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1 Introduction

In the past decade, several experiments aimed at the direct detection of Dark Matter.

XENON1T is one of these experiments, setting world leading limits on the scattering

cross-section of weakly interacting massive particles (WIMPs) with ordinary matter.

A low rate of background events is a requirement for these experiments due to the

low cross-sections and, thus, low expected event rates. The detectors are specially

designed to reduce and mitigate background events as much as possible.

Besides the search for Dark Matter the low background rate allows searches for other

rare processes. In 2019 the first observation of the two-neutrino double-electron cap-

ture of 124Xe was made with the XENON1T experiment. The measured half-life is

the longest half-life directly measured until today. Recent developments in the signal

reconstruction make it possible to also search for rare events at higher energies than

the keV range associated with the Dark Matter searches. One of the processes of in-

terest at energies of O(1 MeV) is the double �-decay of 136Xe. While the 2⌫��-decay

of 136Xe to the 136Ba ground state has already been measured directly, no observa-

tion of a decay to an excited state has been made yet. This work will focus on the

search for the 2⌫��-decay of 136Xe to the 0+1 excited state of 136Ba. An observation

would allow a validation of models used to calculate nuclear matrix elements. In

turn, this would benefit the search for new physics in terms of the hypothetical lepton

number violating neutrinoless double �-decay. The current best limit on the 2⌫��-

decay of 136Xe to the 0+1 excited state of 136Ba was set by the EXO-200 collaboration

with T1/2 > 6.9 ⇥ 1023 yr at 90 % C.L. In this work a machine learning discriminator

will be developed and used to search for the decay with the XENON1T experiment.

This is motivated by the unique signature of the decay which is characterized by the

coincidence of two �-electrons and two �-rays.

Chapter two outlines the theory of double �-decays and their signatures in the

XENON1T experiment. General features of double �-decays are described followed

by an explanation of the XENON1T experiment and the detection principle. An

outline of the analysis is given.

Chapter three is focused on the simulation and data preparation tools as well as on

calibration sources. After a description of the XENON1T simulation chain, the data

processing tools and event selections are described. An overview of the datasets used

is given followed by an explanation of the calibration sources 60Co, 129mXe, 131mXe

and 212Pb.
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Chapter four describes the development of a machine learning discriminator. First,

general machine learning features and techniques are described followed by an overview

of the input parameters based on an analysis by the EXO-200 collaboration. These

are then defined for XENON1T in order to allow a good discrimination of signal

against background events. Two di↵erent machine learning discriminators are devel-

oped: a multi-layer perceptron and a boosted decision tree. The performance of the

discriminators is evaluated and cross-checked on calibration data.

In chapter five, the boosted decision tree discriminator is applied to measured data

and a lower limit on the half-life of the decay is set. The last chapter summarizes the

work and an outlook is given.
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2 Double �-Decay in XENON1T

This first chapter is dedicated to double �-decays in the XENON1T experiment. First

a general overview about double �-decays is given followed by a description of the

XENON1T experiment and the used detector principle. This is followed by a brief

outlook on the analysis carried out in this work.

2.1 Double �-Decay

Double �-decay is the simultaneous occurrence of two �-decays in a nucleus. It was

first proposed by Maria Goeppert-Mayer in 1935 [1] only shortly after Enrico Fermi

published his theory of �-decay [2]. First indirect measurements of double �-decay

were made in the 1960‘s with geo-chemical methods and the first direct observation

was made in 1987 for 82Se [3].

The energetic feasibility of double �-decay is illustrated using the liquid droplet model

for the atomic nucleus. The binding energy EB in dependence on the mass number

A and the atomic number Z can be calculated by the semi empirical formula

EB(A, Z) = avA � asA
2/3

� ac
Z2

A1/3
� aa

(N � Z)2

4A
+

8
>>><

>>>:

+11.2MeVp
A

for Z, N even

0 for Z or N odd

�
11.2MeVp

A
for Z, N odd

(2.1)

which is also known as Bethe-Weizsäcker formula [4]. Here av is called volume term,

as is the surface term, ac is the coulomb term, and aa is the asymmetry term. The

last term of the equation is called pairing term. N is the number of neutrons in the

nucleus. In case of a (double) �-decay the mass number A stays constant, so that

EB(A = const., Z) / �Z2 and thus M(A = const., Z) / Z2 where M(A, Z) is the

mass of the nucleus. Figure 2.1 shows the mass of the atomic nucleus as a function

of the atomic number for even/odd, odd/even and even/even, odd/odd combinations

of Z and N . The pairing term creates an o↵set between the binding energies for

even/even and odd/odd combinations.

Due to energy conservation, a single �-decay of a nucleus can only occur if a neigh-

boring isobar has a lower mass. In case of even/even nuclei both neighboring isobars

can have higher masses due to the paring term in the mass formula and a �-decay is
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Figure 2.1: Mass of the nucleus M(A, Z) plotted against the atomic number Z for
constant A for even/odd, odd/even combinations of Z and N on the left
panel drawn in orange and even/even (green), odd/odd (blue) combina-
tions on the right panel of the plot. Allowed decays are indicated as
black arrows, a forbidden decay is shown as red arrow. The masses for
even/even and odd/odd combinations are separated due to the pairing
term in equation (2.1). For some even/even nuclei a single �-decay is
forbidden by energy conservation and the only possible decay channel is
double �-decay.

forbidden even if the nucleus is not the one with the maximal binding energy. In this

case only a double �-decay can occur [5]. The double �-decay is not detectable when

the single �-decay is not forbidden or heavily suppressed due to the large amount of

single �-decays obscuring the double �-decay signal [6].

Beside the ordinary double �-decay (2⌫��) where two �-particles (electrons or positrons)

and neutrinos are emitted, a hypothetical lepton number violating neutrinoless double

�-decay (0⌫��) could occur if neutrinos are their own antiparticles, called Majorana

particles. Additional a non-zero neutrino mass1 is required [6].

A double �-decay on the neutron-rich side of the table of nuclides is a double ��-decay

either in the process allowed in the Standard Model [5]:

2⌫���� : (A, Z) ! (A, Z + 2) + 2e� + 2⌫̄e, (2.2)

1The fact that neutrinos have a mass was shown by neutrino oscillation experiments [7].
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Figure 2.2: Feynman diagrams of the ordinary 2⌫����-decay (a) and the 0⌫����-
decay (b). In both cases two neutrons turn into protons via emission of
a W� boson. In the ordinary case the bosons decay and two electrons
and two electron anti-neutrinos are emitted. If neutrinos are their own
anti-particles a decay can happen without emission of neutrinos.

or the hypothetical lepton number violating process [8]:

0⌫���� : (A, Z) ! (A, Z + 2) + 2e�. (2.3)

On the proton rich side, positrons can be emitted (�+�+) and/or electron captures

(ECEC, EC�+) can occur [6].

The Feynman graphs of the ordinary and the neutrinoless double ��-decay are given

in figure 2.2. In both cases two down-quarks convert into up-quarks and virtual W

bosons. In case of the 2⌫���� decay, the W bosons convert to electrons and electron-

anti-neutrinos that are emitted in the decay process. In case of the 0⌫����-decay, the

right-handed electron-anti-neutrino originating from one of the W boson decay vertex

is absorbed as left-handed electron-neutrino at the other W boson vertex [8]. Thus

this process is possible if the neutrino is a Majorana particle and has mass to cause

the change in helicity. Only electrons are emitted in the neutrinoless decay with their

summed energy corresponding to the Q-value of the decay. While the 2⌫��-decay

was observed by several experiments for di↵erent isotopes with half-lifes ranging from

1 ⇥ 1018 yr to 1 ⇥ 1021 yr [7], no observation of the neutrinoless decay has been made

yet [8]. Currently several experiments are searching for the neutrinoless decay.

The rate of a 2⌫��-decay �2⌫ can be calculated based on Fermi’s golden rule [9][10].

By factorizing the kinematic part containing the phase space of the emitted leptons

G2⌫(Q��, Z) in dependence on the decay’s Q-value Q�� and the nuclear part giving

the transition probability between two nuclear states one obtains [5]

�2⌫ =
1

T 2⌫
1/2

= G2⌫(Q��, Z)|M2⌫
|
2. (2.4)
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Here M2⌫ is the nuclear matrix element (NME) of the transition and T 2⌫
1/2 is the half-

life of the decay. While phase space factors can be calculated precisely, the calculation

of NMEs is challenging [5]. The decay rate of the neutrinoless decay can be calculated

using [5]:

�0⌫ =
1

T 0⌫
1/2

= G0⌫(Q��, Z)|M0⌫
|
2
h⌘i2. (2.5)

Here h⌘i2 is a lepton number violating parameter representing physics beyond the

Standard Model. In order to extract new physics from equation (2.5) in case of an

observation, it is important to improve the NME calculations. Even though there is

no direct relation between M0⌫ and M2⌫, the measurement of the 2⌫��-decay allows

a validation of the nuclear models. Thus is can benefit the search for new physics [5].

2.2 Excited State Decay of 136Xe

One of the isotopes undergoing a double ��-decay is 136Xe. Its 2⌫�� decay was

first measured by the EXO-200 collaboration [11] using a liquid xenon time projection

chamber (TPC) with a half-life of T1/2 = (2.165 ± 0.016(sys) ± 0.059(stat)) yr [12].

136Xe

136Ba
0 keV

818.5 keV

1579 keV

ββ Decay
T1/2 ≈ 2.2 ⋅ 10!" yr

136Cs
β Decay

0"#

2"#

0#

&

&

Q = 2457.8 keV

ββ Decay
T1/2 > 6.9 ⋅ 10!$ yr

Figure 2.3: Level scheme of the double �-decay of
136Xe to the 0+ ground and 0+1 state
of 136Ba. Energies and JP taken from
[13]. Half-life of the ground state decay
is taken from [12] and the half-life limit
of the excited state decay from [14].

Beside decays to the ground

state of 136Ba, the high Q-

value of Q�� = 2457.83 keV

allows decays to excited states

of 136Ba. The decay rate

of such a decay to an ex-

cited state is substantially

suppressed compared to de-

cays to the ground state, due

to the smaller transition en-

ergies [5]. The corresponding

level scheme is given in fig-

ure 2.3. This work will focus

on decays to the 0+1 state of
136Ba.

The state transitions to the ground state via emission of two �-rays of E�,1 = 760.5 keV

and E�,2 = 818.5 keV [13]. A graphical illustration of the decay is given in figure 2.4

and the shorthand notation 2⌫��⇤ will be used for this excited state decay. Due to

the 0+1 ! 2+1 ! 0+ spin structure of the involved nuclear states, the emission angles

of the �-rays are correlated [15]. The angular distribution of the emitted �-rays is

given by

W (✓) =
5

8
· (1 � 3 cos2(✓) + 4 cos4(✓)). (2.6)
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Here ✓ is the angle between the two �-rays which are preferredly to be emitted either

back to back or in the same direction. The decay is yet unobserved, but searches were

performed by the EXO-200 [14] and KamLAND-Zen [16] collaborations. A lower limit

on the half-life was set by EXO-200 to T1/2,L > 6.9 ⇥ 1023 yr at 90 % C.L.. This is in

agreement with the estimated half-life from theory of T1/2,E = 2.5 ⇥ 1025 yr [14].

The number of expected decays N in a liquid xenon detector can be calculated by

N =
t · m · ln(2)

mu · T1/2
· ⌘. (2.7)

Here t is the observation time and m is the xenon target mass. The atomic mass of

xenon is mu = 131.293 u [17] and the abundance of 136Xe in the xenon used by the

XENON1T experiment is ⌘ = 8.49 % [18]. In m = 1 t xenon monitored over a period

of t = 263.619 d about N ⇡ 8 ⌫��⇤-decays will occur for a half-life of corresponding

to the estimated half-life of T1/2,E. For T1/2 = T1/2,L, N ⇡ 282 events are expected to

occur.

136Xe 136*Ba 136Ba

g

g

e-

e-!̅#

!̅#

Figure 2.4: Sketch of the 2⌫��-decay of 136Xe to the 0+1 state of 136Ba. Protons are
depicted in red, neutrons in white, neutrinos in green and electrons in blue.
The left part of the figure represents the nucleus of 136Xe composed of
neutrons and protons. The middle part of the figure shows the ⌫��⇤-decay
to an excited state of 136Ba. Two electron anti-neutrinos and two electrons
are emitted. The excited state of the 136Ba nucleus is indicated in orange.
The right part of the figure shows the deexitation to the ground state
via emission of two �-rays, indicated as curved lines. The two neutrinos
will not be detectable while the electrons and �-rays produce detectable
energy depositions in a detector.

Even thought the number of expected events in the XENON1T exposure is small, a

search can be performed exploiting the unique event signature. As shown in figure 2.4

two electrons are emitted along with two �-rays. While the electrons will deposit
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their energy close to the decay position, the two angular correlated �-rays can travel

larger distances is a detector. To measure this decay a detector with a good energy

resolution and position reconstruction is required. The energy depositions can than

be separately measured and the events identified due to the unique event signature.

A detector concept that fulfills these requirements is a xenon dual phase TPC. The

detection of a double �-decay to excited states would yield important information for

the calculation of NMEs and thus allow a complementary cross-check of the involved

models [5].

2.3 Dual-Phase Time Projection Chamber

The XENON1T experiment [19] used a dual phase TPC filled with liquid xenon

(LXe) and a gaseous xenon (GXe) layer on top. It searched for interactions of

WIMPs with xenon nuclei [20]. The walls of the detector are made of highly re-

flective polytetrafluorethylen (PTFE) walls and the top and bottom are equipped

with photomultiplier tubes (PMTs) [19]. The detector principle is graphically shown

in figure 2.5.

When a particle scatters in the detector scintillation photons of 178 nm [22] are pro-

duced by two processes [23] given in equation (2.8) and equation (2.9).

Xe⇤ + Xe + Xe ! Xe⇤2 + Xe

Xe⇤2 ! 2Xe + h⌫
(2.8)

The first process starts with an excited xenon atom forming an excited xenon dimer.

The excited dimer can relax to the ground state by emission of a photon. Since the

scintillation light is emitted by a dimer, xenon is transparent to its own scintillation

light [23].

Xe+ + Xe ! Xe+2

Xe+2 + e� ! Xe⇤⇤ + Xe

Xe⇤⇤ ! Xe⇤ + heat

Xe⇤ + Xe + Xe ! Xe⇤2 + Xe

Xe⇤2 ! 2Xe + h⌫

(2.9)

The second process starts with the ionization of a xenon atom and the formation of an

ionized xenon dimer. This dimer can than recombine with an electron creating a highly

excited xenon atom. Via collisions with surrounding xenon atoms the state relaxes

to the single excited state and again the formation of an excited dimer is possible.

Scintillation photons are then created via deexitation as shown in equation (2.8). This

direct scintillation light is detected by the PMTs and is called S1 [23].
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Figure 2.5: Schematic representation of the detector principle of a dual phase xenon
TPC. The LXe volume is shown as dark-blue cylinder, the GXe phase in
light-blue on top. The left side of the figure illustrates the scattering of a
particle in the LXe and the creation of direct scintillation light (S1). The
light is detected by PMT arrays on the top and bottom of the detector,
here shown as colored circles. The colors used indicate the amount of
detected light. The right side of the figure shows the creation and drift
of electrons to the liquid gas interface. The electrons are drifted and
extracted from the liquid by electric fields. The fields are created by
meshes, also shown in the figure. The extracted electrons create secondary
scintillation light by electroluminescence (S2) which is also detected by
the PMTs. The light distribution on the top PMT array can be used to
reconstruct the xy-position of the interaction and the time between the
S1 and S2 signal. Image taken from [21].

An electric field Edrift created by a cathode on the bottom of the detector and a gate

mesh at the liquid-gas interface suppresses the recombination of electrons and ion-

ized xenon dimers and drifts the electrons towards the gas phase. A second electric

field Eextraction between the gate mesh and anode grid in the gas phase accelerates

the electrons into the GXe, creating secondary proportional scintillation light by elec-

troluminescence. The signal is again detected by the PMTs and called S2 [23]. The

xy-position of the interaction can be reconstructed from the S2 top PMT hit pat-

tern [24]. The depth of the interaction, the z-position, can be calculated using the

time di↵erence between the prompt S1 and the delayed S2 giving this detector a 3D

reconstruction of the interaction position [24].The combination of an S1 with at least

one S2 signal is called event.
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The dual signal allows an independent measurement of charge and light of an inter-

action to distinguish di↵erent recoil types [24]. Electrons and �-rays interact with

the atomic shell of xenon. Such an interaction is called an electronic recoil (ER).

Neutrons and WIMPs on the other hand interact with the nucleus, which is called a

nuclear recoil (NR). Since light and charge yields, the amount of created photons and

electrons per unit energy, di↵er for ER and NR one can use

✓
S2

S1

◆

NR

<

✓
S2

S1

◆

ER

to reduce the background from ER events in the dark matter search [24].

Xenon is used as detector material due to its high mass number of A = 131 [17]. The

spin independent cross-section for interactions of WIMPs with nuclei is proportional

to A2 and a large A will increase the number of WIMP-nucleon scatters. Further-

more, xenon has a high atomic number of Z = 54 [13] which leads to a high stopping

power [25] for low energetic �-rays as possible background source. This self-shielding

of xenon can be used for a so-called fiducialization using only the innermost part of

the detector volume for the physics search [24]. This fiducial volume has a greatly

reduced overall event rate since radiation of most external background sources are

stopped in the outer detector region.

2.4 XENON1T

The XENON1T Dark Matter experiment [19] was located at the Laboratori Nazionali

del Gran Sasso (LNGS) in Italy shielded by 3000 m water equivalent rock overburden

to reduce the flux of cosmic radiation by multiple orders of magnitude. The experi-

ment used in total 3.2 t of xenon from which 2 t are contained in an cylindrical dual

phase TPC of 97 cm height between the cathode and gate mesh and 96 cm diameter.

The remaining 1.2 t xenon were used as passive shielding around the TPC. The TPC

used an drift field of 82V/cm and an extraction field of > 10 kV/cm. To make the field

as homogeneous as possible, 74 copper field shaping rings were installed around the

detector. In total 248 PMTs with high quantum e�ciency and low intrinsic radioac-

tivity were used. The bottom array was equipped with 121 hexagonal closely packed

PMTs for a high light collection while the top array was made out of 127 PMTs ar-

ranged in a radial pattern [19]. An illustration of the detector is given in section 2.4

along with a picture of the detector assembly in section 2.4.

The whole detector is housed in a double walled cryostat which itself is located in

a water tank filled with 700 t of water. The tank is equipped with 84 PMTs to act

as passive shield against external radiation and active water Cherenkov muon veto.

A picture of the setup can be found in figure 2.7. Next to the water tank a service
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Figure 2.6: Illustration of the XENON1T TPC shown on the left side and a picture
of the detector assembly on the right side. Pictures taken from [19] and
[26].

building is located and houses several subsystems to run the detector. A description

of all subsystems can be found in [19].
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Figure 2.7: Picture of the XENON1T experiment. The TPC is located in a cryostat
in the water tank on the left side of the image. The service building
containing the subsystems is located on the right side of the image. (Image
credit: Roberto Corrieri and Patrick De Perio.)

2.5 Analysis Outline

As outlined in section 2.2 only 8 events of the 2⌫��-decay of 136Xe to the 0+1 excited

state of 136Ba are expected in the XENON1T data that will be analyzed in this work.

Furthermore, the broad energy range of the events make a classical cut-based analysis

di�cult. In this work a di↵erent analysis method will be used to search for the signal

events: A machine learning (ML) discriminator trained on the classification of events

into signal and background. An graphical overview of the main analysis steps is given

in figure 2.8.

MC Simulation Validation with 
Calibration Data

Machine Learning 
Discriminator Application to DataSetting up the 

Discrimination Space

Figure 2.8: Graphical representation of the main analysis steps in this work.

In this work two kinds of data are used: Monte Carlo (MC) simulations and the

measured XENON1T data. The working principle of the detector was outlined in the

last two sections and the simulations are described in section 3.1. The discriminator

is trained on simulated signal and measured background events, thus accurate MC

simulations are necessary. Two types of events are simulated: events from calibration
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sources and signal events of the 2⌫��⇤-decay of 136Xe. The measured events from

the detector are grouped into calibration data and background data. A range of cuts

is applied both to simulated and measured events. An overview of the cuts used is

given in section 3.2.2. A graphical overview of the data flow in this work is given in

figure 2.9.

MC

TPC

Calibration

Calibration

Background

Signal

Split

Compare 
and Adjust

ML Dataset

Training

Validation

Evaluation

ML Discriminator

Analysis 
Dataset

Statistical Analysis

Evaluate ML 
Performance

Cuts

Cuts

Input 
Parameters

Figure 2.9: Detailed overview of the datasets and performed analyses in this work.
Simulated data is shown in blue, measured calibration data in green and
measured background data in orange. A dataset containing more than
one datatype is indicated as box with more than one color. An analysis
is drawn as ellipse and the application of cuts and splitting of datasets
as circles. The connection of the datasets is shown as black arrows. The
output an an analysis or the application of the discriminator to data is
shown as red arrows.

In a first analysis step the simulated and measured calibration data are compared and

used to adjust the MC simulations, so that a su�cient agreement between simulated

and measured events can be achieved. The calibration sources used are outlined

in section 3.3 and the comparison of simulated with measured events is given in

section 4.3 for a range of di↵erent event parameters. Methods are developed for the

charge and light generation in the simulations as outlined in section 3.1.3.

The so-called background data, are events recorded when no calibration source was

deployed and the detector was operated under stable conditions. In total a background

exposure of 246.7 d is used in this work which corresponds to the exposure2 of science

run (SR) 1 used for the dark matter search of XENON1T in [20]. The background

dataset is split in two parts where one third of the exposure is used in combination with

simulated signal events for the development of an ML discriminator. The remaining

two thirds of the background exposure are used to search for the ⌫��⇤-decays using

the developed discriminator. Due to the high computational costs, simulations of the

XENON1T background spectrum in the energy range of interest were not possible in

this work.

2The exposure reduction by cuts is already applied.
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Based on simulated signal events compared with measured background events, event

parameters are chosen as input for the ML discriminator that allow a good separation

of signal and background events. These parameters form the discrimination space.

The ML dataset consisting of simulated signal and measured background events is

further split into three parts for the training, validation and evaluation of the models.

An overview of the livetimes of the di↵erent datasets is given in table 2.1 and a

description on the usage of each dataset is given in section 4.1.2.

Table 2.1: Runtime overview for the datasets used in this work for the development
of a ML discriminator and the search for signal events.

Total Analysis Training Validation Evaluation
Livetime [d] 246.7 165.29 40.91 20.15 20.35

Fraction 1 0.67 0.17 0.08 0.08

An additional cross check of the simulations and trained discriminator is done with

the calibration data. The discriminator is applied to simulated and measured events

and the output is compared in section 4.6.2. Finally the discriminator is applied to

the analysis data and a limit on the half life of the decay is determined in chapter 5.
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3 Simulations and Data Preparation

The training of a machine learning (ML) discriminator requires accurate simulations

and a preparation of the measured data that allows to reconstruct multiple spatially

separated energy depositions. This chapter will first outline the simulation tools used

in this work followed by a description of the data preparation. Finally, calibration

sources that are used to validate and tune the MC simulations will be introduced.

3.1 Simulations

This section outlines the XENON1T MC simulation chain used in this work. A graph-

ical overview of the involved steps is given in figure 3.1. The goal of the simulation

is to generate events that resemble the measured events in the detector in terms of

data format and event parameters. The first step of the simulations chain is an event

generator followed by a particle tracking and detector geometry simulation. Based

on the output of this simulation the number of charge (S2) and light (S1) quanta are

calculated for each resolvable energy deposition. As a final step, the waveform of the

event as it would be recorded by the XENON1T data acquisition is simulated. The

events are stored in the same format as measured data, so the same data processing

tools can be used for simulation and measured data. The individual simulation steps

are further described in the following sections.

Event Generator Particle Tracking Quanta 
Generation

Waveform 
Simulator

Figure 3.1: Overview of the XENON1T simulation chain. The initial particle kine-
matics calculated with an event generator are used as the input for the
particle tracking and geometry simulations. Based on the provided en-
ergy depositions the number of photons and electrons is determined in the
quanta generation. In turn, these are used as the input for the waveform
simulator.

