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Figure A.11.: Distribution of two input variables from section 6.2 for γ-jet events (red),
selected minimum bias events (blue), normal minimum bias events (yel-
low), and jet-jet events (black).
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