3.1.1 Event Generator

The first step of the MC chain is the event generator. It calculates the initial momen-

tum vectors and emission times of particles in radioactive decays or other processes of
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interest. Two di↵erent event generators are used in this work, the built-in event gen-

erator of the simulation software Geant4 [27] using the G4RadioactiveDecay process

and Decay0 [28].

The initial kinematics for radioactive decays of background and calibration sources

in XENON1T can be calculated with the Geant4 event generator. The kinematics of

2⌫��⇤-decay of 136Xe will be generated with Decay0.

The event generator Decay0 is focused on the calculation of initial kinematics of dou-

ble � decays. Other events like ↵ or single � decays can be generated as well mostly

for sources imitating double �-decays. The double �-decays of 40 isotopes can be

simulated for 17 decay modes. Besides decays to the ground state, the particle kine-

matics of decays to excited states can be generated including subsequent deexitations.

Internal conversion processes and emission of e�e+ pairs are taken into account. De-

cay0 is used since more than 20 years by multiple groups mostly searching for 0⌫��

decay [28].

For this work the Decay0 Fortran code is modified to include the angular correlation

of the two emitted �-rays during the deexitation of the 0+1 excited state of 136Ba. The

modified source code is given in appendix A.1.

Figure 3.2: Histogram of the angle between the momentum vectors of the two deexi-
tation �-ray of the 2⌫��⇤-decay of 136Xe generated with Decay0 in blue
and a fit using equation (2.6) in orange. The residuals are given in the
bottom panel.

In order to validate if the implementation of the angular correlation produces the

desired output, the angle between the initial momentum vectors of the two �-rays is



3 Simulations and Data Preparation 17

calculated for 1 ⇥ 105 136Xe 2⌫��⇤ events generated with Decay0. A histogram is

given in figure 3.2 together with a fit using the expected angular correlation given

in equation (2.6). The fit is carried out as �2-minimization with the MIGRAD algo-

rithm [29] via the iminuit [30] Python module. The �2 is defined as the sum of the

squared deviations between the fit values ȳi(xi, ~p) and the measured value yi normal-

ized by the square of the uncertainty �i

�2 =
X

i

(yi � ȳi(xi, ~p))2

�2
i

. (3.1)

Here, ~p is the parameter vector of the fit function. The residuals of the fit are defined

as the deviation between the fit value and the measured value normalized to the

uncertainty of each individual data point

Ri =
yi � ȳi(xi, ~p)

�i
. (3.2)

One finds a good agreement between the fit and the generated data so that one can

conclude that the angular correlation was implemented as intended.

3.1.2 Particle Tracking and Geometry Simulation

The initial particle kinematics generated with the event generators are used as input

for the geometry and particle tracking simulations based on Geant4 [27]. Geant4

simulates the propagation of particles through the detector geometry. The detector

model used for the XENON1T simulations was built from CAD drawings to resemble

the build detector as close as possible. A illustration of the detector geometry is given

in section 2.4. The model includes all components of su�cient mass or e↵ects on the

optical properties of the detector. Particle tracking is performed in steps, where the

step size is determined based on the surrounding detector medium, the type and the

energy of the tracked particle. For each step that causes an energy loss in the LXe

of the detector, the deposited energy, time, position, particle type and interaction

process are stored. Detailed descriptions of the detector model and particle tracking

simulations can be found in [21] and [22].

A graphical representation of the output for a simulated 136Xe 2⌫��⇤-decay event is

given in figure 3.3. The figure shows energy depositions in the LXe in a three dimen-

sional plot. Each deposition is shown as circle. The size of the circles is proportional

to the energy deposition and the color gives the time of the deposition measured from

the first interaction. One finds energy depositions at 5 di↵erent locations, separated

by a few centimeters. At each interaction site, multiple energy depositions take place.

The timescale involved is well below one nanosecond. As a result, the S1 signal of all

energy depositions will be merged while it es likely that multiple S2 signals can be

detected.
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Figure 3.3: Three dimensional representation of energy depositions in the LXe vol-
ume of the XENON1T TPC simulated with Geant4. The initial particle
kinematics are generated using Decay0, simulating a 136Xe 2⌫��⇤-decay.
The size of the circles corresponds to the energy deposition and the color
indicates the time of the interaction. Arrows are drawn between the in-
teraction positions of the �-rays.

3.1.3 Quanta Generation

Following the particle tracking simulations the number light and charge quanta are

calculated with a software developed in this thesis. The source code is given in

appendix A.2. This interface connects the particle tracking simulations with the

newly designed waveform simulator WFSim. For each interaction in an event the

position, time, energy deposition, Particle type, Parent-type, Track ID and Parent ID

is used as input. A description of each parameter can be found in table 3.1.

Event Hierarchy 
Reconstruction Clustering Light and Charge 

Quanta
Modify 

Fluctuations

Figure 3.4: Overview of the quanta generation steps. The output of the particle track-
ing simulations is used to reconstruct the causal particle hierarchy in one
event. A clustering is performed to reduce the computational costs and ac-
curately implement the micro-physics processes. The number of light and
charge quanta is calculated using NEST and the fluctuations are modified
to better represent measured data.
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Table 3.1: Description of the input parameter for the quanta calculation. Each pa-
rameter is provided by the particle tracking simulation for each interaction
in an event.

Parameter Description
Position Three dimensional position of an interaction site.
Time Time of the interaction measured from the generation of the

first particle.
Energy deposition Energy deposition at the interaction site measured in keV.
Particle type Type of the particle, e.g. electrons or �-particles, creating the

energy deposition.
Parent type If new particles are created in interactions, the parent type

specifies the particle type of the parent particle creating the
interaction.

Track ID A unique number identifying a particle in an event.
Parent ID The track ID of the parent particle.

The number of charge and light quanta are determined in a multi step process. A

graphical overview is given in figure 3.4. In the first step the causal particle hierarchy

of an event is reconstructed using the Parent and Track ID. This hierarchy lists the

causal relations in an event from the primary particles creating the event down to all

particles created in interactions and decays. An additional variable is assigned for each

interaction indicating the primary particle type. Only electrons, �-rays, ↵-particles

and neutrons are taken as primary particles. It was found that a better agreement

between simulations and calibration data can be achieved when the particle hierarchy

is used to determine which model is used in the calculation of charge and light quanta

using NEST.

An illustration of an event hierarchy can be found in figure 3.5a. The 212Pb nucleus

decays via ��-decay to an excited state of 212Bi, as described in section 3.3.2, lead-

ing to the emission of an ��-electron and an deexitation �-ray. For each interaction

causally connected to the ��-electron, the primary particle type is set to “electron”

indicated in blue. For each interaction connected to the deexitation �-ray, the primary

particle type is set to “gamma” indicated in green. The particle hierarchy reconstruc-

tion is validated only for the ��-decays of 212Pb and 60Co and the deexitation of
131mXe and 129mXe. The hierarchy of particles in events generated with Decay0 can

also be reconstructed.

Following the hierarchy reconstruction all interactions without energy depositions are

removed. The second step of the quanta generation is a temporal and spatial clustering

of energy depositions. As shown in figure 3.3, energy depositions can occur at multiple

interaction sites. Each site consists of multiple smaller energy depositions. The usage

of a clustering will reduce the computational costs of the simulations and account for

micro-physics processes by energy depositions in small distances to each other. The

clustering is performed using a DBSCAN algorithm [31] included in the scikit-learn
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(a) Schematic representation of a simplified
212Pb decay particle hierarchy. Nuclei
are marked in gray, particles created by
the ��-electron in blue and particles cre-
ated in interactions caused by the �-ray
in green.

(b) Illustration of a DBSCAN clustering.
The neighborhood radius is indicated as
circle around the cluster position. Core
points are drawn in blue, reachable points
in orange and noise in red.

Figure 3.5: Particle relation of a 212Pb decay (a) and graphical illustration of the
DBSCAN algorithm.

python library [32]. DBSCAN is a simple but capable algorithm to group one- or

multidimensional data into clusters. The number of clusters is determined by the

algorithm so it must not be specified at the start unlike other clustering algorithms.

The basic principle is illustrated in figure 3.5b. The algorithm is controlled by two

parameters, the neighborhood radius ✏ and the minimum number of points to form

a cluster minPTs. The algorithm classifies points in three categories. So-called core

points have at least minPTs � 1 neighbors within the distance ✏. Reachable points

are within the distance ✏ of at least one core point. The third category, called noise,

are points without connection to core points. All connected core and reachable points

form a cluster.

The temporal clustering is performed with minPTs = 2 and ✏ = 10ns1. Following

the temporal clustering a spatial clustering in three dimensions is performed for each

of the time clusters. Again DBSCAN is used with minPTs = 2 and ✏ = 5 µm which

is slightly larger as the mean ionization electron-ion thermalization distance [33] in

liquid xenon. This length scale was also used in the previous NEST version [34] to

select the Thomas-Imel or Doke/Birks formalism for the quanta calculation. The

1The same time scale is used in the software nSort.
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combination of the spatial and temporal clustering prohibits that energy depositions

are grouped that happen in close distances from each other but separated in time.

For each cluster the energy of all including interactions is summed and the position

and time of the cluster is calculated as weighted average of the individual positions and

times with the corresponding energy depositions as weights. The primary particle type

of a cluster is determined by the primary particle types of involved interactions. When

a cluster has more than one primary particle type, both are used for the calculation of

the quanta with NEST and an average is calculated weighted by the summed energy

of the involved primary particle types. Following the clustering, all energy depositions

happening outside the TPC are cut and the events are artificially separated by 1 s in

time while conserving the temporal relations in each event for the usage in WFSim.

In the third step the number of created electrons and photons is calculated with

the python bindings of NEST2 [35] for each cluster. NEST allows the simulation of

scintillation and ionization processes of noble gases like xenon. Despite its extensive

capabilities, NEST is only used for the quanta calculation which depends on a few

detector specific parameters outlined below. The generation of S1 and S2 signals is

performed by the waveform simulation, created to accurately simulate the response

of the XENON1T experiment. To calculate the number of electrons and photons for

an given energy deposition five additional inputs are needed whereas four of them are

detector specific and hence constant for all simulated events. The parameters are the

mass of xenon atoms A = 131.293 [17], the atomic number Z = 54 [13], the density of

liquid xenon in the TPC ⇢ = 2.862 g/cm3 [36] and the electric drift field strength of

E = 82V/cm in the XENON1T TPC. The fifth parameter is the choice of the model

used in NEST for the quanta calculation. Di↵erent models for nuclear recoils, ions,
83mKr, electrons and �-rays can be chosen with the default case being the beta model.

Since the signal of interest and used calibration sources in this work consists solely of

electrons and �-rays, only the usage of these two models was evaluated.

A comparison of the light and charge yield for di↵erent NEST models used can be

found together with light and charge yield values for XENON1T in figure 3.6. If a

cluster is caused by an electron as primary particle the beta model will be used for

the calculation of the light and charge quanta. If a cluster is created by a �-ray,

an weighted average of the � and beta model is used for the quanta calculation (cf.

[37]). In case of the three calibrations sources 131mXe, 129mXe and 212Pb the measured

calibration data could be best matched with a linear transition from the beta to the

� model between 90 keV and 270 keV. A detailed comparison for corrected areas

of the S1 and S2 signals for measured and simulated calibration sources is given in

section 4.3.2. For energies in the MeV scale larger di↵erences between the NEST

predictions and measured data can be found. Fluctuations of the charge and light

yield determine the width of the S1 and S2 area distributions. It was found that

2Version 1.1.3 is used in this work.
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Figure 3.6: Charge and light yield in dependency of the deposited energy. Measured
XENON1T charge yield values are given in orange and measured light
yield values in blue. The NEST model for �-rays is given in red, the
model for electrons in green and the modified average (AV) model in
black. The charge yield predictions are drawn as dashed lines and the
light yield predictions as solid lines. The NEST predictions are calculated
from single energy depositions whereas the given measured data includes
events where multiple energy depositions are merged into one S1 and S2
signal.

the fluctuations simulated with NEST result in to narrow distributions compared to

measured calibration data so that a modification was introduced:

ñph = nph · N(1, �) (3.3)

ñe = ne + (nph � ñph). (3.4)

Here nph is the number of photons, ne the number of electrons and N(1, �) a normal

distributed random number with µ = 1 and � = 0.073. � is chosen in such a way,

that the width of the Gaussian shaped cS1 and cS2b distributions of simulated and

measured 131mXe and 129mXe events agrees best.

For future analysis the process quanta generation in the simulation chain needs to be

improved in some areas. First the procedure of reconstructing the causal event hier-

archy has to be tested on all decay simulations of the future XENONnT experiment.

Furthermore it is important improve the agreement between predicted and measured

charge and light yield values especially at higher energies.
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3.1.4 Waveform Simulator

The last step of the simulation chain is a waveform simulator. It simulates the de-

tector response to photons and electrons including e↵ects of the PMTs and electron-

ics. In this work the waveform simulator WFSim will be used which is currently

developed for the upcoming XENONnT experiment, based on the Fake Xenon Exper-

iment (FAX) which was developed for XENON1T. While benefiting from the com-

putational performance enhancements implemented in WFSim, it is still possible to

simulate XENON1T events. The simulator takes the number of quanta, times and po-

sitions as input. The electron drift to the liquid gas interface is simulated considering

di↵usion e↵ects and reduction of electrons by electronegative impurities represented

by an electron lifetime. A scintillation model [22] is used to generate the S2 light from

the extracted electrons. Both the S1 and S2 light is distributed to the top and bottom

PMTs using light collection e�ciency (LCE) maps [21]. Afterwards, measured noise

is added and the events are stored as raw data so that they can be processed with the

Processor for Analysing XENON (PAX) using the same data analysis framework as

measured data. Additional a truth file is saved to allow crosschecks on an event by

event basis of the simulation and event processing.

The configuration parameters for WFsim are set based on measured data from the

TPC and parameters determining the detector geometry, e.g. the number of PMTs.

Three important configuration parameters that were investigated in this work are

described here. The s2 mean area fraction top was set to 0.585. This parameter

determines the fraction of S2 light seen on the top PMT array with respect to the

overall S2 size.The measured mean area fraction top of 0.627 is reproduced with the

chosen configuration value. The s1 detection e�ciency was set to 0.126 and controls

the number of detected S1 photons, and thus the S1 and cS1 area in an energy

independent fashion. The third configuration parameter is the s2 secondary sc gain3.

It was set to 28.5 and determines the overall S2 size. Using this set of configuration

parameters it was possible to achieve a good agreement for the S1 and S2 sizes between

the truth information and output of the full chain simulation after reconstruction with

PAX.

3.2 Data Preparation

In the last section, the used simulation tools were described. In this work, both

simulated and measured events are used. This section outlines the preparation of

events for the analysis. The raw data is processed with the Processor for Analysing

XENON (PAX) [38], the data processor developed for the XENON1T experiment.

PAX version 6.10.1 is used for this work which also includes several reconstruction

3sc: scintillation
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improvements for higher energies outlined in [39]. The relevant event information is

than extracted from the processed data using a treemaker of the Handy Analysis for

XENON (HAX) [40]. A detailed description of the event processing and reconstruction

can be found in [24].

3.2.1 Data Extraction of Events with multiple S2 Signals

Due to the number of emitted particles and corresponding energies in events of the

⌫��⇤-decay of 136Xe, it is likely that an event contains one merged S1 and multi-

ple S2s. Since most of the XENON1T analyses were performed for events with only

one S2, which is the more common case for energies below E . 400 keV[39], a dif-

ferent method for the data processing had to be used here. A treemaker for the

analysis of events with more than one S2 was designed for the high energy analysis of

XENON1T [39]. The analysis in this work uses a modified version of this treemaker.

The MultiS2 treemaker analyses all peaks in one event which could in principle be S2

signals, whereas treemakers in single site analyses only work on the largest S2 in the

event. A peak has to pass five criteria [41] to be classified as S2 in an multi site event

for the analysis in this work.

1. The area of a peak must be larger than 150 pe. This reduces the computational

cost of each event by omitting small S2s.

2. The reconstructed z-position of the interaction must be within the TPC: �100 < z < 0.

The position is calculated for each peak by calculating the drift time with the

main S1.

3. The goodness of the top pattern fit [24] is used to remove delayed electrons

created by S2 signals.

4. The electron di↵usion model is used to remove peaks with unphysical width [24].

This criteria further reduces delayed electrons passing the goodness of fit criteria

and very small S2s.

5. A second width cut is used to remove miss classified S1 peaks.

Following these criteria, corrections are applied to each S2 individually. This includes

a correction of the electron lifetime and a correction of the LCE [21]. Usually, the S1

of an event is corrected on position dependent e↵ects where the position is obtained

in combination with the main S2. In the multi side case multiple S1s created at each

interaction side are merged into one S1 so that the corrections need to take this into

account. Therefore, the corrected merged S1 area is defined as

cS1m = S1 ·

P
i LCE(~xi) · cS2b,iP

i cS2b,i
. (3.5)
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Here, S1 is the uncorrected S1 area, LCE(~xi) the position depended S1 LCE, ~xi the

position and cS2b,i the corrected S2 area seen on the bottom PMT array of interaction

i. ~xi is obtained using a neural network for the position reconstruction and a three

dimensional field distortion correction [42] is applied for the measured TPC data.

Since field distortion e↵ects are not included in the MC simulations, the correction

is not applied for simulated events. Additionally, the sum of all corrected S2 bottom

areas is calculated as

cS2b,m =
X

i

cS2b,i (3.6)

and returned by the treemaker. The mean event position is defined as

~xm =

P
i ~xicS2b,i
cS2b,m

. (3.7)

Beside the variables introduced so far, the treemaker is modified for this work to

return also the individual positions of each interaction ~xi together with the corrected

S2 bottom areas cS2b,i for the ten largest S2s.

3.2.2 Data Quality Cuts

This subsection will briefly outline the data quality cuts that are used in this analysis.

Cuts remove events from the data based on certain criteria. In case of the data

quality cuts these criteria are mainly attributed to conditions of the detector. All

five presented cuts are be applied to measured TPC data and only two cuts on the

simulated events.

DAQ Veto The first data quality cut used is the DAQ-Veto cut [43]. This cut was

designed to remove all events which are of technically bad quality caused by problems

in the readout system. This includes incomplete events where some channels of the

detector were not sensitive and during calibration runs events with large S2s are

removed. During normal operation of the detector, the last 21 seconds of each run

are removed. Each run has a typical length of 1 h. It was found that due to some e↵ects

in the digitizers, in some rare edge cases, events in this time frame are incomplete.

To be conservative, these events are removed from the analysis. Additionally, events

are removed when one of the digitizers runs out of memory. The cut reduces the

overall exposure of the detector but introduces no bias in the events recorded. Since

these readout e↵ects are not simulated, this cut is only applied to the measured TPC

data.

S2 - Tails It was found during the detector operations that large S2 signals are often

followed by many low energetic S2s due to ionization of impurities in the LXe. These

low energetic S2s appear in a timescale ranging from a few microseconds for small
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S2s to a few seconds for high energetic S2s caused by e.g. muons. For each event, it

is checked if it follows a large S2 and if so, this event is cut. This cut [44] does not

depend on the event in question so it will not introduce a bias but reduce the total

exposure. Since the e↵ects of these tails is not included in the simulations, this cut is

only applied to the TPC data.

Flash The third cut [45] only applied to TPC data is the so-called flash cut. This

cut was designed to remove events caused by flashes in single PMT. A flash is caused

by small xenon leaks in the PMTs. Just like for the previous cuts, the exposure is

reduced by application of this cut.

S1 and S2 Greater Zero This general data quality cut requites the S1 and S2 area

to be larger than zero and is applied to both the measured and simulated data. A

complete event requires at least one S1 and one S2 signal.

Fiducial Volume Cut Like described in section 2.3, the 3D position reconstruction

in combination with the high stopping power of LXe allows a background reduction

when performing the analysis only in an inner part of the detector, called fiducial

volume. In this work two di↵erent fiducial volume cuts are used. For the analysis

of the xenon �-lines, only the largest S1 and S2 with their corresponding position is

used and the cut is defined as

0 cm < r < 36.94 cm, (3.8)

�92.9 cm < z < �9 cm, (3.9)

containing 1 t of xenon. Here, r is the radial coordinate of an interaction and z is the

depth in the TPC. The TPC dimensions are shown in figure 3.7 as solid red lines and

the 1 t fiducial volume as dashed lines in the r2-z-space. A histogram of simulated
129mXe and 131mXe decays is shown on the left side and measured background data

on the right side of the plot. The xenon decays are homogeneously distributed in the

detector volume whereas the background events are mostly located towards the TPC

walls. The number of events within the fiducial volume is greatly reduced compared

to the whole detector volume.

The second fiducial cut in this analysis is a more stringent version of the fiducial

volume cut outlined earlier, designed for events with a multiplicity greater than one.

These events consist of more than one S2 and the treemaker used returns the 3D

positions of each of the interactions in one event. When a decay happens within the

fiducial volume cylinder the cut requires all interactions to take place in the fiducial

volume as well. Thus, events with at least one energy deposition outside of the fiducial

volume cylinder are cut making the outer volume to an active veto. This ensures that
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Figure 3.7: Two dimensional histograms of simulated 131mXe and 129mXe decays and
TPC background data in r2-z space before data quality cuts. The outer
dimensions of the TPC are shown as red lines and the 1 t fiducial volume
as dashed lines. The xenon isomers decay homogeneously in the TPC
whereas most of the background events are external sources leading to
higher count rates towards the outside of the TPC. Measured events can
be found outside the detector volume due to position miss-reconstructions
and field distortion correction.

events contain the full decay energy since it is rare that a decay happens in the fiducial

volume and a �-ray can escape the detector without interaction in the outer region

of the TPC.

3.2.3 Preparation of simulated signal and measured background data

In the last subsection, a set of data quality cuts was outlined. These cuts are now

applied to simulated 2⌫��⇤-decay events of 136Xe and measured background events.

Only about 8 signal events are expected to occur in the SR 1 data of XENON1T in

the one tonne fiducial volume as calculated in section 2.2. In order to ensure that

this low number of events is not further reduced by cuts, only a minimal set of data

quality cuts is applied. The same cuts are also applied to the calibration data (cf.

section 3.3). A brief summary of each cut is given in section 3.2.2. The cut history

giving the number of removed and kept events for the background data is given in

table 3.2.
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Table 3.2: Cut history for the measured background data. Only data quality cuts are
applied up to now to keep as much events as possible.

Cut Events removed Events passed Fraction left
Data Quality Cut

S1 > 0 pe, S2 > 0 pe 32820744 (27.71 %) 85625828 (72.29 %) 72.29 %
DAQ Veto 901575 (1.05 % ) 84724253 (98.95 %) 71.53 %
S2 Tails 3319739 (3.92 %) 81404514 (96.08 %) 68.73 %

Muon Veto 861819 (1.06 %) 80542695 (98.94 %) 68.00 %
Flash 860 (<0.01 %) 80541835 (>99.99 %) 68.00 %

1T fiducial volume 76450819 (94.92 %) 4091016 (5.08 %) 3.45 %

One finds that 27.71 % of the measured background events are removed by the require-

ment to have at least one S1 and one S2 signal in an event. The livetime reducing DAQ

Veto, S2 Tails, Muon Veto and Flash cuts remove only a small fraction of events. The

1T fiducial volume cut for multi-site events removes 94.92 % of the events passing the

previous cuts. This large fraction of removed events demonstrates the self-shielding

capabilities of LXe against external sources as outlined in section 2.3. Only 3.45 %

of the measured background events pass all applied cuts. The cut history of the

simulated signal events is given in table 3.3. A smaller set of data quality cuts is

Table 3.3: Cut history for simulated signal events. Only two data quality cuts are
used.

Cut Events removed Events passed Fraction left
Data Quality Cut

S1 > 0 pe, S2 > 0 pe 138366 (3.13 %) 4279565 (96.87 %) 96.87 %
1T fiducial volume 2714988 (63.44 %) 1564577 (36.56 %) 35.41 %

applied to the simulated signal events. E↵ects that are targeted with the DAQ Veto,

S2 Tails, Muon Veto and Flash cut are not included in the simulations and thus the

corresponding cuts are not used here.

Only 36.56 % of the simulated signal events pass the fiducial volume cut for multi-site

events. Geometrical considerations give an expected ratio of 50% removed events

indicating that more simulated signal events are cut as expected. As described in

section 3.2.2 the fiducial volume cut for events with multiplicity greater unity turns

the outer detector volume into an active veto. The mean distance a particle can

travel in LXe from its origin depends on the particle type and energy. In case of the

2⌫��⇤-decay of 136Xe two �-rays are emitted back-to-back along with two electrons.

While the electrons interact close to the position of the decay, the �-rays can travel

distances long enough to create separate S2s. If one of the �-rays of the 2⌫��⇤-decay

occurring in the fiducial volume interacts in the outer detector region, the event is

cut. It is found that 30.18 % of the signal decays in the fiducial volume are removed

by the fiducial volume cut.
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3.3 Calibration data

The simulation and data preparation tools outlined in the last two sections have to

be validated by comparison to measured data. In this section the four calibration

sources 129mXe, 131mXe, 212Pb and 60Co used in this work are described including a

general source description and the selection of the events.

3.3.1 129mXe and 131mXe

The first two calibration sources are the isomers 129mXe and 131mXe. Both are mono

energetic �-ray sources. This makes them important for the validation and tuning of

the MC simulations since certain distributions of event parameters like the energy or

cS1 and cS2 areas can be compared directly.

Source Description

Both isomers are created by neutron scattering reactions [46] during neutron generator

calibration runs. The neutron generator was frequently used during the detector op-

eration in SR 0 and 1. Due to the half-lifes of 8.88 d for 129mXe and 11.84 d for 131mXe,

the decays of the isomers can be found in the background data of the detector.

129Xe
0 keV

39.6 keV

T1/2: 0.97 ns
⍺t.   : 12.03 

129mXe
236.1 keV

T1/2: 8.88 d
⍺t.   : 20.3 

(a) Scheme of 129mXe decay, data taken
from [13].

131Xe
0 keV

163.9 keV

T1/2: 11.84 d
⍺t.   : 50.5 

131mXe

(b) Scheme of 131mXe decay, data taken
from [13].

Figure 3.8: Decay schemes of 129mXe and 131mXe. �-transition are given as red arrows.
Both isomers are produced during neutron generator calibration runs and
are present in the background data of XENON1T due to the half-lifes in
the order of days.

Figure 3.8a shows the decay scheme of 129mXe. The deexitation [13] is a two staged

decay via an intermediate stage of 39.6 keV with short half-life 0.97 ns so that two
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�-rays are emitted. Due to the �-ray energies of 196.5 keV and 36.6 keV and the short

half-life of the intermediate stage, both �-rays will be merged into a single S2 signal

in most cases. 131mXe decays in a single step to the ground state via emission of

a 163.9 keV �-ray. The corresponding decay scheme is shown in figure 3.8b. Both

isomers have a non-negligible conversion factors (cf. figure 3.8a and figure 3.8b)

leading to the emission of electrons during the decay.

Event Selection

In order to select only the 129mXe and 131mXe decay events, multiple cuts are ap-

plied both to the simulated and measured background events. First, the data quality

cuts described in section 3.2.2 are applied followed by cuts in cS1, cS2 and recon-

structed energy. Since both decays are mono-energetic, they will show up as tilted

two-dimensional Gaussians in the cS1-cS2 space and thus as one-dimensional Gaus-

sians in the energy. The overall event selection in cS1 cS2b space is shown in fig-

ure 3.9.

Figure 3.9: Comparison of the event selection of 131mXe and 129mXe decays for simu-
lated (left) and measured (right) events in cS1-cS2b space.The same num-
ber of events is simulated for 131mXe and 129mXe causing that both peaks
have the same area. Bins of events that are removed by cuts are given
with a reduced opacity.
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The cut history for the simulations of 129mXe decays is given in table 3.4 and for

simulated 131mXe events in table 3.5. The cut history of the measured TPC events

can be found in table 3.6.

Table 3.4: Cut history of simulated 129mXe events. Two data quality cuts are applied
and the mono energetic source is selected by cuts in cS1, cS2 and energy.
A table giving the fraction of events passing a cut is given in table A.1.

Cut Events removed Events passed Fraction left
Data Quality Cut

S1 > 0 pe, S2 > 0 pe 32 (0.01 %) 499462 99.99 %
1T fiducial volume 265770 (53.21 %) 233692 46.79 %

Source Selection
700 pe < cS1 < 2500 pe 1 (0.01 %) 233691 46.79 %

4 ⇥ 104 pe < cS2 < 4 ⇥ 105 pe 6 (0.01 %) 233685 46.78 %
190 keV < E < 260 keV 270 (0.12 %) 233415 46.73 %

The cuts in cS1 and cS2 are applied select the region of interest. The cut history

shows that the cS1 cut keeps all but one event for simulated 129mXe and 131mXe while

removing 97.95 % of the measured background data. The cS2 cut further improves

the event selection by removing 18.73 % of the remaining measured background events

and keeping almost all simulated events.

Table 3.5: Cut history of simulated 131mXe events. A similar set of cuts is applied
compared to the selection of 129mXe events but the energy region is varied
to match the di↵ering decay energy. A table giving the fraction of events
passing a cut is given in table A.2.

Cut Events removed Events passed Fraction left
Data Quality Cut

S1 > 0 pe, S2 > 0 pe 19 (<0.01 %) 496751 99.99 %
1T fiducial volume 263983 (53.14 %) 232768 46.86 %

Source Selection
700 pe < cS1 < 2500 pe 0 (0 %) 232768 46.86 %

4 ⇥ 104 pe < cS2 < 4 ⇥ 105 pe 304 (0.13 %) 232464 46.80 %
130 keV < E < 190 keV 22 (0.01 %) 232442 46.79 %

After this two cuts shared by both 129mXe and 131mXe, a cut in energy is performed

to select each source individually. How the energy of an event is reconstructed from

cS1 and cS2b is outlined in section 4.3.3. Just like for the previous cuts, almost all

simulated events pass the energy cut while only 22.75 % of the remaining events pass

the energy cut for 131mXe and only 22.50 % for 129mXe respectively.

The source selection removed only 277 simulated 129mXe events and 326 simulated
131mXe events. A low rate of removed events is expected since only the two �-ray

sources were simulated here. In contrast, the measured data from the TPC contains

also other sources of background. Thus the source selection cuts are required to remove

events except of the xenon decays. One can see that only 0.03 % of the measured
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Table 3.6: Cut history for the selection of 129mXe and 131mXe events in the background
data of XENON1T. The data used here is loaded technically di↵erent from
the simulated events and the S1 > 0 pe, S2 > 0 pe cut is applied implicitly
so that no number can be given here. A table giving the fraction of events
passing a cut is given in table A.3.

Cut Events removed Events passed Fraction left
Data Quality Cuts

DAQ Veto 1070018 (1.06 % ) 99843936 98.94 %
S2 Tails 4031907 (4.04 %) 95812029 94.18 %

Muon Veto 1011325 (1.06 %) 94800704 93.18 %
Flash 1019 (<0.01 %) 94799685 93.18 %

1T fiducial volume 86461272 (91.20 %) 8338413 8.20 %
General Source Selection

700 pe < cS1 < 2500 pe 8150754 (97.95 %) 170669 0.17 %
4 ⇥ 104 pe < cS2 < 4 ⇥ 105 pe 31974 (18.73 %) 138695 0.14 %

131mXe
130 keV < E < 190 keV 107143 (77.25 %) 31552 0.03 %

129mXe
190 keV < E < 260 keV 107482 (77.50 %) 31213 0.03 %

background events pass all cuts for 129mXe and 131mXe respectively. Since the source

is only present in the background spectrum and not used in dedicated calibration runs

with increased count rate, most of the events had to be cut as background events.

3.3.2 212Pb

The next calibration source used in this work is 212Pb. 212Pb decays via ��-decay

to 212Bi and a su�cient number of events can be measured in calibration runs where
220Rn is injected in the TPC. Due to the ��-decay directly to the ground state
212Pb can create low energetic electronic recoil signals which makes it an important

calibration source for XENON1T.

Source Description

212Pb is part of the thorium decay chain from which the relevant part is shown in

figure 3.10a. 220Rn is injected in the TPC as calibration source and decays via ↵-decay

to 216Po. 212Pb is obtained after an second ↵-decay and will undergo a ��-decay to
212Bi. The ��-decay goes in about 12% of the cases directly to the ground state

of 212Bi and subsequent �-transitions are likely to occur. This event topology is

particularly useful for validation of the MC simulations in this work since the excited

2⌫��-decay of 136Xe also involves the emission of electrons and �-rays. Since only the

decay of 212Pb is of interest, only this decay is simulated instead of the full decay chain

to save computation time. To allow a proper comparison to the measured calibration
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data several cuts are applied to remove ↵-decays and other background events from

the datasets.

220Rn
55 sec

216Po
0.15 sec

212Pb
10.6 h

212Bi
61 min

212Po
0.3 μsec

Β-Decay

!-Decay

208Pb
stable

208Tl
3 min

(a) Decay chain of 220Rn, data taken from
[13].

212Pb

212Bi
0 keV

238.6 keV

415.3 keV

β-Decay

12%

83%

5%

Q = 569.1 keV

(b) Decay scheme of 212Pb, data taken from
[13].

Figure 3.10: Decay chain of 220Rn and decay scheme of 212Pb. 212Pb decay via ��-
decay to 212Bi. �-decays are indicated as blue arrows, ↵-decays as green
arrows and �-transitions as red arrows.

Event Selection

In order to select only 212Pb decays in the simulated and the measured calibration

data, a set of basic data quality and more specific event selection cuts were applied

to the data. The cut history of the simulated data is given in table 3.7 and the cut

history of the measured calibration data is listed in table 3.8. The data quality cuts

are outlined in section 3.2.2.

Table 3.7: Cut history of simulated 212Pb decays. Four source specific cuts were used
to separate the events of interest. Since only 212Pb decays were simulated,
the cuts remove only a small fraction of events. A table giving the fraction
of events passing a cut is given in table A.4.

Cut Events removed Events passed Fraction left
Data Quality Cut

S1 > 0 pe, S2 > 0 pe 2268 (0.49 %) 457288 99.51 %
1T fiducial volume 228219 (49.91 %) 229069 49.85 %

Source Selection
cS1 < 5000 pe 0 (0 %) 229069 49.85 %

cS2 > 10 000 pe 4299 (1.88 %) 224770 48.91 %
2.3 < ln

�
cS2
cS1

�
< 5.5 33 (0.01 %) 224737 48.90 %

E < 570 keV 40 (0.02 %) 224697 48.89 %

The first two source specific cuts are performed in cS1-cS2 space demanding cS1 < 5000 pe

and cS2 > 10 000 pe. 98.12 % of the simulated 212Pb events pass this cut while about

half of the measured calibration events are removed. The next cut is carried out in

ln
�
cS2
cS1

�
space. The cut removes 33 simulated 212Pb events and 2.27 % of the measured

events. The last cut limits the allowed total energy deposition E of an event. The
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energy reconstruction using cS1 and cS2b is outlined in section 4.3.3. The Q-value of

the 212Pb decay is Q = 569.1 keV[13] which corresponds to the maximal energy that

can be deposited by this decay. Thus, events with E > 570 keV are cut. 40 simulated

events are removed by this cut and 2.07 % of the calibration data are removed.

Figure 3.11: Comparison of the event selection of 212Pb decays for simulated events
and calibration data from the TPC in cS1-cS2b space. The decay to
the ground state creates a “tail” starting at small cS1 and cS2b. The
decays to excited states of 212Bi show up as kink in the data at around
cS1= 1 ⇥ 103 pe. A small population of events above the kink in cS2b is
visible for the calibration data whereas no such population exists in the
simulated data. Other events from the decay chain passing the selection
could cause this population and wont show up in the simulated data since
only the 212Pb decay is simulated.

The resulting event selection is shown in figure 3.11 in the cS1-cS2b space and in the

E-ln
�
cS2
cS1

�
space in figure A.1 in the appendix. Since ↵-decays usually deposit high

energies in the detector, the presented cuts should remove these events e�ciently.

Possible events passing these selections could come from the ��-decays of 212Bi and
208Tl. Due to the short-half life of 212Po, the ��-decay of 212Bi is in most cases

directly followed by an ↵-decay so that both decays will be merged in one event. This

so-called BiPo-coincidence will lead to a removal of these events due to the applied

cuts. The ��-decay of 208Tl has a high Q value of 4998.5 keV[13] and goes in all

cases [13] to excited states of 208Pb. These events are also cut unless the �-ray can
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escape the detector without energy depositions in the outer detector region. Therefore

it is also unlikely that these ��-decays can pass the source selection cuts.

Table 3.8: Cut history for 220Rn calibration data. Beside the data quality cuts the
same source specific cuts used for the simulated data is applied here to
select 212Pb decays in TPC Data. The large fraction of events removed by
the fiducial volume cut compared to the 50 % expectation from geometrical
e↵ects could be caused by other external sources and by the inlet of the
220Rn in the TPC (cf. figure 4.16). A table giving the fraction of events
passing a cut is given in table A.5.

Cut Events removed Events passed Fraction left
Data Quality Cuts

S1 > 0 pe, S2 > 0 pe 16846910 (54.66 %) 13971868 45.34 %
DAQ Veto 1590225 (11.38 % ) 12381643 40.18 %
S2 Tails 582871 (4.71 %) 11798772 38.28 %

Muon Veto 63854 (0.54 %) 11734918 38.08 %
Flash 0 (0 %) 11734918 38.08 %

1T fiducial volume 9547063 (81.36 %) 2187855 7.10 %
Source Selection

cS1 < 5000 pe 966899 (44.20 %) 1220956 3.96 %
cS2 > 10 000 pe 35825 (2.93 %) 1185131 3.85 %

2.3 < ln
�
cS2
cS1

�
< 5.5 26946 (2.27 %) 1158185 3.76 %

E < 570 keV 23995 (2.07 %) 1134190 3.68 %

3.3.3 60Co

The next calibration source used in this work is 60Co. Unlike the 212Pb calibration,
60Co decays are present in the background spectrum of XENON1T and not in dedi-

cated calibration measurements. 60Co is used as calibration source due to its emission

of 1173.2 keV and 1332.5 keV �-rays [13] providing a cross-check of the simulations at

higher energies.

Source Description

60Co is a radioactive cobalt isotope produced via neutron capture. Since natural cobalt

can be found in steel, the usage of the neutron generator can produce 60Co in the

cryostat of the detector. In most cases, 60Co decays via ��-decay to the 2505.7 keV

excited state of 60Ni [13] which then relaxes to the ground state via emission of two

�-rays. Since the decay happens mostly in the cryostat, only the deexitation �-rays

can reach the sensitive detector volume or even the fiducial volume.

Due to the energies of 1173.2 keV and 1332.5 keV[13], the dominating interaction

mechanism of these deexitation �-rays is Compton scattering. Thus, one can expect

events with high multiplicities. Beside the Compton continuum, one should also find

mono energetic full absorption peaks for both �-rays in the data.
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60Co

60Ni
0 keV

1332.5 keV

2505.7 keV

β-Decay

99.88%

Q = 2822.8 keV

Figure 3.12: Decay scheme of 60Co, data taken from [13]. The �-decay is indicated as
blue arrow and the �-transitions as red arrows.

Event Selection

As described above, 60Co decays are present in the background data of the TPC and

it is not a specifically designed calibration source. Thus, the count rate of these events

cannot be artificially increased to rates of other calibration sources like 220Rn. Only

the mono-energetic parts of the energy spectrum can be separated e�ciently from

the detector background thereby a comparison of the Compton continuum between

simulations and measured data is not possible. Just like for the other calibration data,

a set of data quality cuts is applied both to the MC and TPC data. The cut history

of the simulated data is given in table 3.9 and for the measured events in table 3.10.

Both for simulated 60Co decays in the cryostat and for measured background data

the multi site fiducial volume cut removes about 95 % of the available data. This

large fraction of removed events is caused by the external nature of most background

sources as-well as the calibration source. After using the fiducial volume cut , a range

selection in cS1 and cS2b is performed to narrow the region of interest. Furthermore

a multiplicity cut is applied since the presented analysis in this theses is done on

events with more than one S2 in a single event. The signal multiplicity is outlined in

section 4.3.1

The full absorption peaks of the two �-rays are selected by cuts in Energy. Section

4.3.3 outlines how the energy of an signal is reconstructed using the corrected S1 and

the corrected S2 signal seen on the bottom PMT array. Di↵erent energy windows

had to be used for the simulations and measured data. The underlying energy shift

is caused by a deviation of the NEST prediction from the measured data. This

discrepancy in cS1 and cS2b is further described in section 4.3.2.
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Table 3.9: Cut history for simulated 60Co decays. Only 2.4 ⇥ 104 of 1.5 ⇥ 106 sim-
ulated events passes the cuts so simulations with a su�cient statistics in
the fiducial volume are hard to achieve while keeping the computational
costs as low as possible. The energy range is varied from the cut applied to
the TPC data due to a discrepancy between the predicted light and charge
yields from NEST with the measured values in XENON1T. A table giving
the fraction of events passing a cut is given in table A.6.

Cut Events removed Events passed Fraction left
Data Quality Cut

S1 > 0 pe, S2 > 0 pe 156412 (10.30 %) 1361967 89.70 %
1T fiducial volume 1301662 (95.57 %) 60305 3.97 %

General Source Selection
2.5 ⇥ 105 pe < cS2b < 1 ⇥ 106 pe 9056 (15.02 %) 51249 3.38 %
4 ⇥ 103 pe < cS1 < 1 ⇥ 104 pe 4685 (9.14 %) 46564 3.07 %

Multiplicity > 1 13420 (28.82 %) 33144 2.18 %
1173.2 keV 60Co line

1150 keV < E < 1250 keV 21825 (65.85 %) 11319 0.75 %
1332.5 keV 60Co line

1300 keV < E < 1500 keV 20157 (60.82 %) 12987 0.86 %

Table 3.10: Cut history for the selection of the 1332.5 keV and 1173.2 keV 60Co lines
from the measured background data. A table giving the fraction of events
passing a cut is given in table A.7.

Cut Events removed Events passed Fraction left
Data Quality Cuts

S1 > 0 pe, S2 > 0 pe 32820744 (27.71 %) 85625828 72.29 %
DAQ Veto 901575 (1.05 % ) 84724253 71.53 %
S2 Tails 3319739 (3.92 %) 81404514 68.73 %

Muon Veto 861819 (1.06 %) 80542695 68.00 %
Flash 860 (<0.01 %) 80541835 68.00 %

1T fiducial volume 76450819 (94.92 %) 4091016 3.45 %
General Source Selection

2.5 ⇥ 105 pe < cS2b < 1 ⇥ 106 pe 1543775 (37.74 %) 2547241 2.15 %
4 ⇥ 103 pe < cS1 < 1 ⇥ 104 pe 420188 (16.50 %) 2127053 1.79 %

Multiplicity > 1 541664 (25.47 %) 1585389 1.34 %
1173.2 keV 60Co line

1130 keV < E < 1210 keV 1256986 (79.29 %) 328403 0.28 %
1332.5 keV 60Co line

1300 keV < E < 1360 keV 1273819 (80.35 %) 311570 0.26 %

A comparison of the event selections for simulated and measured events in the cS1-

cS2b space is given in figure 3.13. The MC data show a continuum with two mono-

energetic Gaussian peaks whereas the spectrum of the measured data also includes

peaks from other sources.
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Figure 3.13: Comparison of the event selection in cS1-cS2b space for simulated 60Co
decays (left) and measured background data. (right) The full absorption
peaks of the 1173.2 keV and 1332.5 keV �-rays are visible as tilted two-
dimensional Gaussians. The simulations show an additional continuous
distribution of events due to energy depositions from Compton scatters.
The Compton continuum is not visible in the measured data due to the
large number of background events.
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4 Development of a Machine Learning

Discriminator

In the last chapter, the data preparations and calibration sources used were described.

This chapter will focus on the development of a machine learning discriminator to dis-

tinguish between signal events of the 136Xe ⌫��⇤-decay and background events. First,

general machine learning (ML) techniques and features are described. Then the input

parameters for a discriminator used in an analysis by the EXO-200 collaboration are

outlined. Inspired by the EXO-200 analysis, a multi-dimensional discrimination space

consisting of several possible input parameters for this work is set up and investigated.

For each parameter, the simulation results are validated using the calibration sources

outlined in the last chapter. Two di↵erent ML models are trained and the perfor-

mance is analyzed and compared. Finally the e↵ect of signal events in the background

class on the training process is investigated.

4.1 Machine Learning

Machine Learning is a sub-field of the computer science domain of artificial intelli-

gence (AI). Investigations about AI started in the 1950s to use computers to perform

intellectual tasks normally done by humans. It includes learning based approaches

as well as approaches with large sets of programmed rules usually called symbolic

AI [47]. Due to the di�culties of manually programming rules for all possible scenar-

ios, learning based approaches are now mainly used in the field of AI.

In ML, data-processing rules are not created by hand but automatically learned by

exposure to data. In contrast to classical programming where the output is obtained

by human input of explicit rules and data, ML takes the data and corresponding

desired outputs and learns the underlying rules which can than be applied to new

data [48].

Learning in this field means generalization from seen data so that a task can be

accurately performed on new unseen data. Rapid developments in the field of ML were

possible in the last decades due to faster hardware and larger available datasets [48].
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4.1.1 Categories

Algorithms are usually classified into four broad categories based on their training

procedure [48]. These are supervised, self-supervised, unsupervised and reinforcement

learning. Supervised and unsupervised learning are applied in this work.

Supervised learning is the most common case in machine learning applications.

These algorithms try to map the input of a model to previously known target values.

The most frequent applications of supervised learning are classification or regression

tasks. In a classification task, the target values are labels that assign a combination of

input values to a certain class. A popular example is the classification of handwritten

digits. Target values in a regression task are continuous numbers, e.g. the three

dimensional position of an interaction in the TPC. In this work, supervised learning

is used to separate background from signal events in binary classification tasks. The

basic training procedure of a supervised model is shown in figure 4.1. A distance

metric, called loss function, is calculated between the output of a model for certain

input values and the known target values. The parameter of the model are changed

by an optimizer to minimize the output of the loss function, called loss.

Input ML Model

Loss Function

Output

Target

Loss

OptimizerParameter

Figure 4.1: Supervised learning training procedure. The output of the machine learn-
ing (ML) model is calculated for a set of input values. The loss function
is used to calculate a distance between the output and the target values
of the specific task. The calculated distance is commonly called loss and
is used by the optimizer to change parameters of the ML model. The
process is repeated until a su�cient low loss is achieved.

Unsupervised learning is used on data where no targets are available to find useful

transformations for e.g. data visualization, compression or de-noising. Another popu-

lar example are clustering algorithms where data sample are grouped to clusters based

on similarities in certain input parameters. In this work, a DBSCAN [31] clustering is

used during the MC simulations outlined in section 3.1.3 to merge energy depositions

in the detector based on their three dimensional position and time.
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4.1.2 Performance evaluation

The performance of a ML model is measured by its capability to generalize features

from seen data, the training data, to unseen data. If a model is continuously trained on

a dateset, the performance of the model on this data will increase with the training,

but the performance on unseen similar data can decrease. This problem is called

overfitting. To prevent overfitting and measure the generalization capability of a

model, a common approach is to divide the data available for the development of a

ML into three sets[48]: training, validation and evaluation1 data:

• The machine learning model will be trained on the training dataset.

• The validation data will be used to test the performance of a machine learning

model during the training and adjustments of the model’s hyper-parameters.

These parameters, for example the number of layers in a neural network, are

not changed by the optimizer in training itself but by human input based on

the performance of the model on the validation data.

• Since the hyper-parameters are adjusted during the development in such a way

that the model will perform well on the validation data, a so-called information

leak can occur. The model could be fine tuned on the validation data to perform

artificially well on this data it was never directly trained on. A test with the

evaluation data can be performed after the model development and training

is finished to independently evaluate the performance of the model on unseen

data.

When enough data is available, a simple split into these three datasets can be per-

formed. This method of data division is commonly called hold out. When the statistics

is limited, one can encounter the problem that a split into these tree sets will lead to

a bias due to unequal feature distributions. In this case, a K-fold cross validation [49]

can be used.

4.1.3 Neural Networks

Artificial neural networks (NNs) are machine learning algorithms remotely inspired

by biological systems like brains. The key components of these networks are neurons

and their connections. In general, a neuron receives an input, applies an activation

function and returns an output. In most cases, neurons are connected to other neurons

where each connection has a certain weight. These weights are changed in the training.

During the last decade, many di↵erent types and architectures of NNs were developed

and a loose classification can be made based on the direction of the information

flow [48]. In feed forward networks (FFNs) information is only transmitted in one

1This dataset is also frequently called test dataset.
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direction, from the input to the output whereas recurrent networks can also include

backward connections and loops.

Input
Layer

Output
Layer

Hidden Layers

Figure 4.2: Illustration of a simple feed forward network. Neurons drawn as circles are
grouped in layers. The output of each neuron is transmitted to neurons in
the next layer indicated as arrows. The network in this example receives
three input values and calculates two output values. Two hidden layers
with four neurons each are shown. This architecture of the network has
to be adapted to the specific task and requirements.

One of the simplest FFNs is the multi-layer perceptron (MLP). Like the name suggest,

neurons are ordered in densely connected layers. A schematic representation of such a

model is given in figure 4.2. This network consist of an input layer, a range of hidden

layers and an output layer. The number of neurons in each layer and the amount of

hidden layers vary and determine the capacity of the model. Bigger networks with

more layers and neurons can deal with increasingly complex problems but tend to

overfit.

In case of a MLP with two hidden layers similar to the network illustrated in figure 4.2,

the output of the NN yi is calculated in the following manner [50]. The output h(1)
i of

the first hidden layer is calculated as

h(1)
i = '(2)

✓X

j

w(2)
ij xj + b(2)i

◆
.

Here, xi is the vector of the input values, '(k) the activation function of layer k and

b(k)i the bias vector. In general, all neurons of a layer use the same activation function.

Here, w(k)
ij is the weight matrix connecting the neurons of layer k with the neurons of

the previous layer. The weight matrices and bias vectors are the trainable parameter

of a MLP that can be changed in the training process. The output of the second

hidden layer is calculated similar but the output of the first hidden layer is used as

input.

h(2)
i = '(2)

✓X

j

w(2)
ij h(1)

j + b(2)i

◆
.
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The overall output of the network is then calculated from the output of the second

hidden layer.

yi = '(3)

✓X

j

w(3)
ij h(2)

j + b(3)i

◆
.

If non-linear activation functions are used, even a small FFN is a universal function

appropriator [51]. Nowadays, a widely used activation function is the rectified linear

unit (ReLU) and defined as

'(q) =

8
<

:
0 , for q  0,

g , for q > 0,
(4.1)

where q is the input of the activation function.

Training of a Neural Network

A NN is trained on data by changing the parameters in the weight matrices w(k)
ij and

bias vectors b(k)i . Both are usually filled with random numbers at the start of the

training and modified to minimize a distance metric, called loss function, between

the output of the model and the target. The loss function is specific to the task the

network should solve.

The minimization could be solved for only a few parameters analytically but in a typ-

ical model thousands or even millions of parameters will make an analytical solution

impossible. All operations of the layers are di↵erentiable which allows the calcula-

tion of the loss functions gradient with respect to the trainable parameters. The

parameters can then be modified by going in the opposite direction of the gradient.

This stochastic gradient descent procedure in its simplest form is performed in five

repeating steps until a su�ciently small loss is achieved:

1. A sample of the training data together with the corresponding targets is selected.

2. The output of the model is calculated for the selected data.

3. The loss function is calculated for the obtained output and the selected target

values.

4. The gradient is calculated with respect to all trainable parameters.

5. The parameters are adjusted in the opposite direction of the gradient within a

defined step size.

The gradient descent is performed by a so-called optimizer that tries to find the global

loss minimum. A whole range of optimizers was developed over the last decades in-

cluding sophisticated methods to avoid problems of local loss minima. A frequently

used optimizer is Adam [52]. When dealing with networks of many layers, the chain

rule has to be used to calculate the loss gradient. This process, called backpropagation,
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starts at the output layer and works itself backwards through the whole network to

adjust each trainable parameter. Modern packages like tensorflow [53] use symbolic

di↵erentiation, the calculation of derivatives using computer algebra, so the backprop-

agation algorithm must not be implemented by hand for each model.

4.1.4 Bagging and Boosting

Another common machine learning technique is the ensembling of weak learners when

dealing with structured data [54]. A weak learner is a rather simple ML model like

a decision tree which performs only slightly better than random guessing [54]. A

decision tree is a ML algorithm partitioning the input data by binary splits into

various branches. An overview on decision trees can be found in [55]. By combining

multiple weak learners one can build a single strong learner, i.e. well performing

model. The term structured data is used whenever the inputs of the model can be

listed in tables, such as numbers or single words. Unstructured data on the other

hand are inputs like images or time series. Ensembling of models splits basically into

bagging and boosting [54].

Bagging is the combination of multiple independent weak learners. Each model

is trained independently of each other usually on a sub-sample of the data and the

output of all models is then combined by averaging over the outputs. A popular

example of this technique is the combination of multiple decision trees to a so-called

random forest [56].

Boosting on the other hand is the combination of multiple weak learners that are

not independent of each other. The learners are generated sequentially and added

to the model, so that later learners can correct mistakes previous learners did [54].

Again decision trees are commonly used as weak learners in boosting algorithms.

A generalization of the boosting technique is gradient boosting which allows the op-

timization of an arbitrary loss function. A description of the XGBoost algorithm for

gradient boosting which is used in this work can be found in [57].

4.2 EXO-200 Analysis

In the last sections general machine learning features and techniques were outlined.

In this work a ML discriminator is developed to separate signal events of the 2⌫��-

decay of 136Xe to an excited state from background events. Several input parameters,

allowing a good distinction between signal and background events have to be found

and analyzed.
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The EXO-200 collaboration used a boosted decision tree (BDT) for this task based on

six input parameters [14]. Histograms of these parameters for signal and background

events can be found in figure 4.3. The first parameter used is the deposited energy

of an interaction in the detector. This parameter is a commonly used one in physics

and is also included in this work. An analysis of the signal and background energy

distributions and a comparison of simulated with measured calibration data can be

found in section 4.3.3.
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FIG. 2. (Color online) Distributions of the input variables to the discriminator based on MC simulations. Signal (excited state
events) is shown in solid blue and background (all other events) in hatched red.

D. Trained decision tree results

After training the BDT, the effectiveness of individual
variables in deciding whether an event is signal-like or
background-like can be determined. The BDT consists of
many individual decision trees, each of which performs a
series of binary cuts on the input variables, with the final
nodes of the cuts each assigned to either signal (+1) or
background (-1). The discriminator variable is then given
by a sum of the individual trees’ assignments, weighted
by their classification performance. Further description
of the BDT algorithm can be found in [26]. The ranking
for any given variable is a measure of the fraction of de-
cision tree cuts which use that variable, and is given in
Table I. As expected, multiplicity is an effective discrim-
inator between the decays to the excited state, which are
largely MS, and 2⌫�� decays to the ground state, which
are primarily SS, with most of the additional information
contained in the energy variables.

The trained BDT is then applied to low-background
data, calibration data, and MC to determine the value of
the discriminator variable for each event. In particular,
this allows for comparison between data and MC for cali-
bration sources, which can be used to quantify systematic
effects. These comparisons are done for 60Co, 226Ra, and
228Th, both for SS and MS events. The primary � event
backgrounds consist of MS events, for which a representa-
tive comparison using 228Th is shown in Fig. 3. While the
data and MC distributions typically agree within 10%,

Rank Variable Importance
1 Multiplicity 0.28
2 Energy 0.27
3 �sum 0.14
4 Standoff distance 0.12
5 �1 0.10
6 �2 0.09

TABLE I. Importance ranking of the input variables in the
final boosted decision tree. The “importance” of each vari-
able denotes the fraction of decision tree cuts which use that
variable.

the remaining deviations are accounted for as systematic
errors, to be discussed in Sec. VI.

Because 2⌫�� decays to the ground state constitute
one of the largest backgrounds to this search, it is impor-
tant to be able to quantify the difference in the shape of
the discriminator variable distribution for data and MC
for this component. To determine the 2⌫�� spectrum,
each non-2⌫�� component (from MC) is subtracted from
the low-background data, in amounts given by a fit from
a prior analysis [24]. The final subtracted 2⌫�� distri-
bution is then compared to the MC 2⌫�� component in
the discriminator variable (Fig. 3). The results indicate
good SS agreement, with some notable differences in the
MS spectrum, which are accounted for in Sec. VI.

Figure 4.3: Normalized histograms of the discriminator input parameters (from the
top left to the bottom right panel) energy, multiplicity, stando↵ distance,
�1, �2 and �sum used in the EXO-200 analysis. Distributions obtained
from simulated signal events are given in blue and distributions obtained
from background simulations in red. The plot is taken from [14].

The second parameter used by EXO-200 is the multiplicity meaning the number of

spatial separated energy depositions in the detector. One finds that in case of the

EXO detector, background events are mostly single site events with only one energy

deposition whereas the signal of the ⌫��⇤-decay tends towards higher multiplicities.

An analysis of the multiplicity in this work is given in section 4.3.1. The third param-

eter used in the EXO-200 analysis is the so-called stando↵ distance. This parameter

is the minimal distance of an event to the surrounding walls or grids of the detector.

One can expect that background events in most cases are created by external sources

while the excited state decays are distributed homogeneously in the detector. An

analysis of the stando↵ distances in this work can be found in section 4.3.4. The

next three parameters used are called �1, �2 and �sum. These values are the minimal

energy di↵erence of one of the energy depositions in the detector to the energies of

the two emitted �-rays and the sum of both. In this work, modified versions of these

parameters are investigated in section 4.3.6.
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4.3 Discrimination Space

As outlined in the previous section, six input parameters are used for the ML discrim-

inator in the EXO-200 analysis. The combination of the parameters creates a multi-

dimensional discrimination space. In order to evaluate which parameters allow a good

signal-background discrimination in the XENON1T data, measured background and

simulated ⌫��⇤-decay events of 136Xe are analyzed in this section. In total seven

di↵erent parameters will be investigated. Furthermore the simulations are validated

by a comparison of simulated and measured calibration events. The first parameter

of the discrimination space that is analyzed here is the scatter multiplicity.

4.3.1 Multiplicity

The scatter multiplicity is the first parameter used in this work for the signal-background

discrimination. It is defined as the number of S2s in one event. Events with only one

S2, now called single-site events, are more frequent at lower energies since in case

of �-radiation the total crosssection is dominated by the photoelectric e↵ect. Events

with higher multiplicity dominate the energy spectrum for E > 400 keV [39] due to the

increasing crosssections of the Compton e↵ect and pair production. These interaction

mechanisms lead to multiple spatial separated energy depositions and so to multiple

S2s.

These events with more than one S2 can either be created by multiple energy depo-

sitions of the same particle like multiple Compton scatters of a single �-ray, called

multi-scatter, or by energy depositions of more than one particle called multi-site

events. Multi-site events can either be random coincidences or originate from the

same source. While the random coincidence rate is expected to be low due to the low

background of XENON1T, multiple particles are emitted by multi staged decays like

��-decays to excited states followed by subsequent deexitation to the ground state.

During the 2⌫��-decay of 136Xe to the 0+1 excited state of 136Ba two electrons and

two �-particles with energies of 760.5 keV and 818.5 keV are emitted. Accordingly,

one can expect a higher multiplicity for these signal events compared to background

events. Depending on the energy of the emitted �-radiation it is possible that multiple

Compton scatters occur in a multi-site event.

In order to validate that the simulations reproduce the multiplicity found in the TPC,

this parameter is compared for simulated and measured 212Pb and 60Co decays. A

histogram of the multiplicities for 212Pb is shown in figure 4.4. 212Pb can produce

multi-scatter events from the Compton scatter of the 238.6 keV and 415.3 keV � or

multi-site events from separated energy depositions of the � and the electron emitted

from the ��-decay. Most of the 212Pb events are single-site events, but about 25%

of the events contain more than one S2 signal. To evaluate where both histograms
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Figure 4.4: Normalized histograms of the multiplicity for simulated 212Pb decays in
blue and measured calibration data in green. Residuals are given in the
bottom panel of the figure drawn in gray. The multiplicity is evaluated
up to a maximum of ten S2s. The di↵erences can be seen owed to high
statistics in simulated and measured data. Error-bars are drawn in black
but only barely visible due to the high statistics of both datasets.

di↵er, residuals are given as well. The residuals r are calculated as

r =
yMC � yTPCq

�y2MC + �y2TPC

. (4.2)

Here, yMC are the bin entries of the simulated events and yTPC are the bin entries

of the events measured with the TPC. �yMC and �yTPC are the corresponding

uncertainties. The calculated di↵erence is normalized on the quadratic sum of the

symmetric Poisson uncertainties. A negative residual shows that the simulation pro-

duces a lower number of events in a particular bin compared to the expectation from

the calibration data and vice versa for a positive residual.

The mean multiplicity of the simulated 212Pb events is 1.26 with a standard devia-

tion of 0.51. The measured calibration data have a mean multiplicity of 1.29 with

a standard deviation of 0.58 so the MC simulations tends to smaller multiplicities.

Especially, the frequency for events with three and four S2s di↵ers between simula-

tion and measured data. (2.74 ± 0.04) % of the simulated events have a multiplicity

of three S2s whereas (3.90 ± 0.02) % of the measured calibration data show the same

multiplicity. This deviation, showing up as significant residuals, could be caused by
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several e↵ects: One possibility is that the selection of 212Pb events outlined in sec-

tion 3.3.2 fails to remove all events from the calibration data which are not 212Pb

decay events. Since only 212Pb decays are simulated, events from the 220Rn decay

chain or events from the background of XENON1T could pass the selections and con-

tribute over-proportionally to the events with high multiplicity leading to deviations

between the simulated and measured events. Beside the ��-decay of 212Pb one could

find events from ↵-decays of 220Rn, 216Po, 212Bi or 212Po or ��-events from 212Bi or
208Tl in the calibration data. Due to big di↵erences in the charge and light yields of

energy depositions by ↵-particles compared to energy depositions of � or �-particles,

it is unlikely that ↵-events can pass the selections. The ��-decay of 212Bi is shortly

followed by the ↵-decay of 212Po so that it is unlikely that these events can pass the

selections. 208Tl decays in all cases to an excited state of 208Pb[13] and in addition

to the electron, a � with high energies is emitted. When the � deposits the energy

in the fiducial volume this event would be removed by the energy cut and an energy

deposition in the outer detector volume would cause that the event is removed by the

fiducial volume cut. In principle 208Tl decay events could pass all selections if the �

escapes the detector with energy depositions in the fiducial volume and without en-

ergy deposition in the outer detector region. Beside events originating from the 220Rn

decay chain, the measured data also includes events of the XENON1T background

without calibration source. A di↵erent explanation would be the event generation and

reconstruction in the simulations. Several simulations carried out in the development

phase of the quanta generation software (cf. section 3.1.3) showed that the performed

spatial clustering did not a↵ect the multiplicity so that the di↵erences could show up

during the waveform generation or reconstruction with PAX.

A comparison between the multiplicity of background events measured with the TPC

and the simulated signal events of the excited state decay of 136Xe is provided in

figure 4.5. Like expected, most of the simulated events have a high multiplicity

with a mean of 4.4 ± 1.60 separated S2s. The background data tends towards lower

multiplicities with a mean of 2.14± 1.29 S2s. The standard deviation is given here as

uncertainty. Even if there are deviations in percent level for the multiplicity between

simulations and experiment, the di↵erences between signal and background events is

far larger.Thus this parameter should allow a good di↵erentiation between signal and

background events.

To reduce the number of background events while keeping most of the signal, a cut

on the multiplicity is applied for the following analysis: single-site events are cut and

only events with multiplicities greater one are kept. This cut removes 40.0 % of the

background events while keeping 98.4 % of the signal.

In order to evaluate how the multiplicity cut works on calibration data, the multiplicity

of simulated and measured 60Co events is shown for the 1173.2 keV line in figure 4.6

and for the higher energetic 1332.5 keV line in figure A.4 in the appendix. 60Co is used
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Figure 4.5: Normalized histograms for the multiplicity of simulated 136Xe signal events
in blue and measured background events plotted in orange. Background
events tend towards a low multiplicity while the signal events are mostly
multi-site events.

here as calibration source, since the the �-rays provide a su�cient amount of events

with more than one S2. One can see, that like for 212Pb both distributions look similar,

but again the simulation tends towards a slightly lower multiplicity. Simulation of

external sources like 60Co is computationally expensive since most of the simulated

decay do not create a signal in the fiducial volume. Therefore, the statistics for

the 60Co simulations are low compared to the measured data and other simulations

used in this work. Only about 1.1 ⇥ 104 simulated 60Co events of the 1173.2 keV

line are analyzed here whereas the 212Pb simulations contain about 2.2 ⇥ 105 events.

Additionally, the measured 60Co events are not taken from dedicated calibration runs

and a large number of background events can be expected to pass the selections.
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Figure 4.6: Normalized histograms of the multiplicity for simulated 1173.2 keV 60Co
�-rays in the fiducial volume in blue and calibration data in green. A
multiplicity cut is applied to remove single-site events. The simulated
data tends towards a lower number of S2s. The statistics of the simula-
tion are limited by the computational time needed for external �-source
simulations. Error-bars are drawn in black but barely visible. Residuals
are given in the bottom panel of the figure in gray.

4.3.2 Corrected S1 and S2 Areas

The corrected areas of the S1 and the S2 signal seen on the bottom PMT array are used

to calculate the energy deposited in the detector and to calculate other discrimination

space parameters. Thus, a realistic simulation of cS1 and cS2b is necessary for the

presented analysis.

The MC simulations are compared to measured data for the selected mono energetic

xenon �-lines, the continuous spectrum of 212Pb and two �-lines from 60Co. The

sources and event selections used are outlined in section 3.3. Normalized histograms

were calculated for simulated and measured data using the same range and number

of bins together with projections on cS2b and cS1. To directly compare the two-

dimensional data in one plot, contour lines are drawn in the same plot for simulated

and measured data. To reduce binning e↵ects from varying number of entries in bins

close to each other, the data used for the contour lines is smoothed with a Gaussian

filter. This procedure keeps the overall shape of the data while reducing complexity

of the contour lines allowing an easier comparison. The projections are however

calculated from unfiltered histograms. Figure A.2 shows how the filtering simplifies

the contours by comparing a filtered and unfiltered histogram of the same data.
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Figure 4.7: Contour plot for cS1 and cS2b of 131mXe events with the simulated data
in blue and calibration data in green. Projections on cS1 and cS2b are
given as well. The contour lines are calculated from normalized histograms
smoothed with a Gaussian filter while the filter is not applied to the pro-
jections. A mono-energetic source like 131mXe shows up as a tilted two-
dimensional Gaussian in the cS1 vs. cS2b space and as one dimensional
Gaussian peaks in the projections.Thus, the position and width can be
compared easier in contrast to continuous sources like 212Pb.

The lowest mono-energetic source with 163.9 keV in the comparison, 131mXe, is shown

in figure 4.7. The plot for 129mXe can be found in figure A.3 in the appendix. The

positions of the cS1 mean agrees within 0.2 % and the the mean cS2b position within

2.7 %. The width of the simulated data is about 11 % larger than the measured data.

As described in section 3.1.3, the quanta fluctuations were increased manually to best

match the data but a compromise had to be found in order to match all benchmark

sources.

The comparison for the continuous energy 212Pb decays is shown in figure 4.8. The

overall shapes of the projected data look similar, but mean cS1 of the simulated 212Pb

events is 2.8 % larger than the measured cS1 mean. The mean of the simulated cS2b

signal is 7.9 % larger than the measured mean. This discrepancy both in the cS1 and

cS2b leads to an simulated energy spectrum shifted to higher values compared to the

measured calibration data.

As described in the previous chapter, a multiplicity cut is used in the analysis of the

signal and the background events. Since the xenon lines generally produce single-site

events due to the low energy of the emitted conversion electrons, a post-cut comparison
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Figure 4.8: Contour plot for cS1 and cS2b of 212Pb events. The simulated data is given
in blue and calibration data in green together with projections on cS1 and
cS2b. The contours, obtained from normalized histograms were smoothed
with a Gaussian filter. No multiplicity cut is applied. Contour lines are
drawn for multiple fractions of the bin with the largest normalized count
rate for each histogram.

is only performed for 212Pb and 60Co. The 212Pb events after the multiplicity cut are

shown in figure 4.9.

After the cut, the mean of the simulated cS1 signals is 2.0 % larger than the measured

values and the mean of the simulated cS2b signals is now 2.8 % smaller than the

measured cS2b signals in the TPC. With this better agreement compared to the uncut

data, one can expect a good agreement of the reconstructed energies for simulated

and measured 212Pb events.

The present discrepancy when including the single-site events could possibly be ex-

plained by an imperfect event selection like outlined in the previous section and the

emission model used for the quanta generation not ready for detector-specific cluster-

ing and microphysics at high energy.

The highest energy data in this comparison come from the two �-lines of 60Co at

1173.2 keV and 1332.5 keV. As outlined before, �-rays from 60Co produce mostly

multi scatter events and so a comparison for events with applied multiplicity cut is

shown in figure 4.10. This data contains both �-lines in the simulated and measured

data as well as background events passing the selections for the measured TPC data.

One finds that the simulated 60Co have an approximately 9.6 % larger mean cS1 area

and an approximately 5.9 % smaller cS2b area compared to the measured calibration



4 Development of a Machine Learning Discriminator 53

Figure 4.9: Contour plot for cS1 and cS2b of 212Pb events with applied multiplicity
cut for simulated data in blue and calibration data in green together with
projections on cS1 and cS2b . The Contours are obtained from normalized
histograms smoothed with a Gaussian filter. Contour lines are drawn for
multiple fractions of the bin with the largest normalized count rate for
each histogram.

data. This result is compatible with the deviations between the NEST model for

�-radiation and the XENON1T data shown in figure 3.6. For future analysis the

emission models need further tuning for higher energy to match the observed signals

in the TPC with the MC simulations.
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Figure 4.10: Contour plot for cS1 and cS2b of 60Co events with applied multiplicity cut
for simulated data in blue and calibration data in green. The Contours
are obtained from normalized histograms smoothed with a Gaussian Fil-
ter. Projections on cS1 and cS2b are given as well. The plot show both
the 1173.2 keV and 1332.5 keV �-lines. Contour lines are drawn for mul-
tiple fractions of the bin with the largest normalized count rate for each
histogram.

4.3.3 Energy

The second parameter that is used for the signal-background discrimination is the

total energy deposition of a particle interaction. The energy can be reconstructed

from cS1 and cS2b using

E = w ·

✓
cS1

g1(z)
+

cS2b
g2(z)

◆
(4.3)

with a z-dependent photon detection e�ciency g1, charge amplification g2 and w = 13.8 eV [23],

the mean energy needed to produce a charge or light quanta. g1 and g2 are taken

from [39] and are valid for single and multi-site events. The usage of the cS2b reduces

saturation e↵ects and ensures a position-independent behavior of the PMT array due

to a more uniform S2 light-yield. In case of multi-site events with more than one S2,

the sum of the corrected S2s is used.

To validate if the energy reconstructed from the simulated events is compatible with

the energies found in the measured data, the simulations are compared to the cal-

ibration sources introduced in section 3.3. Both xenon lines emit mono-energetic

�-radiation, so the energy distribution has the shape of a Gaussian peak and one can

directly compare the mean and width of the MC simulation with the measured cali-

bration data. To achieve the best results, a fit with a Gaussian function is performed
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Figure 4.11: Reconstructed energy spectra of simulated (blue) and measured (green)
129mXe 236.1 keV �-line in the energy range from 210 keV to 260 keV.
Error-bars are not drawn to reduce the complexity of the plot and the
residuals of the fit are given in the bottom panel of the figure. Only small
relative uncertainties are present for each bin due to the high statistics of
both datasets. To determine the mean and the width a Gaussian is fitted
to both spectra and a linear term is added to the calibration data fit to
account for the background. The fit is performed on the histograms and
afterwards normalized to account for di↵erent numbers of events for an
easier comparison. The fit of the calibration data is performed over the
whole energy range given in the plot and the fit of the simulated data is
restricted to the central part of the Gaussian to ensure a su�cient number
of entries in each bin and allow the usage of symmetric uncertainties.

both for the simulated and measured data for 129mXe shown in figure 4.11 and for
131mXe in figure A.5 in the appendix. The fits are carried out as �2 minimization (cf.

section 3.1.1).To account for background events present in the measured data, a con-

stant term is added to the 131mXe TPC data fit and a linear term to the 129mXe TPC

data fit. The mean positions of the Gaussian fits agree within 0.6 keV corresponding

to deviations below 1 %. The widths agree within 0.9 keV.

The energy distributions of 212Pb cannot be compared in terms of mean and standard

deviations of a Gaussian peak since it is not a mono-energetic source, but a ��-decay

going to di↵erent states of 212Bi. Histograms of the reconstructed energy for the

simulation and the selected TPC calibration data are shown in figure 4.12.

Both spectra consist of a lower energy part (E < 238.6 keV) which is caused by the ��-

decay to the ground state of 212Bi. The decay with the highest branching ratio shows

up as ��-spectrum starting at 238.6 keV due to the energy depositions by the emitted
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�-radiation. The third channel includes the emission of an 415.3 keV �-ray and can

be seen as “bump” at the corresponding energy. These features of the spectrum can

be found in the measured as well as in the simulated data. One can see that the

Figure 4.12: Comparison of the reconstructed normalized energy spectra for simulated
and measured 212Pb decays. The measured data is shown in green and
the simulation in blue. To allow an inspection of the di↵erences, residuals
calculated with equation (4.2) are given as well. Error-bars are not drawn
to reduce the complexity of the plot. Only small relative uncertainties
are present for each bin due to the high statistics of both datasets.

measured 212Pb data show a peak at about 160 keV not present in the simulations.

The residuals show a negative peak at the same energy. This peak can be attributed

to the 131mXe �-line. Since this peak is visible in the measured data it is reasonable

to assume that the 236.4 keV peak of 129mXe is present. The corresponding energy is

close to the energy of the �-ray emitted in decay channel with the highest branching

ratio and one cannot see a clearly separated peak. Nevertheless, the spectra show

the biggest deviation around this sharp rise in the counts visible as negative peak in

the residuals. Together with smaller deviations around 415 keV, the simulated energy

spectrum is shifted towards higher energies compared to the measured data. This

e↵ect is already expected from the di↵erences in cS1 and cS2b in section 4.3.2.

The 212Pb energy spectrum after the multiplicity cut is shown in figure 4.13. Most

of the events with energies below about 240 keV are removed both for simulated and

measured data. The negative residuals in this energy region indicate that background

events in the measured data can pass the cut whereas most of the simulated events

in this energy region are removed. At around 240 keV, the residuals show a peak-like
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Figure 4.13: Comparison of the reconstructed normalized energy spectra after the
multiplicity cut for simulated (blue) and measured (green) 212Pb decays.
Most of the events below about 240 keV are removed and only events
going to excited states of 212Bi remain. Error-bars are not drawn to
reduce the complexity of the plot. Only small relative uncertainties are
present for each bin due to the high statistics of both datasets.

structure. This lack of simulated events could be caused by 129mXe events passing the

cuts. For higher energies only 212Pb events remain where a � is emitted in addition to

the �-electron. The simulated 212Pb spectrum decreases smoothly to zero counts at

around 570 keV, the Q-value of the decay. The measured data show a not vanishing

count rate at this energy which shows up as negative residuals and indicate that a

population of background events is passing all data selection cuts.

Figure 4.14 shows the energy spectrum of the XENON1T background data and ⌫��⇤-

decay simulations of 136Xe in the range from 0 to 3 MeV. The simulations show a

double ��-spectrum starting at about 1.58 MeV which corresponds to the sum of the

energies of the two emitted �-rays. This population ranging from about 1.58 MeV to

about 2.5 MeV contains signals from all emitted particles (except the neutrinos). A

minor component of the spectrum can be found below 1.58 MeV also in the shape of

a double �-spectrum. These are events where one of the two �-rays can escape the

TPC without an energy deposition in the outer part of the detector that would lead

to a veto of this event by the fiducial volume cut (cf. section 3.2.2). The background

spectrum of the TPC consists of a continuum with several mono energetic peaks. The

continuous contribution arises from the 2⌫��-decay of 136Xe to the ground state of
136Ba and the Compton spectrum of high energy �-rays from detector materials. An
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Figure 4.14: Normalized energy spectra of the simulated ⌫��⇤-decays of 136Xe shown
in blue and the measured background spectrum of SR 1 of XENON1T
shown in orange in the energy range from 0 to 3 MeV.

energy cut is applied to the data following the multiplicity cut outlined before in order

to increase the signal to background ratio. Only events with 1.5 MeV < E < 2.5 MeV

are used for the later analysis and events outside this range are cut. In combination

with the multiplicity cut, 89.36 % of the background data is removed while 96.35 %

of the signal events are kept. The resulting energy spectrum after cuts is shown in

figure 4.15. The background is now dominated by two mono-energetic peaks from
214Bi at 1.764 MeV and 2.204 MeV [13].

In this section, the total reconstructed energy of an event was validated between

simulations and calibration data for 212Pb and two xenon �-lines. Afterwards, the

energy spectrum of simulated signal events was compared to the measured background

events. The validation of the energy with the sources used has some limitations. The

energies of all sources is smaller than the energies deposited by the excited state

decay of 136Xe. Additionally, the di↵erent number and types of emitted particles has

to be taken into account. During the decay of 212Pb, an electron and a �-ray are

emitted whereas two electrons and two �-rays are emitted in signal decay. Since it is

comparably easy to validate simulations of mono-energetic �-sources, also crosschecks

with energy depositions by electrons have to be done. A source of mono-energetic

electrons is not available so electrons from a �-decay are used in this work. 212Pb was

chosen as calibration source since it is the only available source with high statistics

and a low background contamination and an electron �-coincidence.
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Figure 4.15: Normalized energy spectra of the simulated ⌫��⇤-decays of 136Xe shown
in blue and the measured SR 1 background spectrum of the TPC shown
in orange after multiplicity and energy cut in the range from 1.5 MeV to
3 MeV.

4.3.4 Stando↵ Distance

The minimal stando↵ distance is the minimal distance of an event to the TPC bound-

aries which are defined by the PTFE walls, the gate mesh on the top and the cathode

mesh on the bottom of the detector. The minimal stando↵ distance on an event is

calculated using

min. stando↵ distance = min(di) (4.4)

where di is the closest distance of energy deposition i to the TPC boundaries

di = min(|ri � rTPC|, |zi � zGate|, |zi � zCathode|). (4.5)

Here ri is the radial coordinate of the energy deposition, rTPC is the radius of the

TPC, zi is the depth of the interaction, zGate the position of the gate mesh and zCathode

the position of the cathode.

This parameter should allow a di↵erentiation between homogeneously distributed and

external sources. Background events are mostly �-rays from nuclear decays in the

TPC materials that scatter inside the detector ant thus external sources. These

events are less frequent in the innermost part of the detector due to xenon’s self-

shielding. 136Xe is an internal source, so the events are distributed homogeneously in

the detector.
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Figure 4.16: The x-y distribution of 212Pb events in the detector for simulated events
on the left side and measured data on the right side of the plot. The
approximate dimensions of the TPC are shown as the solid red line and
the fiducial volume as the dashed red line. It is not possible to measure
events with a true position outside of the detector but a small fraction
of events is reconstructed here. This is caused by the imperfect position
reconstruction algorithm or the applied three dimensional field-distortion
correction.

In order to validate the simulations, first simulated and measured 212Pb events will

be compared. 212Pb is an internal source and should show a similar stando↵ distance

distribution as the ⌫��⇤-decay of 136Xe. Figure 4.16 shows the x-y distribution of

simulated and measured 212Pb events. The corresponding z-r2 distribution is given

in figure 4.17. The TPC boundaries are shown as the solid red lines and the fiducial

volume is given as the dashed red lines. Under ideal conditions the events should

be homogeneously distributed in the whole TPC volume since 212Pb is part of the
220Rn decay chain which was injected as an internal calibration source and should

mix homogeneously within the detector.

One can see that the calibration data shows a hot-spot at the top center of the x-y

distribution and a slightly increased number of events on the opposite side of the

TPC. These features are be caused by the 220Rn inlet to the TPC. It is not possible

to measure events with a true position outside of the detector but a small fraction of

events is reconstructed here. This is caused by the imperfect position reconstruction

algorithm or the applied three dimensional field-distortion correction.
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Figure 4.17: z-r2 distribution of 212Pb events in the detector for simulated events on
the left side and measured data on the right side of the plot. The TPC
walls are indicated as vertical solid red line and the cathode and gate
mesh as solid horizontal lines. The fiducial volume is shown with dashed
red lines.

In the z-r2 distribution, an increased number of events in the measured data can be

found at around r2 = 2000 cm2 and z < �90 cm. This in-homogeneity leaks, if at all

present, only slightly into the fiducial volume where the measured event distribution

looks homogeneous like expected from the source characteristics. The MC simulations

do not show the hot-spot seen in the TPC, since the decays were simulated homo-

geneously distributed in the liquid xenon volume. A peak-like structure is present

in the x-y projection which shows up as wave pattern in the z-r2 space. This e↵ect

is most likely caused by the process of light distribution in the waveform simulator

using PMT pattern maps. Since the e↵ect is small, this should not cause problems in

this analysis but has to be checked for the upcoming XENONnT simulations.

A comparison of the resulting stando↵ distances for 212Pb calibration data and sim-

ulations is shown in figure 4.18. The shape of the distributions is defined by the

fiducial volume cut used. Events with a low stando↵ distance are located more to-

wards the outside of the TPC but still located in the 1T fiducial volume. The decrease

in counts for distances above about 15 cm is purely caused by the decreasing volume

with increasing distance to the TPC walls. Overall, the shapes of both distributions

agree, but a oscillation-pattern is visible in the residuals. The largest deviations can
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Figure 4.18: Normalized histograms of the minimal stando↵ distance for simulated
212Pb events shown in blue and measured data in green. Error-bars are
not drawn to reduce the complexity of the plot and residuals are given
in the bottom panel. Only small relative uncertainties are present for
each bin due to the high statistics of both datasets. The shape of the
distribution is defined by the fiducial volume cut, the detector geometry
and the distribution of the events in the TPC. 212Pb is an internal source
and should show a similar stando↵ distance distribution as the excited
state decay of 136Xe.

be found between 10 and 15 cm. The observed di↵erences could be caused by the

described peak-like structure in the x-y projection.

The simulated and measured 212Pb data show that the simulations are able to ac-

curately reproduce the minimal stando↵ distance distribution in the TPC. In order

to validate if the distributions of external sources are also reproduces accurately, the

minimal stando↵ distances of simulated and measured 60Co events will be compared.

Figure figure 4.19 shows normalized histograms of simulated and measured events. As

described earlier 60Co decays mostly in the cryostat of the detector and the events se-

lected are caused by �-rays reaching the fiducial volume. This external source should

show a di↵erent stando↵ distance distribution compared to the internal sources and

should be similar to the distribution of the background events. One can see that

the overall shape of the distributions is quite similar but di↵erences are present at

lower stando↵ distances. This di↵erence is most likely caused by a slightly di↵erent z

distribution of the events shown in figure A.6 in the appendix together with the x-y

distribution in figure A.7.
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Figure 4.19: Comparison of the stando↵ distance distribution for simulated decays of
60Co in blue and measured events in green. Error-bars are not drawn
to reduce the complexity of the plot. 60Co is an external source of �-
radiation leading to an accumulation of events at smaller stando↵ dis-
tances. The overall shape of the distributions shown here is similar to
the shape of the background events shown in figure 4.20 confirming that
most background events in the dateset are created by external sources.

The di↵erences in z can be caused by the simulation settings used. For this analysis

only 60Co decays in the cryostat of the detector were simulated. Even though, this is

the main source of 60Co decays, one can also expect contributions from other detector

components like the PMTs which are located at the top and bottom of the detector.

Figure 4.20 contrasts the distribution of the stando↵ distance for the background

events from the TPC with the distances of the signal simulations of the 136Xe decays.

One can see that the stando↵ distance of the simulated signal look similar to the

distribution found for 212Pb since both sources are internal. The simulated signal

events have a mean minimal stando↵ distance of 17.72 cm and a standard deviation

of 7.00 cm.In contrast to the signal events ,background events tend towards smaller

stando↵ distances with a mean of 14.03 cm and a standard deviation of 5.02 cm like it

is expected for sources from the detector materials and shown for the external 60Co

source.

The analysis of the minimal stando↵ distance showed, that obtained distributions for

signal events of the excited 135Xe decay and 212Pb calibration data are similar. This

similarity is caused by the internal nature of both sources. The stando↵ distance

distribution of background events is similar to the distributions observed for the 60Co
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Figure 4.20: Comparison of the stando↵ distance distribution for simulated signal
events in blue and measured background data in orange. The multiplicity
and energy cuts outlined in section 4.3.1 and section 4.3.3 are applied to
background and signal data. The shape of the signal distribution is
similar to the distributions of measured and simulated 212Pb events due
to the similar internal origin of the events. The background events tend
more towards smaller stando↵ distances due to the external nature of the
most background sources.

source, confirming that most of the background events are created by external sources.

The observed di↵erences between signal and background events make the minimal

stando↵ distance a good discrimination space parameter.

4.3.5 Max Distance

The fourth parameter that is used for the discriminator is the maximum distance

between the positions of two energy depositions in an event defined as

�max = max
i 6=j

(|~xi � ~xj |) (4.6)

with ~xi being the three dimensional position vector of an interaction i in a single event.

This parameter was not used in the EXO-200 analysis but investigations during this

work suggest that it could improve the discriminator. The �max distributions for

background and signal events di↵er due to the di↵erent source types and energies of

the involved particles. Signal events contain two �-rays of known energy preferred
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emitted back to back or in the same direction whereas background events lack such

unique signatures.

Figure 4.21: Normalized �max histograms for simulated (blue) and measured (green)
212Pb events. Error-bars are not drawn to reduce the complexity of
the plot and the residuals are given in the bottom panel of the figure.
Only small relative uncertainties are present for each bin due to the high
statistics of both datasets. Small di↵erences at low �max show deviations
in the merging of S2 signals between measured and simulated data.

In order to validate the MC simulations, �max can be compared for 212Pb and 60Co

calibration data. In addition to the source selection and data quality cuts outlined

in section 3.3 a multiplicity cut is applied. Thus, only events with at least two S2s

are investigated. The �max distributions for 212Pb events are given in figure 4.21

and the distributions for 60Co events in figure 4.22. One can see that the normalized

histograms for both calibration sources rise quickly with increasing �max peaking at

around 2 cm. The distributions show a longer tail towards larger �max. Except for

minor di↵erences in the region �max < 2 cm simulated and measured distributions

agree.

Since only multi-site and multi-scatter events are used for this analysis, one can

assume that the steep increase at low �max shows the spatial separation capability

for consecutive S2s of the detector and the reconstruction algorithms used in PAX. For

small distances between energy depositions in the TPC it is more likely that signals

get merged and the events are discarded by the multiplicity cut. The tail towards

higher �max di↵ers for 212Pb and 60Co whereas the later one drops less steeply. This

di↵erence is caused by the di↵erent involved particles and energies. 60Co events are
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Figure 4.22: Normalized �max histograms for simulated (blue) and measured (green)
60Co events. Error-bars are not drawn to reduce the complexity of the
plot and the residuals are given in the bottom panel of the plot. The
spectrum decreases exponentially after a steep initial increase caused by
the spatial S2 separation in the detector.

multi-scatter events of high energy �-particles (1173.2 keV and 1332.5 keV) whereas
212Pb events are multi-site events containing one lower energetic � (238.6 keV or

415.3 keV) and a ��-electron. In case of events with multiplicity equal two, �max

for 212Pb is basically the distance between the � and � interaction position. For
60Co, �max is always the distance between two Compton scatters. In both cases, the

distribution of �max at higher values is determined by the interaction cross section of

photons in liquid xenon. As the � cross-section increases with decreasing energy[25],

one can explain why the higher energetic 60Co events also reach larger �max
2.

The 136Xe excited state decay signal consist of two �-particles with fixed energies

and two electrons following a 2⌫�� energy distribution. In this case, �max is most

likely the distance between two interaction positions of the two involved �-rays since

they are preferably emitted back to back. The distributions of �max for signal and

background events are given in figure 4.23. One can see that the background spectrum

looks similar to the spectra observed for the calibration sources peaking at low �max

with a tail towards larger �max. The �max distribution of the signal events on the

other hand show an slower increase of counts peaking at around 8 cm followed also

by a tail towards larger �max. Here, the S2 separation plays only a minor role since

2By fitting the falling edge of the distribution one could determine an attenuation averaged over the
energy of the �-rays.
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Figure 4.23: Normalized �max histograms for simulated signal events in blue and mea-
sured background events in orange. The ⌫��⇤-decay events show larger
�max due to the back to back emission of the �-rays and allow a separa-
tion of signal and background.

the probability of two interactions clearly separated in space is quite high due to the

back to back emission of the �-rays.
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4.3.6 �E�,1, �E�,2 and �E�,sum

The next parameters that could be used for the discriminator are modified versions

of the three �-parameters used in the EXO-200 analysis. To clearly distinguish the

modified versions from the definitions in the EXO-200 analysis, the parameters are

called �E�,1, �E�,2 and �E�,sum here and are defined as:

�E�,i = sgn(Ej � ✏i) · min(|Ej � ✏i|), for j 2 S, (4.7)

where S are the set of S2s in one event, Ej the deposited energy of S2j and ✏1 = 760.5 keV,

✏2 = 818.5 keV and ✏sum = ✏1 + ✏2. sgn(x) is the sign function defined as

sgn(x) =

8
>>><

>>>:

� 1, for x < 0,

0, for x = 0,

+ 1, for x > 0.

(4.8)

In contrast to the �-parameters in the EXO analysis, �E�,i are energy di↵erences

which can also go to negative values. If one of the energy depositions in an event

is close to the energy of the emitted �-rays in the excited 2⌫��-decay of 136Xe, the

corresponding value should be close to zero. As this is very unlikely for background

events this variable should be a strong discriminator.

Figure 4.24: Comparison of �E�,sum for simulated signal events in blue and measured
background events in orange. The signal data show a peak-like structure
at around �1000 keV whereas the background spectrum spreads over a
broad energy range.
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Figure 4.24 shows �E�,sum histograms of simulated signal and measured background

events. The corresponding plots for �E�,1 is given in figure 4.25 and for �E�,2 in

figure A.8 in the appendix. The signal distribution for �E�,sum has a peak-like struc-

ture at around �E�,sum = �1000 keV whereas the background distributions spreads

from about �1000 keV to 1000 keV. The signal spectra shows that it is highly un-

likely for the two emitted �-rays of the signal to be merged into one single S2 signal.

�E�,1 for simulated signal events shows a peak like structure at around �200 keV

whereas the background distribution spreads in a double-peak structure over a broad

energy range. Due to the big di↵erences of the signal and background events in these

parameters a good separation should be possible using the �E�,i parameter for the

machine learning discriminator.

Figure 4.25: Comparison of �E�,1 for simulated signal events in blue and measured
background events in orange. The signal data show a peak-like struc-
ture at around �200 keV whereas the background spectrum spreads in a
double-peak structure over a broad energy range.

In contrast to the energy reconstruction used for the total event energy, a reconstruc-

tion based only on the cS2b,i has to be used here since the S1 signal is merged for all

energy depositions. It is developed for this analysis with the modified NEST model for

�-particles used for the MC simulations outlined in section 3.1. The modified model

is applied here, since the energy depositions of interest are caused by �-interactions.

The charge yield is calculated for the energy range from 3 keV to 3MeV in 2056

evenly spaced steps in logarithmic space and scaled to the corresponding cS2b value

by multiplication with the charge amplification factor g2. For simplicity, a mean value

for g2 is chosen instead of the z-dependent charge amplification used in section 4.3.3.
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The scaled energy dependent charge yields are now step wise linearly interpolated

using the SciPy package [58]. This interpolation allows the approximate energy re-

construction of a single interaction in one event. If one would use a z-dependent g2,

a two dimensional interpolation would be necessary. One has to keep in mind that

the energy resolution is worse compared to the usage of the light and charge signal

since the anti-correlation between both detection channels is not exploited. The cS2b

based energy reconstruction is plotted in figure 4.26.

Figure 4.26: Energy plotted against the cS2b area. The NEST based energy recon-
struction interpolation is plotted in black and XENON1T data in orange.
The uncertainties of the measured data is drawn but to small to see. The
presented interpolation can be used to reconstruct the energy of an in-
teraction based only on the S2 signal. The uncertainty of the energy
reconstruction is calculated based on the systematical uncertainty of g2
and drawn in green.

In order to evaluate how the simulations reproduce the measured �E�,i values, 60Co

and 212Pb events with multiplicity larger one are used as benchmark. A histogram

of the �E�,1 values for 212Pb can be found in figure 4.27. �E�,1 ranges from about

�650 keV to �300 keV. The overall shape of the distributions looks similar but the

calibration data tends towards higher values of �E�,1 compared to the simulated data.

Since only the cS2b values are used to calculate these parameters here, it is necessary

to accurately reproduce the S2 size with the MC simulations. Other parameters, like

the total energy of the events can exploit the S1-S2 anti-correlation to get accurate

results even if cS2b and cS1 di↵er slightly between simulations and measurements.

Thus, the deviations cancel each other out and one obtains the correct energy.
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Figure 4.27: Normalized histograms of �E�,1 for simulated 212Pb events in blue and
calibration data in green. Error-bars are not drawn to reduce the com-
plexity of the plot and the residuals are given in the bottom panel of
the figure. Only small relative uncertainties are present for each bin due
to the high statistics of both datasets. The simulation tends towards
smaller �E�,1 values compared to the calibration data.

Since the di↵erences of ✏1 and ✏2 are small, the spectra of �E�,1 and �E�,2 are similar

but shifted in energy. The histograms of �E�,2 and �E�,sum for 212Pb events are given

in the appendix in figure A.9 and figure A.10.

Histograms of the �E�,sum values for the 1173.2 keV line of 60Co are shown in fig-

ure 4.28. The simulated data are Gaussian shaped and centered at around �600 keV,

whereas the measured data resembles a double peak with center positions at about

�600 keV and �850 keV. The distributions of the 1332.5 keV line look similar to the

data presented here and are given in figure A.11 in the appendix.

Deviations in �E�,i are expected for 60Co since it was found in section 4.3.2 that cS1

and cS2b di↵er between simulations and TPC data due to di↵erences in charge and

light yield predictions between the NEST models and XENON1T data.

Small di↵erences in �E�,i were observed for 212Pb events and even larger deviations

for the 60Co data. In order to avoid the training of a ML discriminator on wrongly

reproduced parameters, �E�,i are not used in this analysis even though they could

provide significant improvements in the classification accuracy when simulated cor-

rectly. More work has to be put into the emission models to better match cS2b for

higher energies with the simulations.
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Figure 4.28: Normalized histograms of �E�,1 for simulated 1173.2 keV 60Co events in
blue and measured events in green. Error-bars are not drawn to reduce
the complexity of the plot and the residuals are given in the bottom
panel of the figure. The simulated data are Gaussian shaped whereas
the measured data show a double peak structure. Deviations in �E�,1

are caused by di↵erences between the NEST prediction of the charge
yield and the observed yields in XENON1T data.

4.4 Multi Layer Perceptron

In the last section several discrimination space parameters were analyzed with respect

to the separation capability between signal and background events and validated us-

ing calibration data. In this section a multi-layer perceptron (MLP) is developed

for the binary classification of signal and background events based on the four in-

put parameter multiplicity, energy, minimal stando↵ distance and �max. The model

will be trained and validated with the corresponding datasets outlined in section 2.5.

The MLP It is implemented with the Keras [59] python library working with Tensor-

Flow [53] as its backend3.

The simulated signal and measured background events have to be preprocessed to

increase the performance of the MLP. The mean of each input parameter is subtracted

from the values of that parameter and the values are scaled such that the variance

is unity. Each simulated signal event gets the target label yi = 1 and each measured

background event is assigned yi = 0. The aim of the ML model is then to reproduce

3Keras provides high level building blocks and the low level tensor operations are handled by the
so-called backend.
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these labels. The loss-function used for such binary classifications is the mean binary

cross-entropy or logistic regression loss [32]. It is defined as

L̃ln(y, p) =
1

N

NX

1

Lln(yi, pi) (4.9)

with

Lln(yi, pi) = �(yi ln(pi) + (1 � yi) ln(1 � pi)). (4.10)

In case of a sigmoid activation function of the output layer such as

'(q) =
1

1 + exp(�q)
(4.11)

the output of the model pi is in the range from zero to one and represents the proba-

bility of an event to be a signal event.

Di↵erent model architectures, i.e. the number of layers and nodes in each layer, were

trained on the training dataset and then tested on the validation data. The layers of

the best-performing model are listed in table 4.1. All layers are dense layers so each

neuron is connected to all neurons in the following layer. Since four input parameters

are used, the first hidden layer has 640 trainable parameters in total. These are 4 ·128

values in the weight matrix and additional 128 values for the bias of each node. The

number of parameters for the following hidden layers can be calculated in a similar

fashion. Following the first hidden dense layer a dropout layer is used. Dropout [60]

is a regularization technique that reduces overfitting by randomly setting a fraction

of a layer’s input connection weights to zero. In this work, a dropout ratio of 0.3 is

used. ReLU activation functions are used for the hidden layers and a sigmoid function

Table 4.1: Layer structure of the MLP used in this work. In total 21313 trainable
parameters are used.

Layer Type Neurons Activation Trainable Parameters
Hidden Layer Dense 128 ReLU 640
Hidden Layer Dropout 128 0
Hidden Layer Dense 128 ReLU 16512
Hidden Layer Dropout 128 0
Hidden Layer Dense 32 ReLU 4128
Output Layer Dense 1 Sigmoid 33

for the output layer. The performance of the model on the training and validation

data is monitored during the training epochs. In a single epoch the model has seen

all available events of the training data. The weight matrices and bias vectors are

updated during each epoch after every 128 events, the so-called batch size. The mean

logistic regression loss (cf. equation (4.9)) and accuracy of the prediction are plotted

against the epoch number in figure 4.29. The accuracy is defined as the number

of correctly classified events divided by the total number of events. In this case an
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event is classified as signal if p � 0.5 and as background if p < 0.5 for demonstration

purposes.

Figure 4.29: Training history of the best performing MLP in this analysis. The train-
ing accuracy in dependence of the training epoch is given in the top panel
and the epoch dependent loss in the bottom panel. Both performance
scores are evaluated on the training and validation data. The dropout is
only turned on during the training and not when applying the model to
other data. Thus, the achieved accuracy and loss are worse on the train-
ing data compared to the validation data. The learning rate is decreased
multiple times indicated as thin dashed lines. The best performing model
is saved after 99 epochs.

One finds that both the training and validation accuracy increase steeply in the first

few epochs and that the loss decreases in a similar fashion. At around 7 epochs the

training slows down. The dropout is only turned on during the training and not when

applying the model to other data. Thus, the achieved accuracy and loss are worse on

the training data compared to the validation data. Since the performance of the model

on the validation data is monitored in each epoch, several actions can be performed

during the training. These actions are implemented in so-called callbacks. During the

presented training three callbacks are used.

• The first one saves the model after each epoch if the validation accuracy in-

creased with respect to the best iteration so far.

• The second callback decreases the learning rate by a factor of 0.5 when the val-

idation accuracy stays constant over 10 epochs. The learning rate corresponds

to the step size of the optimizer controlling the size of the parameter update.

This e↵ect benefits the training process of the model close to the loss minimum.
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As shown in figure 4.29 the accuracy could be increased by the first three re-

ductions of the learning rate. The last reduction did not increase the accuracy

significantly.

• The third and last callback stops the training when the validation accuracy

stagnates over 40 epochs. This callback is triggered after 125 epochs.

The best-performing weight combination during the training with respect to the ac-

curacy is saved after 79 epochs and is used for the following analysis.

4.5 Boosted Decision Tree

In the previous section a MLP was developed to classify signal and background events.

In this section a di↵erent ML technique will be used for the same task: a boosted

decision tree (BDT). Again the training and validation datasets outlined in section 2.5

will be used.

The BDT is implemented with the XGBoost [57] python library. As described in sec-

tion 4.1.4, weak learners are added iteratively to the model improving the model’s

performance. A weak learner in the XGBoost library is called estimator. It is found

that the default hyper-parameter already yield a good signal and background clas-

sification accuracy and only minor adjustments had to be made. As a reminder,

hyper-parameters define a ML model and are not changed during the training pro-

cess, but by human input. An overview of the hyper-parameters and their default

values can be found in [61].

An upper limit of 2500 estimators is used and the training is stopped when the

validation loss stays constant over 150 added estimators and the best performing

model is used for the further analysis. The learning rate is set to 0.05 with respect

to the default parameter of 0.3. This increases the number of needed estimators

and computational costs but could also increase the performance of the model. The

maximal dept of each used decision tree (i.e. the estimators) is reduced to 4 from the

default value of 6. It limits the number of binary splits a decision tree can perform. A

larger maximal dept results in a more complex model which can lead to overfitting.

The loss function used here is the logistic regression loss that is also used for the

MLP. The training history of the BDT is given in figure 4.30. Just like for the MLP,

the accuracy increases quickly when adding the first estimators and the increase slows

down at about 80 estimators. At about 240 estimators the training accuracy continues

to increase while the validation accuracy starts to stagnate. This indicates that the

generalization capability of the model is almost reached and overfitting can occur if

more and more estimators are added. The best performing model with respect to the

classification accuracy includes 497 estimators.
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Figure 4.30: Training history of the BDT. The x-axis gives the number of estimators
added to the model during the training. The accuracy is given in the
top panel and the logistic regression loss in the bottom panel of the plot.
Both performance metrics are evaluated for the training and validation
data during. The accuracy increases for both datasets and stagnates for
the validation data at about 240 estimators. The best iteration including
497 estimators is indicated as dashed line.

4.6 Performance Comparison

Two di↵erent ML discriminators were trained in the last two sections. In this sec-

tion the performance of both models, the MLP and the BDT will be tested on the

evaluation dataset (cf. section 2.5) and on modified calibration data.

4.6.1 Evaluation Data

The evaluation dataset has a similar signal-background composition as the training

and validation data but is still unseen by the two discriminators. A common per-

formance measure for an ML model trained as binary discriminator is the confusion

matrix given in figure 4.31a for the MLP and in figure 4.31b for the BDT. In this

case, all events with an estimated signal probability of p larger or equal the classifica-

tion threshold of pT = 0.5 get the predicted class signal and events with with signal

probabilities smaller than pT get the predicted class background.

The confusion matrix lists the known true classes against the predicted classes. The

diagonal entries are the numbers of correctly classified signal and background events

and the o↵-diagonal values are the numbers of misclassified signal and background
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(a) Confusion Matrix for the MLP (b) Confusion Matrix for the BDT

Figure 4.31: Confusion matrices for the MLP and the BDT. The previously known
true class is given in the rows and the predicted classes in the columns.
The binary classification is set to a classification threshold of pT = 0.5.

events. Since only a handful of signal events are expected in the whole XENON1T

data, it is important to keep the number of wrongly classified signal events low. On

the other hand, a low rate of wrongly classified background events is important as

well, since the number of background events is of the order 105 to 106 compared to the

expected number of signal events of the order 100 to 101. Every increase in the rate

of wrongly classified background events would lead to many misclassified background

events that would outnumber the few expected signal events. Figure 4.31 shows that

both models achieve similar performances on the evaluation dateset with a rate of

16.72 % wrongly classified signal events for the MLP and 16.85 % for the BDT. The

rate of misclassified background events is also similar for both models with 20.14 %

for the MLP and 19.95 % for the BDT. These numbers are too high to just count the

number of signal events with p � pT = 0.5 and take this number as the number of

signal events.

A promising method is to directly use the signal probability output of the models pi for

the determination of the number of signal events in the analysis dataset. Histograms of

the probabilities obtained for background and signal events of the evaluation dataset

are given in figure 4.32. The distributions obtained with the MLP are similar to the

distributions from the BDT. In case of a random guess of the signal probability for

each event, one would obtain a flat spectrum. A perfect classifier would contain only

histogram entries at zero for the background data and at unity for the signal data.

One can investigate the separation of signal from background events by varying the

classification threshold pT . The fraction of remaining signal and background events

is given in figure 4.33 for the BDT and the MLP when only events classified as

signal are kept. One finds that for a low classification threshold most of the signal

events are kept but almost no background events are removed. By increasing pT the
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Figure 4.32: Normalized histograms of the discriminator prediction for the events’
probabilities to be a signal event obtained from the MLP (red) and BDT
(blue) for simulated signal (right) and measured background (left) events
of the evaluation dataset. The classification threshold is drawn as dashed
line for pT = 0.5. A random guess would give a flat distribution. A
perfect classifier would give �-functions at zero for background and unity
for signal events.

fraction of remaining background events drops steeply while the fraction of remaining

signal events decreases slowly. At a threshold of pT > 0.8 the fraction of remaining

signal events decreases steeply. At a high classification threshold almost all signal and

background events are removed.
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Figure 4.33: The BDT (blue) and MLP (red) are used to binary classify events as
signal or background events using a threshold for the estimated signal
probability. The plot shows the remaining fraction of signal (solid) and
background (dashed) events as function of the classification threshold pT
if all events classified as background are cut. At pT = 0, all events are
classified as signal and kept and at pT = 1 all events are classified as back-
ground and cut. In both cases no separation of signal and background
events can be made.

4.6.2 Calibration Data

Since a mixture of simulated signal events and measured background events is used for

the development of the ML discriminators, it is important to evaluate if the models

learn to distinguish signal events from background events rather than learning to

distinguish measured data from simulations.

One possible method of investigation is to apply the trained discriminators on sim-

ulated and measured calibration data and to then compare the output distributions.

The output values of the models applied to calibration data can not be interpreted

in terms of signal-background discrimination, but the distributions can be compared

between simulated and measured input events. In this work the models are tested on
212Pb data since it is the only calibration source used in this work with a continu-

ous energy spectrum and energy depositions from �-electrons and �-rays similar to

the signal events of the 136Xe ⌫��⇤-decay. As for the signal and background data,

only events with multiplicity greater than one are used here since the models were

not trained on single-site events. Furthermore, the energy range of the signal and
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Figure 4.34: Histogram of the discriminator output applied to simulated (blue) and
measured (green) multi-site 212Pb data with modified energy. Error-bars
are not drawn to reduce the complexity of the plot and residuals are
given in the bottom panel of the figure. Only small relative uncertainties
are present for each bin due to the high statistics of both datasets. The
output of the MLP is given in the right panel and the output of the BDT
in the left panel of the plot.

background data is limited from 1500 keV to 2500 keV by an energy cut outlined in

section 4.3.3. The energy of the 212Pb decay ranges only up to 570 keV. Since the

models were not trained in this energy region 1500 keV are artificially added to the

reconstructed energy of the 212Pb decays4.

Histograms of the discriminator predictions for the BDT and the MLP can be found in

figure 4.34. One finds that the predictions both by the BDT and the MLP for simula-

tions and calibration data ranges from zero to one. Unlike the distributions obtained

for signal and background events given in figure 4.32 the distributions for the modified
212Pb events are flat with a drop-of towards unity starting at p ⇡ 0.8. Several areas

of increased counts are visible next to regions with fewer counts. These substructures

of the distributions obtained from the BDT di↵er from the ones of the MLP data.

The residuals show a discrepancy for discriminator predictions with p > 0.8 between

simulations and measured events and agree quite good for the remaining histogram

range.

4Simulated and measured multiplicity and �max values are unchanged but now un-physical due to
the correlation with the energy.
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The deviations at larger p could be caused by di↵erences in the multiplicity outlined

in section 4.3.1. It is found that the 212Pb MC simulations tend towards smaller

multiplicity values compared to the measured calibration data. It was discussed that

the deviation is probably caused by an unaccounted background in the calibration data

that is not included in the simulations. Since section 4.3.1 shows that the expected

multiplicity of signal events is larger than the multiplicity found for background events

one can expect that a high multiplicity increases the chance of an event to be classified

as signal.

The presence and agreement of the substructures both in the simulations and calibra-

tion data confirms that the ML models were trained on the discrimination of signal

from background events like intended and not on the separation of simulated from

measured events.

4.7 E↵ect of Input Parameters on Discriminator Prediction

In the last section, the performance of the ML models was evaluated on unseen signal

and background data and on calibration data. It was found that both models show

a similar performance with a slightly better performance observed for the BDT. The

application to modified 212Pb calibration data showed that the models are not trained

on the separation simulations from measured events but on the classification of signal

and background events. In this section The e↵ect of the individual input parameters

of the discrimination space on the output of the ML models will be investigated using

the evaluation dataset.

Two dimensional histograms are used to evaluate the correlations of input parameters

and the outputs of the ML models. The correlations of the input parameters and the

(in this case) unknown signal probability of an event would be the starting point

of a classical cut-based analysis. In the analysis presented in this work, the signal

probability can be obtained from ML classifiers so that only a minimum set of cuts

needs to be applied.

The first input parameter of the discrimination space that is investigated is the re-

constructed energy of an event. The energy vs. discriminator prediction histograms

are shown in figure 4.35. The energy is given on the y-axis and the model’s output

on the x-axis. The output is calculated both for the simulated signal events and

for measured background events. One finds that the output of the MLP is similar

to the BDT output. Furthermore, one can find an interesting feature at energies of

1764.49 keV and 2204.06 keV corresponding to the energies of two �-lines from 212Bi

decays in detector components. The decays increase the rate of background events at

this energies causing the models to learn that events here are most likely background



82 4 Development of a Machine Learning Discriminator

Figure 4.35: Two dimensional histograms of the discriminator prediction obtained
with the BDT (top) and MLP (bottom) and energy of signal and back-
ground data.

events and an event is more likely classified as background than as signal event as a

result..

Figure 4.36 shows the two-dimensional histograms of the multiplicity plotted against

the discriminator prediction both for the signal and background events. Again the

output of the BDT is very similar to the MLP output. One finds that the chance for

an event to be classified as signal increases with the multiplicity. This behavior was

already expected in section 4.3.1.

The corresponding plots for the stando↵-distance and �max discrimination space pa-

rameters can be found in the appendix.
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Figure 4.36: Two-dimensional histograms of the scatter multiplicity and discriminator
prediction obtained with the BDT (top) and MLP (bottom) for signal
(left) and background events (right).

4.8 Signal Contamination of the Background Class

As background data is used as the background class in the development of the ML

discriminators, it is possible that signal events from the excited state decay of 136Xe

are included in the background class depending on the actual half-life of the decay.

Thus, one would have wrongly labeled events in the training, validation and evaluation

datasets. An investigation of how this contamination a↵ects the training process and

performance of the ML discriminators is necessary.

The investigation is carried out with a modified training dataset. A number n of

randomly chosen background events are removed from the training data and replaced

by simulated signal events labeled as background corresponding to an e↵ective half-

life (equation (2.7)) under the assumption that no other signal events are present in

the background class. The added signal events are randomly selected from simulated

data not used in the training, validation or evaluation datasets in order to avoid a

bias by duplicate events. Since background events are replaced one to one by wrongly

labeled signal events the overall balance of the classes in each training dataset stays

constant with 50% signal and 50 % background. This balance is important to ensure

accurate calculations of the loss and accuracy during the training process.
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Figure 4.37: Investigation of the signal contamination in the background class. The
BDT model is trained on data with signal events artificially labeled as
background and applied to signal and background events from the un-
modified evaluation data. The number of exchanged events can be used
with the exposure of the training data to calculate a decay half-life. The
mean and standard deviation is calculated for the summed probabilities
and normalized on the mean value without exchanged events and plot-
ted against the number of added signal events. The uncertainties are
drawn here but smaller than the marker. One finds deviations from the
unmodified case in form of an increased summed probability for back-
ground events and decreased summed probability for signal events at an
e↵ective half-life that is already excluded by the EXO-200 analysis.

The BDT model is trained on the modified training data and afterwards applied to

signal and background events of the unmodified evaluation data to get the probability

for each event i to be a signal event. Only the BDT is used here due to shorter training

periods reducing the computational costs of this investigation5. In order to allow a

direct comparison of the model’s performance,
P

i pi is calculated both for the signal

and background events. To reduce statistical uncertainties, this procedure is repeated

multiple times for di↵erent numbers of exchanged background events. The mean and

standard deviation for the summed probabilities is calculated and normalized on the

corresponding sum of the probability for the model trained on unmodified data. This

ratio is contrasted with the number of added signal events shown in figure 4.37. Using

the known exposure of the training dataset of 40.91 d and the number of artificially

5The training of the BDT on the training dataset takes about 30 s. The training of the MLP takes
about 15min.
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injected signal events n one can use equation 2.7 to calculate a corresponding e↵ective

half-life.

One finds that the output of the BDT is not a↵ected for n  102 exchanged events

since both the normalized probability sum for signal and background events is close to

unity. Starting at around 103 exchanged events the normalized probability sum for sig-

nal events decreases which corresponds to an e↵ective half-life of about T1/2 ⇡ 1 ⇥ 1022 yr.

At n ⇡ 104 an increase can be observed for the background events. Since this half-life

is excluded by the EXO-200 analysis one can conclude that the presence of a few

signal events in the background data does not a↵ect the training of the BDT due to

the large number of used signal and background events in the datasets.

In this chapter two machine learning discriminators were developed and tested on

simulated and measured data, a MLP and a BDT. It was found that both models

show a similar performance on unseen data with a slightly higher signal-background

discrimination found for the BDT. It was shown that the training process of the BDT

is not a↵ected by a low number of signal events in the background dataset. The BDT

will be used in the next chapter to search for events of the 136Xe ⌫��⇤-decays in the

analysis dataset.
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5 Application of the Machine Learning

Discriminator to Analysis Data

The BDT discriminator developed in section 4.5 is now used to search for signal events

in the analysis dataset. For this data it gives a probability for each event to be a signal

originating from the 2⌫��-decay of 136Xe to the 0+1 excited state of 136Ba.

The capability to observe the decay or to set a lower limit on the half-life is limited

by two factors: the imperfect discriminator and the lack of a simulated, signal-free

background model. If a perfect classifier were available, one could count the number

of events classified as signal and take this number as the number of observed decays.

The classifiers developed in this work are, however, not perfect as shown in section 4.6,

so signal events can be classified as background events and vice versa.

Since no background simulations are available, measured background data from the

TPC was used as the background class for the training and evaluation of the ML

discriminator. A few signal events could be included in this data depending on the

actual half-life of the signal decay. It was shown in section 4.8 that the training of

the ML models is not a↵ected by a small number of wrongly labeled signal events.

If a signal free background model were available, one could fit the distribution of the

predicted signal probabilities for each event in the analysis dataset with

f(nsig, nbg) = nsig · PDFsig + nbg · PDFbg. (5.1)

This equation includes the number of signal events nsig, the number of background

events nbg and the probability density functions (PDFs) of the discriminator output

for signal and background events. In this work, the PDFs are obtained from the

evaluation data as normalized histograms of the discriminator output of the signal

and background classes. Due to the lack of a signal-free background model, nsig

would be fitted to zero since the background PDF would already include a su�cient

contribution of signal events to describe the signal probability distribution of the

analysis data when neglecting statistical fluctuations.

An alternative approach [62] is used here. The number of signal events that can

maximally fit into the signal probability distribution of the analysis data is determined
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by scaling the signal PDF to the histogram of the probabilities of the analysis data.

nsig is maximized under the condition that for each bin i with Ni entries

Ni � nsig · PDFsig,i (5.2)

is fulfilled. PDFsig,i is here the signal PDF in bin i. A graphical representation for

this procedure is given in figure 5.1. One finds that the maximum number of signal

events possible is bound only by the number of entries Nk in the last bin. One now

assumes that all entries in the last bin are signal events, so one can determine a 90 %

upper limit on the number of signal events in this bin. For Nk  15 the upper bound

Figure 5.1: Histogram of the signal probabilities of the analysis data in orange and
the scaled signal PDF in blue. The full discriminator prediction range is
given in the left panel of the plot and a zoom on the last five bins on the
right panel of the plot. The signal PDF is scaled to get the same number
of entries in the last bin for the analysis data and scaled signal PDF.

NFC,90% of the Feldman Cousins [63] 90% confidence interval is added to the observed

number of entries. One assumes that the signal mean follows a Poisson distribution

(cf.[63] table IV and V) and that the mean expected background corresponds to Nk.

N90%,k = Nk + NFC,90% (5.3)

In case of Nk > 15, one can assume that the number of observed events in the last

bin varies symmetrically around µ = Nk with a width of the normal distribution of

� =
p

Nk. Then, 90% of all values are smaller than µ + 1.282� [64]:

N90%,k = Nk + 1.282 ·

p
Nk. (5.4)
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In order to obtain the 90% upper limit on the total number of signal events N90%,cut

after cuts, N90%,k is normalized on the signal probability in the last bin k.

N90%,cut =
N90%,k

PDFsig(k)
(5.5)

Before using the BDT discriminator, three cuts were used reducing the number of

signal events. The energy and multiplicity cuts removed 89.36 % of the background

events while keeping �E,M = 96.35 % of the simulated signal events. �Fid = 69.82 % of

the signal events occurring in the fiducial volume pass the fiducial volume cut while

the other events are removed due to energy depositions in the outer detector region.

The maximum number of signal events in the analysis data before usage of cuts is

calculated as

N90% =
N90%,cut

�E,M · �Fid
. (5.6)

Using the livetime of the analysis dataset of t = 165.3 d, the xenon mass in the fiducial

volume of m = 1029.4 kg[36], the atomic mass of xenon mu = 131.293 u [17] and the

abundance of 136Xe of ⌘ = 8.49 % [18], the lower limit of the half-life at 90 % confidence

level can be calculated with

T1/2 >
t · m · ln(2)

mu · N90%
⌘. (5.7)

In order to investigate how the binning of the signal PDF and of the histogram of the

analysis data signal probabilities a↵ect the limit, the half-life limit is calculated for

di↵erent binnings. The result of this investigation is shown in figure 5.2. One finds

that for less than 96, bins symmetric uncertainties can be used. The Feldman Cousins

method has to be applied when more bins are used. The best limit of

T1/2 > 2.92 ⇥ 1022 yr at 90% C.L.

is achieved for 130 bins, where the last bin of the analysis data has zero entries while

still keeping a non-vanishing probability of finding signal events in this bin. The limit

deteriorates when the number of bins is further increased due to the shrinking signal

probability in each bin. One could combine multiple bins without entries from the

analysis data, but the result should be similar to the limit obtained for 130 bins. The

half-life limit set by this analysis is a factor of 23.63 smaller than the current best

limit set by EXO-200 and thus compatible with this limit.
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Figure 5.2: Lower limit of the half-life in dependency of the used number of bins
plotted in blue. The total number of signal events before cuts is given as
solid red line and the upper limit of signal events in the last bin given as
red dots. For less than 96 bins, symmetric uncertainties can be used to
estimate the 90 % upper limit of signal events in the last bin and for a
finer binning the Feldman Cousins approach had to be used. The border
of the corresponding regions in the plot are marked with a dashed line.
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6 Conclusion and Outlook

A search for the 2⌫��-decay of 136Xe to the 0+1 excited state of 136Ba (2⌫��⇤) with

the XENON1T experiment was presented in this work. A lower limit on the half-life

was set to T1/2 > 2.92 ⇥ 1022 yr at 90% C.L.

The 2⌫��⇤-decay of 136Xe is a process allowed by the Standard Model of particle

physics which has not been observed yet directly due to the long expected half-life

of T1/2 = 2.5 ⇥ 1025 yr from nuclear theory. Chapter two outlined that a direct

observation can be used to validate nuclear matrix element calculations. These are

needed to constrain new physics in case of an observation of neutrinoless double �-

decay. It was outlined that the XENON1T experiment is able to search for the 136Xe

2⌫��⇤-decay due to the low background rate, the large exposure and the ability

to reconstruct events at MeV energies. The detector principle of the dual phase

time projection chamber was outlined along with an overview of the analysis steps in

this work. Since only about 8 events are expected in the analyzed XENON1T data

and since these exhibit a unique coincidence of two �-electrons and two �-rays, new

techniques have to be used to search for these events. In this work a machine learning

discriminator was used, trained on the separation of signal and background events.

Simulated signal and measured background events were used for the development of

the discriminator. Thus, simulation tools were needed to simulate events resembling

the measured data. An outline of these tools used was given in chapter three. Modi-

fications were made to the event generator Decay0 to include the angular correlation

of the �-rays emitted in the 136Xe 2⌫��⇤-decay in order to obtain realistic signal

simulations. An interface for the new waveform simulator was developed including

a clustering of energy depositions and the calculation of the number of charge and

light quanta using the NEST framework. A modified version of the NEST model for

�-rays was used to achieve a better agreement of simulations and measured data. It

was found that for energies in the MeV scale di↵erences are still present between the

charge and light yield predictions from NEST and the measured data. In order to

validate the simulations, calibration data was used. An outline of the sources was

given along with the required event selections.

In order to allow a good discrimination between signal and background events, a range

of input parameters are needed for the discriminator. These have to be accurately re-

produced from the simulation tools and di↵er between signal and background events.
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Four parameters were used in this work: the multiplicity, reconstructed energy, mini-

mal stando↵ distance and the maximal distance between interactions in an event. The

combination of these parameters form the discrimination space which was analyzed in

chapter four. A good agreement between simulations and measured calibration data

was found for all four parameters as well as reasonable di↵erences between signal and

background events. Three other possible input parameters �E�,1, �E�,2 and �E�,sum

were investigated as well, but di↵erences between simulations and calibration made a

usage in the machine learning discriminator not possible. The di↵erences are mainly

caused by the emission models calculating the number of charge and light quanta.

Following the analysis of the discrimination space, two machine learning discrimi-

nators were trained: a multi-layer perceptron and a boosted decision tree. At a

classification threshold of pT = 0.5 the BDT showed a slightly better rate of misclas-

sified background events of 19.95 % compared to the MLP with a rate of 20.14 %. The

boosted decision tree was used for the further analysis due to this result in combination

with the lower computational costs required. As measured background events were

used in the development of the machine learning discriminators a contamination of the

background training data with signal events was possible. An investigation showed

that the influence on the training process is negligible for 2⌫��⇤-decay half-lives larger

1023 yr. This is below the current best limit set by the EXO-200 collaboration, so it

is unproblematic for the training of the discriminators.

The trained BDT was used to search for 2⌫��⇤-decay events in the XENON1T data as

outlined in chapter five. It was investigated if a fraction of the measured background

data could be used as a background model. A simulated background model was not

available due to the high computational costs. In contrast to the training of the BDT,

the signal contamination in this data is of the same order as in the analysis data. Thus

a fit of the obtained signal-probability distribution with probability density functions

for signal and background events was not feasible. As a conservative approach, the

maximal contribution of the signal events to the signal-probability distribution of

the analysis data was determined. It was assumed that all events in the last bin of

the analysis data discriminator output histogram are signal events. This allowed the

calculation of an upper limit on the overall signal event number and a lower limit in

the half-life was set at T1/2 > 2.92 ⇥ 1022 yr at 90% C.L..

Improvements in a future analysis can be made in several fields of the analysis. Sig-

nificant advancements on the reachable sensitivity can be achieved with improved

simulations. Benefits will arise from two e↵ects.

First, not all investigated parameters could be used for the discriminator due to

di↵erences between simulation and calibration data. With improved simulations more

parameters can be added to the discrimination space and thus improve the separation

of signal and background events. Beside the analyzed �E�,1, �E�,2 and �E�,sum

parameters in this work, other variables like ln
� cS2b

cS1

�
, max(cS2b.i)

cS2b
or the standard
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deviation of the S2 areas of an event could be used. These values could further

improve the signal-background separation by reflecting di↵erent energy loss mechanics

for events with higher multiplicities. When the simulations are known to reproduce

accurate results other machine learning techniques like deep learning directly on the

waveform-level could be used as well, reducing the need for better discrimination space

parameters.

A second benefit from improved simulations can be obtained by simulation of events

of the background spectrum. This will allow a fit of the of the discriminator output

using probability density functions for signal and background events. Thus, a better

limit or even a discovery could be achieved. The latter is not possible without a

simulated background model.

Additional improvements will be made with the upcoming XENONnT experiment. A

larger exposure of about 20 txyr will result in O(100) measured 2⌫��⇤-decay events.

A further reduced background also benefits the sensitivity. In addition to the search

for the excited state decay of 136Xe, other rare decays with unique signatures like a

EC�+-decay [65] could be analyzed using a similar machine learning based method as

presented in this work.
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A Appendix

A.1 Decay0 Modification

1 subrout ine Ba136low ( leve lkeV )

2 ! c Subrout ine d e s c r i b e s the d e ex c i t a t i on proc e s s in Ba136 nuc leus

3 ! c a f t e r 2b�decay o f Xe136 to ground and exc i t ed 0+ and 2+ l e v e l s

4 ! c o f Ba136 (” Table o f I s o t ope s ” , 7 th ed . , 1978) .

5 ! c Ca l l : c a l l Ba136low ( l eve lkeV )

6 ! c Input : l eve lkeV � energy o f Ba136 l e v e l ( i n t e g e r in keV)

occupied

7 ! c i n i t i a l l y ; f o l l ow i n g l e v e l s can be occupied :

8 ! c 0+(gs ) � 0 keV ,

9 ! c 2+(1) � 819 keV ,

10 ! c 2+(2) � 1551 keV ,

11 ! c 0+(1) � 1579 keV .

12 ! c Output : common/genevent / tevst , np fu l l , npgeant (100) ,pmoment (3 ,100)

, ptime (100) .

13 ! c VIT , 28 . 06 . 1993 , 2 2 . 1 0 . 1 9 9 5 .

14 common/genevent / tevst , np fu l l , npgeant (100) ,pmoment (3 ,100) ,

15 9 ptime (100)

16 npg1579=0

17 npg819=0

18

19 t c l e v =0.

20 i f ( l e v e l k e v . eq . 1579 ) go to 1579

21 i f ( l e v e l k e v . eq . 1551 ) go to 1551

22 i f ( l e v e l k e v . eq . 819) go to 819

23 i f ( l e v e l k e v . eq . 0) go to 10000

24 go to 20000

25 ! c����������������������������������������������������������������

26 1579 th l ev =0.

27

28 Egamma = 0.7605

29 EbindK = 0.037

30 cg = 1 .

31 cK = 3 .2 e�3

32 cp = 0 .

33 p = rnd1 (d) ⇤( cg+cK+cp )
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34

35 i f (p . l e . cg ) then

36 c a l l gamma(Egamma, t c l ev , th lev , td l ev )

37 npg1579=np f u l l

38 e l s e i f (p . l e . cg+cK) then

39 c a l l e l e c t r o n (Egamma�EbindK , t c l ev , th lev , td l ev )

40 c a l l gamma(EbindK , 0 . , 0 . , td l ev )

41 e l s e

42 c a l l pa i r (Egamma�1.022 , t c l ev , th lev , td l ev )

43 end i f

44 go to 819

45 ! c����������������������������������������������������������������

46 1551 th l ev =0.

47 p=100.⇤ rnd1 (d)

48 i f (p . l e . 5 0 . ) go to 15511

49 go to 15512

50 15511 c a l l nucltransK (1 . 5 5 1 , 0 . 0 3 7 , 7 . 5 e�4 ,0.5 e�4, t c l ev , th lev , td l ev

)

51 r e turn

52 15512 c a l l nucltransK (0 . 7 3 3 , 0 . 0 3 7 , 3 . 5 e �3 ,0 . , t c l ev , th lev , td l ev )

53 go to 819

54 ! c����������������������������������������������������������������

55 819 th l ev =1.9e�12

56

57 Egamma = 0.8185

58 EbindK = 0.037

59 cg = 1 .

60 cK = 2 .6 e�3

61 cp = 0 .

62

63 p=rnd1 (d) ⇤( cg+cK+cp )

64

65 i f (p . l e . cg ) then

66 c a l l gamma(Egamma, t c l ev , th lev , td l ev )

67 npg819=np f u l l

68 e l s e i f (p . l e . cg+cK) then

69 c a l l e l e c t r o n (Egamma�EbindK , t c l ev , th lev , td l ev )

70 c a l l gamma(EbindK , 0 . , 0 . , td l ev )

71 e l s e

72 c a l l pa i r (Egamma�1.022 , t c l ev , th lev , td l ev )

73 end i f

74

75 ! c check i f a c o r r e l a t i o n has to be app l i ed and get the

t o t a l momentum of each gamma

76

77 i f ( npg1579 . ne . 0 . and . npg819 . ne . 0 ) then
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78 p1579=sq r t (pmoment (1 , npg1579 )⇤⇤2+pmoment (2 , npg1579 )⇤⇤2+

79 9 pmoment (3 , npg1579 ) ⇤⇤2)

80 p819=sq r t (pmoment (1 , npg819 )⇤⇤2+pmoment (2 , npg819 )⇤⇤2+

81 9 pmoment (3 , npg819 ) ⇤⇤2)

82

83 a2=�15./8.

84 a4 =20./8.

85

86 twopi =6.2831853

87

88 phi1=twopi⇤ rnd1 (d)

89 c t e t 1 =1.�2.⇤ rnd1 (d)

90 s t e t 1=sq r t (1.� c t e t 1 ⇤ c t e t 1 )

91 phi2=twopi⇤ rnd1 (d)

92 c t e t 2 =1.�2.⇤ rnd1 (d)

93 s t e t 2=sq r t (1.� c t e t 2 ⇤ c t e t 2 )

94

95 ! c s e e Sphe r i c a l law o f c o s i n e s !

96 c t e t=c t e t 1 ⇤ c t e t 2+s t e t 1 ⇤ s t e t 2 ⇤ cos ( phi1�phi2 )

97 ! c check i f a y coord inate i s sma l l e r than the value o f the

co r r . f unc t i on

98 ! c ”box” method o f sampling from p d i s t r i b u t i o n

99 i f ( rnd1 (d) ⇤ (5 ./8 .+ abs ( a2 )+abs ( a4 ) ) >5./8.+a2⇤ c t e t ⇤⇤2+a4⇤

c t e t ⇤⇤4)

100 9 go to 1

101

102 pmoment (1 , npg1579 )=p1579⇤ s t e t 1 ⇤ cos ( phi1 )

103 pmoment (2 , npg1579 )=p1579⇤ s t e t 1 ⇤ s i n ( phi1 )

104 pmoment (3 , npg1579 )=p1579⇤ c t e t 1

105 pmoment (1 , npg819 )=p819⇤ s t e t 2 ⇤ cos ( phi2 )

106 pmoment (2 , npg819 )=p819⇤ s t e t 2 ⇤ s i n ( phi2 )

107 pmoment (3 , npg819 )=p819⇤ c t e t 2

108

109 end i f

110 r e turn

111 ! c����������������������������������������������������������������

112 10000 re turn

113 ! c����������������������������������������������������������������

114 20000 p r i n t ⇤ , ’ Ba136 : wrong l e v e l [ keV ] ’ , l e v e l k e v

115 ! c����������������������������������������������������������������

116 r e turn

117 end
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A.2 Quanta Generation Interface

1 import l o gg ing

2 import time

3 import p i c k l e

4 import uproot

5 import nestpy

6

7 import numpy as np

8 import pandas as pd

9

10 from . co re import RawData

11 from s k l e a rn . c l u s t e r import DBSCAN

12

13 export , a l l = s t rax . expor te r ( )

14 a l l += [ ’instruction_dtype’ , ’truth_extra_dtype’ ]

15

16 i n s t r u c t i on d typ e = [ ( ’event_number’ , np . int ) , (’type’ , np . int ) , (’

t’ , np . in t64 ) ,

17 (’x’ , np . f l o a t 3 2 ) , (’y’ , np . f l o a t 3 2 ) , (’z’ , np . f l o a t 3 2 ) ,

18 (’amp’ , np . int ) , (’recoil’ , ’<U5’ ) , (’e_dep’ , np . f l o a t 3 2 ) , (’

created_by’ , ’<U10’ ) ]

19

20

21 #Function adapted from Pie t ro Di Gangi

22 #h t t p s :// g i t hu b . com/XENON1T/MCAnalysisScripts / b l o b /master/

G4EventDisplay/G4EventDisplay . ipynb

23 def g e t daugh t e r s t r a ck i d ( event , pa r en t id s ) :

24 ’ ’ ’ Returns a t r a c k i d l i s t o f daugh ter s o f a s e t o f parent

p a r t i c l e s . ’ ’ ’

25 event = event [ event . parent id . i s i n ( pa r en t id s ) ]

26 t r a ck s = l i s t ( set ( event . t r a ck id ) ) # t r a c k i d s pre sen t in the

event

27 t r a ck s . s o r t ( ) # sor t t r a c k i d s

28 return t r a ck s

29

30 #Function adapted from Pie t ro Di Gangi

31 #h t t p s :// g i t hu b . com/XENON1T/MCAnalysisScripts / b l o b /master/

G4EventDisplay/G4EventDisplay . ipynb

32 def g e t pa r en t i d s ( event ) :

33 ’ ’ ’ Returns a t r a c k i d l i s t o f a l l t he parent p a r t i c l e s in the

event . ’ ’ ’

34 t r a ck s = l i s t ( set ( event . parent id ) )

35 t r a ck s . s o r t ( ) # sor t t r a c k i d s

36 return t r a ck s

37
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38 #Function adapted from Pie t ro Di Gangi

39 #h t t p s :// g i t hu b . com/XENON1T/MCAnalysisScripts / b l o b /master/

G4EventDisplay/G4EventDisplay . ipynb

40 def p a r t i c l e s s t e p s ( event ) :

41

42 i d s = ge t daugh t e r s t r a ck i d ( event , pa r en t id s =[0 ] ) # ge t

daugh ter s o f primary p a r t i c l e

43 p a r t i c l e s b y s t e p =[ ] # d i v i d e p a r t i c l e s in h i e r a r c h i c s t e p s

44 p a r t i c l e s b y s t e p . append ( i d s )

45 a l l p a r t i c l e s = id s # s to r e id o f p a r t i c l e s

46 #Loop over s t e p s as long as a daughter p a r t i c l e i s produced

47 i=1

48 while len ( i d s ) >0:

49 i d s = ge t daugh t e r s t r a ck i d ( event , pa r en t id s = id s )

50 i f len ( i d s ) >0:

51 p a r t i c l e s b y s t e p . append ( i d s )

52 a l l p a r t i c l e s = a l l p a r t i c l e s + id s

53 i = i+1

54

55 i d s = [ ]

56 nsteps = i

57 mu l t i p l i c i t y = 1

58 step max = 0

59 mul t ip l i c i t y max = 1

60

61 #Assoc ia te daughter p a r t i c l e s to t h e i r parent

62 for n in ( range (0 , ns teps ) ) :

63 s e t i d s = p a r t i c l e s b y s t e p [ n ]

64 p a r t i c l e s = event [ event . t r a ck i d . i s i n ( s e t i d s ) ]

65 pa r en t i d s = ge t pa r en t i d s ( p a r t i c l e s )

66 mu l t i p l i c i t y = len ( pa r en t i d s ) ⇤ mu l t i p l i c i t y

67 l i s t =[ ]

68

69 for parent in pa r en t i d s : # c o l l e c t by paren t i d

70 daughters = ge t daugh t e r s t r a ck i d ( p a r t i c l e s , [ parent ] ) #

se t o f daugh ter s o f t h i s parent

71 l i s t . append ( [ parent , daughters ] )

72

73 i f len ( daughters )>=mul t ip l i c i t y max :

74 mul t ip l i c i t y max=len ( daughters )

75 step max = n+2

76

77 i d s . append ( l i s t )

78

79 return i d s

80
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81

82 def p a r t i c l e o r i g i n ( df ) :

83

84 p a r t i c l e h i e r a r c h y = p a r t i c l e s s t e p s ( df )

85

86 mod i f i e d p a r t i c l e h i e r a c hy = pa r t i c l e h i e r a r c h y . copy ( )

87

88 # loop reve r s ed over the h i e rarchy ” l a y e r s ”

89 for i , l a y e r in reversed ( l i s t (enumerate( p a r t i c l e h i e r a r c h y ) ) ) :

90

91 #loop over the i n d i v i d u a l nodes in the l a y e r

92 for node in l a y e r :

93

94 #loop over the nodes in the l a y e r above

95 for j in range ( len ( p a r t i c l e h i e r a r c h y [ i �1]) ) :

96

97 #check i f the parent p a r t i c l e i s in the l i s t o f

daughter p a r t i c l e s in the l a y e r above

98 i f node [ 0 ] in p a r t i c l e h i e r a r c h y [ i �1] [ j ] [ 1 ] :

99

100 #append the t r a c k i d s o f the daughter p a r t i c l e s

101 mod i f i e d p a r t i c l e h i e r a c hy [ i �1] [ j ] [ 1 ] . extend (

node [ 1 ] )

102

103

104 #ge t a l l the needed in format ions from the dataframe

105 p r ima ry pa r t i c l e = np . unique ( df [ df . parenttype == "none" ] . type )

106 p a r t i c l e t y p e s = df . type . va lue s

107 pa r t i c l e p a r e n t t y p e s = df . parenttype . va lue s

108 p a r t i c l e p a r e n t i d = df . parent id . va lue s

109 p a r t i c l e i d = df . t r a ck id . va lue s

110 pa r t i c l e c r e a t e d by = [ "0" ] ⇤ len ( p a r t i c l e i d )

111

112 # This par t w i l l on ly work prope r l y f o r my s i g n a l and my

c a l i b r a t i o n sources Xe131m , Xe129m and Pb212

113 p l i s t = [ "e-" , "gamma" ]

114

115 i f len (np . i n t e r s e c t 1d ( p r imary pa r t i c l e , p l i s t ) ) == 0 :

116

117 #I f the prim p a r t i c l e i s an e x c i t e d s t a t e l i k e Xe131m or

Xe129m

118 i f "[" in p r ima ry pa r t i c l e [ 0 ] :

119

120 l a s t s t a g e = 2

121
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122 #use t h i s case i f the primary p a r t i c l e i s a nucleus , t e s t e d

on ly f o r Pb212

123 else :

124 l a s t s t a g e = 3

125

126 #use t h i s case i f the prim p a r t i c l e s are from an even t genera to r

l i k e decay0

127 else :

128

129 l a s t s t a g e = 2

130

131 # in t e r c e p t a super rare case : Pb212 decay to the ground s t a t e

and the e l e c t r on wi th very very low energy

132 # (no l a t e r p a r t i c l e s c rea t ed by the e l e c t r on . . )

133 i f len ( mod i f i e d p a r t i c l e h i e r a c h y ) <=2:

134 l a s t s t a g e = 2

135

136 # now loop over the neces se sary f i r s t s t a g e s o f the modi f ied

p a r t i c l e h i erachy

137 for i in range (1 , l a s t s t a g e ) :

138 # and loop over the prim . p a r t i c l e s o f the s t a g e

139

140 for j in range ( len ( mod i f i e d p a r t i c l e h i e r a c hy [ i ] ) ) :

141

142 o r i g i n = mod i f i e d p a r t i c l e h i e r a c hy [ i ] [ j ] [ 0 ]

143 t a r g e t = mod i f i e d p a r t i c l e h i e r a c hy [ i ] [ j ] [ 1 ]

144

145 #change p a r t i c l e c r e a t e d b y to the p a r t i c l e type o f the

o r i g i n i f the t a r g e t i s caused by the o r i g i n

p a r t i c l e

146 pa r t i c l e c r e a t e d by = np . where (np . i s i n ( p a r t i c l e i d ,

t a r g e t ) ,

147 p a r t i c l e t y p e s [ p a r t i c l e i d

== o r i g i n ] [ 0 ] ,

148 pa r t i c l e c r e a t e d by )

149

150 # Now remove Pb212 and in t roduce gamma manually . . .

151 # This i s the ” f i r s t genera t ion ” o f p a r t i c l e s comming fromt he

Pb212 nuce lus . These are the a c t ua l primary p a r t i c l e s

152 l i s t o f n u c l e i = [ "Rn220" ,"Po216" , "Pb212" , "Bi214" ]

153 pa r t i c l e c r e a t e d by = np . where (np . i s i n ( p a r t i c l e c r e a t e d by ,

l i s t o f n u c l e i ) , p a r t i c l e t y p e s , p a r t i c l e c r e a t e d by )

154

155 #se t the p a r t i c l e c r e a t e d b y f o r the primary p a r t i c l e s ( c rea t ed

by geant4 or the event genera tor ) to the

156 #pa r t i c l e type i t s e l f
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157 pa r t i c l e c r e a t e d by = np . where ( p a r t i c l e p a r e n t i d == 0 ,

p a r t i c l e t y p e s , p a r t i c l e c r e a t e d by )

158

159 # A gamma always commes from an e x c i t e d s t a t e in case o f an

r ad i o a c t i v e decay .

160 # These s t a t e are marked by Xx [ Energy ] . Set the

p a r t i c l e c r e a t e d b y to gamma fo r t h e s e cases .

161 pa r t i c l e c r e a t e d by = np . where ( [ "[" in element for element in

pa r t i c l e c r e a t e d by ] , "gamma" , p a r t i c l e c r e a t e d by )

162

163 return pa r t i c l e c r e a t e d by

164

165 def c l u s t e r f u n c t i o n (x ) :

166 d = {}

167 #use the average p o s i t i o n f o r each c l u s t e r we igh ted by energy

168 d [ "xp" ] = np . average (x [ "xp" ] , we ights=x [ "ed" ] )

169 d [ "yp" ] = np . average (x [ "yp" ] , we ights=x [ "ed" ] )

170 d [ "zp" ] = np . average (x [ "zp" ] , we ights=x [ "ed" ] )

171 d [ "time" ] = np . average (x [ "time" ] , we ights=x [ "ed" ] )

172 #Sum the energy

173 d [ "ed" ] = np .sum( x [ "ed" ] )

174

175 #check which i n i t i a l p a r t i c l e s c rea t ed t h i s c l u s t e r

176 t y p e s i n c l u s t e r = np . unique (x . c reated by )

177 nrg sum = x . ed .sum( )

178 weights = [ ]

179

180 for p type in t y p e s i n c l u s t e r :

181

182 nrg = x [ x . c reated by == p type ] . ed .sum( )

183 weights . append ( nrg/nrg sum )

184

185 i f len ( weights ) ==0:

186

187 t y p e s i n c l u s t e r = [ "gamma" ]

188 weights =[1 ]

189

190 d [ "type" ] = t y p e s i n c l u s t e r

191 d [ "weights" ] = weights

192

193 return pd . S e r i e s (d , index = [ "xp" , "yp" , "zp" , "time" , "ed" ,"

type" , "weights" ] )

194

195

196 def we igh t s f o r ave rage mode l ( nrg ) :

197



A Appendix 103

198 on ly beta be low = 90

199 only gamma above = 270

200

201 i f nrg < on ly beta be low :

202

203 return 0 .

204

205 e l i f ( nrg > on ly beta be low )&(nrg < only gamma above ) :

206

207 y 1 = 0

208 y 2 = 1

209 x 1 = on ly beta be low

210 x 2 = only gamma above

211 m = ( y 2�y 1 ) /( x 2�x 1 )

212 y = m⇤( nrg�x 1 )+y 1

213

214 return y

215

216 e l i f nrg > only gamma above :

217 return 1 .

218

219

220 @np . v e c t o r i z e

221 def average quanta from NEST ( pa r t i c l e t yp e , en ) :

222

223 nc = nestpy . NESTcalc ( nestpy . VDetector ( ) )

224 A = 131.293

225 Z = 54 .

226 dens i ty = 2.862 # g/cmˆ3 #SR1 Value

227 d r i f t f i e l d = 82 # V/cm #SR1 Values

228

229

230 i f p a r t i c l e t y p e == "gamma" :

231

232 gamma weight for average = we igh t s f o r ave rage mode l ( en )

233 be t a we i gh t f o r av e r ag e = 1�gamma weight for average

234

235 #ca l c u l a t e the gamma and the be ta model

236 y beta = nc . GetYie lds ( nestpy .INTERACTION TYPE(8) ,

237 en ,

238 dens i ty ,

239 d r i f t f i e l d ,

240 A,

241 Z ,

242 (1 , 1) )

243
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244 y gamma = nc . GetYie lds ( nestpy .INTERACTION TYPE(7) ,

245 en ,

246 dens i ty ,

247 d r i f t f i e l d ,

248 A,

249 Z ,

250 (1 , 1) )

251

252 y average = y gamma

253 y average . E l ec t ronYie ld = np . average ( [ y beta . E lect ronYie ld ,

y gamma . E l ec t ronYie ld ] , we ights=[

be ta we i gh t f o r ave rage , gamma weight for average ] )

254 y average . PhotonYield = np . average ( [ y beta . PhotonYield ,

y gamma . PhotonYield ] , weights=[ be ta we i gh t f o r ave rage ,

gamma weight for average ] )

255

256 event quanta = nc . GetQuanta ( y average , dens i ty )

257

258 photons = event quanta . photons

259 e l e c t r o n s = event quanta . e l e c t r o n s

260

261 else :

262

263 i n t e r a c t i o n d i c t = {"e-" : 8 , "gamma" : 7 , "neutron" : 0 , "

Kr83m" : 11}

264

265 y = nc . GetYie lds ( nestpy .INTERACTION TYPE( i n t e r a c t i o n d i c t .

get ( p a r t i c l e t yp e , 7) ) ,

266 en ,

267 dens i ty ,

268 d r i f t f i e l d ,

269 A,

270 Z ,

271 (1 , 1) )

272

273 event quanta = nc . GetQuanta (y , dens i ty )

274

275 photons = event quanta . photons

276 e l e c t r o n s = event quanta . e l e c t r o n s

277

278 #l e t s do some mod i f i c a t i on s to the cs1 cs2 p r o j e c t i on width

279 photons mod = photons ⇤ np . random . normal ( l o c =1, s c a l e= 0 .073 )

280 e l e c t r o n s = e l e c t r o n s + ( photons�photons mod )

281 photons = photons mod

282

283 return photons , e l e c t r o n s
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284

285

286 def quanta generat ion ( p a r t i c l e t yp e , nrg , c l u s t e r w e i g h t s ) :

287

288 quanta = [ ]

289

290 for p type , E, w e i g h t s i n c l u s t e r in zip ( p a r t i c l e t yp e , nrg ,

c l u s t e r w e i g h t s ) :

291

292 photons , e l e c t r o n s = average quanta from NEST ( p type , E)

293

294 mean photons in c lu s t e r = np . average ( photons , weights=

we i g h t s i n c l u s t e r )

295 mean e l e c t r o n s i n c l u s t e r = np . average ( e l e c t r on s , weights=

we i g h t s i n c l u s t e r )

296

297 quanta . append ( mean photons in c lu s t e r )

298 quanta . append ( mean e l e c t r o n s i n c l u s t e r )

299

300 return quanta

301

302 @export

303 def read g4 ( f i l e , eps =0.005) :

304

305 print ("Reading the geant4 file..." )

306

307 source = uproot .open( f i l e ) [ "generator" ] [ "SourceType" ] . f T i t l e .

decode ("UTF-8" )

308 data = uproot .open( f i l e ) [ "events/events" ]

309 df = data . pandas . df ( [ "xp" ,"yp" , "zp" , "time" , "ed" , "nsteps" , "

eventid" , "type" , "trackid" , "parenttype" , "parentid" , "

creaproc" ] )

310

311 #Add the i n t e r a c t i o n type in the co r r e c t format

312 df [ "type" ] = np . concatenate ( data . array ("type" ) )

313 df [ "type" ] = df [ "type" ] . apply ( lambda x : x . decode ("UTF-8" ) )

314

315 df [ "parenttype" ] = np . concatenate ( data . array ("parenttype" ) )

316 df [ "parenttype" ] = df [ "parenttype" ] . apply ( lambda x : x . decode ("

UTF-8" ) )

317

318 df [ "creaproc" ] = np . concatenate ( data . array ("creaproc" ) )

319 df [ "creaproc" ] = df [ "creaproc" ] . apply ( lambda x : x . decode ("UTF-8

" ) )

320

321 df [ "time" ] = df [ "time" ]⇤1 e9 # convers ion to ns
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322

323 #l e t s a s s i gn now the prim p a r t i c l e s

324 print ("Find the initial particles" )

325

326 #A workaround f o r Co60 s imu la t i on s .

327 i f source == "Co60" :

328

329 df [ "created_by" ] = [ "gamma" ]⇤ len ( df )

330

331 else :

332

333 df [ "created_by" ] = np . concatenate ( df . groupby ( [ "entry" ] ) .

apply ( lambda x : p a r t i c l e o r i g i n (x ) ) )

334

335 #Remove a l l v a l u e s wi thout energy depos i ton

336 df = df [ df . ed != 0 ]

337 print ("Time Clustering" )

338 #Time C lu s t e r i n g

339 t ime s c a l e = 10 #ns

340 db s c an t ime c l u s t e r i n g = DBSCAN( eps=t ime s ca l e , min samples=2)

341

342 df [ "time_cluster" ] = np . concatenate ( df [ [ "time" ] ] . groupby ("entry

" ) . apply ( lambda x : db s c an t ime c l u s t e r i n g . f i t p r e d i c t ( x . time

. va lue s . reshape (�1 ,1) ) ) )

343 print ("Microclustering" )

344 #Clus t e r in xyz f o r each event ( entry ) and each t im e c l u s t e r

345 db s c an c l u s t e r i n g = DBSCAN( eps=eps , min samples=2)

346 df [ "cluster" ] = np . concatenate ( df . groupby ( [ "entry" , "

time_cluster" ] ) . apply ( lambda x : db s c an c l u s t e r i n g .

f i t p r e d i c t (np . s tack (x [ [ "xp" , "yp" , "zp" ] ] . va lue s ) ) ) . va lue s )

347

348 #Apply the c l u s t e r i n g f o r each event ( entry ) , t im e c l u s t e r and

c l u s t e r

349 df = df . groupby ( [ "entry" ,"time_cluster" ,"cluster" ] ) . apply (

lambda x : c l u s t e r f u n c t i o n (x ) )

350 print ("Clustering done!" )

351 df . xp /=10

352 df . yp /=10

353 df . zp /=10

354

355 #Limit the i n t e r a c t i o n s to the TPC

356 t p c r ad i u s s qua r e = 2500

357 z l ower = �100

358 z upper = 0

359 df = df [ ( df . xp⇤⇤2+df . yp⇤⇤2<=47.9⇤⇤2)&(df . zp<z upper )&(df . zp>

z l ower ) ]
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360

361 #Sort the d f f o r each event in time

362 df [ "index_dummy" ] = df . index . g e t l e v e l v a l u e s (0 )

363 df = df . s o r t v a l u e s ( [ "index_dummy" , "time" ] )

364

365 #se t time o f f i r s t e d epo s i t i on in each event to 0

366 df [ "time" ] = df . groupby ( [ "entry" ] ) . apply ( lambda x : ( x [ "time"]�x

[ "time" ] .min( ) ) ) . va lue s

367

368 # se t the index to s t a r t from 0 and run to the f i n a l number o f

even t s

369 # This i s important f o r s imu la t i on s wi th e x t e r na l sources where

a l o t o f even t s never reach the xenon

370 idx = df . index . g e t l e v e l v a l u e s (0 )

371 i d x l ims = np . append (np . i n t e r s e c t 1d ( idx , np . unique ( idx ) ,

r e t u r n i n d i c e s = True ) [ 1 ] , len ( idx ) )

372 n va l s = [ i dx l ims [ i +1] � i d x l ims [ i ] for i in range (0 , len (

i dx l ims )�1) ]

373 new entry idx = pd . Int64Index (np . repeat (np . arange ( len ( n va l s ) ) ,

n va l s ) , dtype = "int64" , name = "entry" )

374

375 df . index = pd . Mult iIndex . f rom arrays ( [ new entry idx ,

376 df . index . g e t l e v e l v a l u e s (1 ) .

va lue s ]

377 )

378

379 #l e t s r e s e t the time c l u s t e r index as w e l l

380 new c lu s t e r i dx = pd . Int64Index (np . concatenate ( df . groupby ("

entry" ) . apply ( lambda x : np . arange ( len ( x . index .

g e t l e v e l v a l u e s (1 ) . va lue s ) ) ) ) , dtype = "int64" , name = "

cluster" )

381

382 df . index = pd . Mult iIndex . f rom arrays ( [ d f . index . g e t l e v e l v a l u e s

(0 ) . va lues ,

383 new c lu s t e r i dx ]

384 )

385

386 #and separa t e the even t s in time by one second

387 event spac ing = 1e9

388 df . time = np . cumsum( df . time+ ( df . index . g e t l e v e l v a l u e s (1 ) .

va lue s == 0 ) ⇤ event spac ing )

389

390 #bu i l d the i n s t r u c t i o n s

391 n i n s t r u c t i o n s = len ( df )

392 i n s = np . z e r o s (2⇤ n i n s t r u c t i o n s , dtype=in s t r u c t i on d t yp e )

393
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394 #s h i f t the time by a cons tant o f f s e t . . .

395 e dep , i n s [ ’x’ ] , i n s [ ’y’ ] , i n s [ ’z’ ] , i n s [ ’t’ ] = df . ed . values , \

396 np . repeat ( df . xp

. values , 2) ,

\

397 np . repeat ( df . yp

. values , 2) ,

\

398 np . repeat ( df . zp

. values , 2) ,

\

399 np . repeat ( df .

time . values ,

2)

400

401 i n s [ "e_dep" ] = np . repeat ( e dep , 2)

402 i n s [ "event_number" ] = np . repeat ( df . index . g e t l e v e l v a l u e s (0 ) .

values , 2 )

403

404 i n s [ ’type’ ] = np . t i l e ( ( 1 , 2) , n i n s t r u c t i o n s )

405

406 #NEST hand l ing . . .

407 #h t t p s :// g i t hu b . com/NESTCollaboration/ nes t / b l o b /master/ src /NEST

. cpp

408 #l i n e 406

409 #h t t p s :// a r x i v . org / pdf /1106.1613. pdf page 18

410 i f "Kr83" in source :

411 print ("Kr83m in source, modify e_dep and types" )

412

413 #To use the s p e c i a l 9 .4 keV case in NEST the energy has to

be e x a c t l y 9 .4 keV

414 e dep = np . where ( ( e dep <9.5)&(e dep >9.3) , 9 . 4 , e dep )

415 #change the p a r t i c l e type f o r the 9.4 keV l i n e to Kr83m

416 df [ "type" ] = [ [ "Kr83m" ] ] ⇤ len ( e dep )

417 df [ "weights" ] = [ [ 1 ] ] ⇤ len ( e dep )

418

419 r e c o i l d i c t = {"e-" : "er" , "gamma" : "er" , "neutron" : "nr" , "

alpha" : "alpha"}

420 i n s [ ’recoil’ ] =np . repeat ( [ r e c o i l d i c t . get ( p a r t i c l e [ np . argmax (

weight ) ] , "er" ) for pa r t i c l e , weight in zip ( df [ "type" ] .

va lues , d f [ "weights" ] . va lue s ) ] , 2 )

421

422 print ("Calculate Quanta with NEST" )

423 quanta = quanta generat ion ( df [ "type" ] . va lues , e dep , df [ "weights

" ] . va lue s )

424
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425 i n s [ ’amp’ ] = quanta

426 i n s [ "created_by" ] = np . repeat ( [ p a r t i c l e [ np . argmax ( weight ) ] for

pa r t i c l e , weight in zip ( df [ "type" ] . va lues , d f [ "weights" ] .

va lue s ) ] , 2 )

427 #l e t s cut i n t e r a c t i o n s wi thou t e l e c t r o n s or photons

428 i n s = in s [ i n s [ "amp" ] > 0 ]

429

430 print ("Done!" )

431 return i n s
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A.3 Calibration Source Event Selection

A.3.1 129mXe and 131mXe

Table A.1: Cut history of simulated 129mXe events. Two data quality cuts are applied
and the mono energetic source is selected by cuts in cS1, cS2 and energy.

Cut Events removed Events passed Fraction left
Data Quality Cut

S1 > 0 pe, S2 > 0 pe 32 (0.01 %) 499462 (99.99 %) 99.99 %
1T fiducial volume 265770 (53.21 %) 233692 (46.79 %) 46.79 %

Source Selection
700 pe < cS1 < 2500 pe 1 (0.01 %) 233691 (99.99 %) 46.79 %

4 ⇥ 104 pe < cS2 < 4 ⇥ 105 pe 6 (0.01 %) 233685 (99.99 %) 46.78 %
190 keV < E < 260 keV 270 (0.12 %) 233415 (99.88 %) 46.73 %

Table A.2: Cut history of simulated 131mXe events. A similar set of cuts is applied
compared to the selection of 129mXe events but the energy region is varied
to match the di↵ering decay energy.

Cut Events removed Events passed Fraction left
Data Quality Cut

S1 > 0 pe, S2 > 0 pe 19 (<0.01 %) 496751 (>99.99 %) 99.99 %
1T fiducial volume 263983 (53.14 %) 232768 (46.86 %) 46.86 %

Source Selection
700 pe < cS1 < 2500 pe 0 (0 %) 232768 (100 %) 46.86 %

4 ⇥ 104 pe < cS2 < 4 ⇥ 105 pe 304 (0.13 %) 232464 (99.87 %) 46.80 %
130 keV < E < 190 keV 22 (0.01 %) 232442 (99.99 %) 46.79 %
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Table A.3: Cut history for the selection of 129mXe and 131mXe events in the back-
ground data of XENON1T. The data used here is loaded technically dif-
ferent from the simulated events and the S1 > 0 pe, S2 > 0 pe cut is applied
implicitly so that no number can be given here.

Cut Events removed Events passed Fraction left
Data Quality Cuts

DAQ Veto 1070018 (1.06 % ) 99843936 (98.94 %) 98.94 %
S2 Tails 4031907 (4.04 %) 95812029 (95,96 %) 94.18 %

Muon Veto 1011325 (1.06 %) 94800704 (98.94 %) 93.18 %
Flash 1019 (<0.01 %) 94799685 (>99.99 %) 93.18 %

1T fiducial volume 86461272 (91.20 %) 8338413 (8.80 %) 8.20 %
General Source Selection

700 pe < cS1 < 2500 pe 8150754 (97.95 %) 170669 (2.05 %) 0.17 %
4 ⇥ 104 pe < cS2 < 4 ⇥ 105 pe 31974 (18.73 %) 138695 (81.27 %) 0.14 %

131mXe
130 keV < E < 190 keV 107143 (77.25 %) 31552 (22.75 %) 0.03 %

129mXe
190 keV < E < 260 keV 107482 (77.50 %) 31213 (22.50 %) 0.03 %

A.3.2 212Pb

Table A.4: Cut history of simulated 212Pb decays. Four source specific cuts were used
to separate the events of interest. Since only 212Pb decays were simulated,
the cuts remove only a small fraction of events.

Cut Events removed Events passed Fraction left
Data Quality Cut

S1 > 0 pe, S2 > 0 pe 2268 (0.49 %) 457288 (99.51 %) 99.51 %
1T fiducial volume 228219 (49.91 %) 229069 (50.09 %) 49.85 %

Source Selection
cS1 < 5000 pe 0 (0 %) 229069 (100 %) 49.85 %

cS2 > 10 000 pe 4299 (1.88 %) 224770 (98.12 %) 48.91 %
2.3 < ln

�
cS2
cS1

�
< 5.5 33 (0.01 %) 224737 (99.99 %) 48.90 %

E < 570 keV 40 (0.02 %) 224697 (99.98 %) 48.89 %
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Table A.5: Cut history for 220Rn calibration data. Beside the data quality cuts the
same source specific cuts used for the simulated data is applied here to
select 212Pb decays in TPC Data. The large fraction of events removed by
the fiducial volume cut compared to the 50 % expectation from geometrical
e↵ects could be caused by other external sources and by the inlet of the
220Rn in the TPC (cf. figure 4.16).

Cut Events removed Events passed Fraction left
Data Quality Cuts

S1 > 0 pe, S2 > 0 pe 16846910 (54.66 %) 13971868 (45.34 %) 45.34 %
DAQ Veto 1590225 (11.38 % ) 12381643 (88.62 %) 40.18 %
S2 Tails 582871 (4.71 %) 11798772 (95.29 %) 38.28 %

Muon Veto 63854 (0.54 %) 11734918 (99.46 %) 38.08 %
Flash 0 (0 %) 11734918 (100 %) 38.08 %

1T fiducial volume 9547063 (81.36 %) 2187855 (18.64 %) 7.10 %
Source Selection

cS1 < 5000 pe 966899 (44.20 %) 1220956 (55.80 %) 3.96 %
cS2 > 10 000 pe 35825 (2.93 %) 1185131 (97.07 %) 3.85 %

2.3 < ln
�
cS2
cS1

�
< 5.5 26946 (2.27 %) 1158185 (97.73 %) 3.76 %

E < 570 keV 23995 (2.07 %) 1134190 (97.93 %) 3.68 %

Figure A.1: Two dimensional histograms of simulated (left) and measured (right)
212Pb calibration data in energy-ln(cS2b/cS1) space. Bins of events that
are removed by cuts are shown with a decreased opacity.
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A.3.3 60Co

Table A.6: Cut history for simulated 60Co events of the 1332.5 keV and 1173.2 keV
�-lines.

Cut Events removed Events passed Fraction left
Data Quality Cut

S1 > 0 pe, S2 > 0 pe 156412 (10.30 %) 1361967 (89.70 %) 89.70 %
1T fiducial volume 1301662 (95.57 %) 60305 (4.43 %) 3.97 %

General Source Selection
2.5 ⇥ 105 pe < cS2b < 1 ⇥ 106 pe 9056 (15.02 %) 51249 (84.98 %) 3.38 %
4 ⇥ 103 pe < cS1 < 1 ⇥ 104 pe 4685 (9.14 %) 46564 (90.86 %) 3.07 %

Multiplicity > 1 13420 (28.82 %) 33144 (71.18 %) 2.18 %
1173.2 keV 60Co line

1150 keV < E < 1250 keV 21825 (65.85 %) 11319 (34.15 %) 0.75 %
1332.5 keV 60Co line

1300 keV < E < 1500 keV 20157 (60.82 %) 12987 (39.18 %) 0.86 %

Table A.7: Cut history for the selection of the 1332.5 keV and 1173.2 keV 60Co lines
from the measured background data.

Cut Events removed Events passed Fraction left
Data Quality Cuts

S1 > 0 pe, S2 > 0 pe 32820744 (27.71 %) 85625828 (72.29 %) 72.29 %
DAQ Veto 901575 (1.05 % ) 84724253 (98.95 %) 71.53 %
S2 Tails 3319739 (3.92 %) 81404514 (96.08 %) 68.73 %

Muon Veto 861819 (1.06 %) 80542695 (98.94 %) 68.00 %
Flash 860 (<0.01 %) 80541835 (>99.99 %) 68.00 %

1T fiducial volume 76450819 (94.92 %) 4091016 (5.08 %) 3.45 %
General Source Selection

2.5 ⇥ 105 pe < cS2b < 1 ⇥ 106 pe 1543775 (37.74 %) 2547241 (62.26 %) 2.15 %
4 ⇥ 103 pe < cS1 < 1 ⇥ 104 pe 420188 (16.50 %) 2127053 (83.50 %) 1.79 %

Multiplicity > 1 541664 (25.47 %) 1585389 (74.53 %) 1.34 %
1173.2 keV 60Co line

1130 keV < E < 1210 keV 1256986 (79.29 %) 328403 (20.71 %) 0.28 %
1332.5 keV 60Co line

1300 keV < E < 1360 keV 1273819 (80.35 %) 311570 (19.65 %) 0.26 %
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A.4 Discrimination Space

Figure A.2: Contour Plot for filtered and unfiltered simulated 212Pb data with projec-
tions to cS1 and cS2b. A Gaussian filter is applied to smooth the contour
lines and suppress small scale structures.

Figure A.3: Contour plot for cS1 and cS2b of 129mXe events with the simulated data in
blue and calibration data in green.The contour lines are calculated from
normalized histograms smoothed with a Gaussian filter while the filter is
not applied to the projections.
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Figure A.4: Histograms of the multiplicity for simulated 1332.5 keV 60Co �-rays in
the fiducial volume in blue and calibration data in green. A multiplicity
is was applied to remove single-site events. Error-bars are drawn in black.

Figure A.5: Energy of simulated (blue) and measured (green) 131mXe events. Error-
bars are not drawn to reduce the complexity of the plot. The mono-
energetic 163.9 keV � line is fitted with a Gaussian function. A constant
term was added for the measured data to account for background events.
The fit range was limited to ensure that each bin has enough counts.
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Figure A.6: z-r2 distribution of 60Co events in the detector for simulated events on
the left side and measured data on the right side. The TPC boundaries
are given as solid red lines. The fiducial volume is shown with dashed red
lines.

Figure A.7: The x-y distribution of 60Co events in the detector for simulated events
on the left side and measured data on the right side of the plot. The
approximate dimensions of the TPC are shown as the solid red line and
the fiducial volume as the dashed red line.
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Figure A.8: Comparison of �E�,2 for simulated signal events in blue and measured
background events in orange. The signal data show a peak-like struc-
ture at around �200 keV whereas the background spectrum spreads in a
double-peak structure over a broad energy range.

Figure A.9: Normalized histograms of �E�,2 for simulated 212Pb events in blue and
calibration data in green. Error-bars are not drawn to reduce the com-
plexity of the plot. Only small relative uncertainties are present for each
bin due to the high statistics of both datasets. The simulation tends
towards smaller �E�,2 values compared to the calibration data.
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Figure A.10: Normalized histograms of �E�,sum for simulated 212Pb events in blue
and calibration data in green. Error-bars are not drawn to reduce the
complexity of the plot. Only small relative uncertainties are present for
each bin due to the high statistics of both datasets. The simulation
tends towards smaller �E�,sum values compared to the calibration data.

Figure A.11: Normalized histograms of �E�,sum for simulated 1332.5 keV 60Co events
in blue and measured events in green. Error-bars are not drawn to reduce
the complexity of the plot. The simulated data are Gaussian shaped
whereas the measured data show a double peak structure. Deviations in
�E�,sum are caused by di↵erences between the NEST prediction of the
charge yield and the observed yields in XENON1T data.
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A.5 E↵ect of Input Parameter on Discriminator Prediction

Figure A.12: Two-dimensional histograms of the stando↵ distance and discriminator
prediction obtained with the BDT (top) and MLP (bottom) for signal
(left) and background events (right).

Figure A.13: Two-dimensional histograms of the �mac parameter and discriminator
prediction obtained with the BDT (top) and MLP (bottom) for signal
(left) and background events (right).
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List of abbreviations

LXe liquid xenon

GXe gaseous xenon

PMT photomultiplier tube

ER electronic recoil

NR nuclear recoil

WIMP weakly interacting massive particle

LNGS Laboratori Nazionali del Gran Sasso

TPC time projection chamber

PTFE polytetrafluorethylen

NN neural network

FFN feed forward network

MLP multi-layer perceptron

ReLU rectified linear unit

ML machine learning

BDT boosted decision tree

MC Monte Carlo

DBSCAN Density Based Spatial Clustering for Applications with Noise

PAX Processor for Analysing Xenon

NEST Noble Element Simulation Technique

PDF probability density function

AI artificial intelligence

SR science run

LCE light collection e�ciency

FAX Fake Xenon Experiment

PAX Processor for Analysing XENON

HAX Handy Analysis for XENON

NME nuclear matrix element
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