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1. Introduction

The desire to research particle physics is the desire to understand the most fundamental laws
of this universe that govern everything that we experience. To gain insight into these secrets,
particle physics uses the philosophical approach of Reductionism, the idea that everything
can be reduced to a set of elementary pieces. This way of thinking is not new, in fact, records
can be found dating it back to the ancient Greeks [1]. Recapitulating all the discoveries that
led to our current understanding of particle physics would certainly be insightful, but make
this more of a thesis in history, than a physics one. Therefore, the next paragraph will only
focus one some of the fundamental discoveries of the last centuries, which formed our current
understanding of particle physics, and laid the foundation for this thesis.

A major contribution to the foundation of modern particle physics was made by J.J. Thomp-
son, which in 1897 discovered very light, negatively charged particles in cathode rays, he called
”corpuscles” [2]. These ”corpuscles”would latermore commonly be called electrons, and their
discovery would mark the first observation of what is today understood as an elementary par-
ticle. Seven years later, in 1904 Thompson proposed the ”plum puddingmodel” [3], which, for
the first time, described the substructure of the atom, and predicted the electron as the first
subatomic particle. To further research the substructure of the atom, between 1908 and 1913,
H. Geiger and E. Marsdenmeasured the scattering angle of ionized Helium atoms, also called
𝛼 particles, which were shot onto a thin gold foil, under the supervision of E. Rutherford. In
1911, E. Rutherford used this scattering data to disprove Thompson’s model, and postulated
his ownmodel, describing the atom as a very small, charged nucleus, which is orbited by elec-
trons [4]. Later, he would also prove, that the nucleus of the hydrogen atom is present in other
nuclei, calling the hydrogen nucleus proton [5]. Similar kinds of collision experiments would
later become a staple for the investigation of the substructure of particles and lay the founda-
tion for the methods used in this work. By shooting 𝛼 particles onto Beryllium andmeasuring
the resulting 𝛾 rays, J. Chadwick discovered a neutral constituent of the nucleus with about
the mass of the proton, which he called neutron in 1932 [6], thus gaining further insights into
the substructure of the nucleus. The proton and neutron are the first observations, which
would be later classified as hadronic matter, but their composition and interaction were still
unknown. To explain their interaction, in 1934, H. Yukawa proposed a new type of massive
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Chapter 1. Introduction

matter, the meson, which in his model mediated a strong short-ranged force, later called the
strong force, that binds the protons and neutrons together in the nucleus [7]. His predicted
meson, which would later be called pion, was discovered in 1947 by C. Lattes et al. using
the photo emulsion method [8]. Over the following years, further new particles were found,
like the kaon, first seen by G. Rochester and C. Butler in 1947 [9] and lambda, discovered by
V. D. Hopper and S. Biswas in 1950 [10]. Both of these particles could be easily produced as
pairs by particle collisions but decayed much slower than expected. To explain this strange
behavior, both M. Gell-Mann [11], and T. Nakano together with K. Nishijima [12] published
papers independent from each other in 1953, postulating a new charge-like quantum num-
ber, called strangeness, which was conserved in the production of the strange particles, but
not in their decay. As the next step to understand the new particles that were experimen-
tally discovered, Gell-Mann, in 1961, proposed the ”eightfold way” for the classification of
particles with identical spin [13], which he extended in 1964 to the quark model using group
theory [14]. The model suggests a triplet consisting of spin 1/2 particles, called quarks, and
a triplet of their anti-matter with opposite charge-like quantum numbers, called anti-quarks.
Using this model, the easiest way to construct bound states is tomultiply both triplets, making
quark anti-quark states called mesons, or to multiply three times the same triplet, leading to
states either consisting of three quarks, or three anti-quarks, called (anti-)baryons. Initially,
the quark triplet was introduced only as a tool to use group theory for the description of the
observed particles, but over time became more and more established as the elementary parti-
cles as which they are known today. Then, in November 1974, the groups of B. Richter at the
Stanford Linear Accelerator Center and S.C.C. Ting at the Brookhaven National Laboratory
independently from each other observed an extremely narrow resonance at a mass of about
3.1GeV 1 [15, 16]. In the publication of Ting the new resonance was called 𝐽, while the group
of Richter chose the name 𝜓, leading to the commonly used name 𝐽/𝜓 for the particle. Due to
the high mass of the 𝐽/𝜓 and its strong coupling to electromagnetic decays into leptons, it was
interpreted as a bound state of two new quarks, the charm, and the anti-charm quark, con-
firming the existence of a fourth quark flavor as predicted by B.J. Bjørken and S.L. Glashow
in 1964 [17]. Its discovery triggered the so called ”November Revolution” of particle physics,
leading to the discovery of numerous further hadrons containing charm quarks, and signifi-
cantly contributed to the creation of the standard model, that describes particle physics as we
know it today.

Until this date states consisting of a charm and an anti-charm quark, called charmonia, play
a significant role for the research in particle physics. A major contributor to this research
is the BESIII Collaboration, which was established in 2005 and now includes 89 scientific
institutes from around the world [18]. At the heart of the collaboration is the eponymous
Beijing spectrometer III (BESIII) experiment, located at the Beijing electron positron collider
II (BEPCII) in China. BEPCII facilitates 𝑒+𝑒− collisions at center-of-mass energies between
2−5GeV [19] allowing for in-depth analyses of the charmoniumand light-quark regions. Over

1Throughout this thesis, natural units (𝑐 = ℏ = 1) are used.
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the last 15 years the BESIII collaboration collected data in this energy region and acquired the
world’s largest 𝐽/𝜓 and 𝜓(2𝑆) data sets. The charmonium 𝜓(2𝑆) is the first excitation of the
𝐽/𝜓meson with a mass of about 3686MeV, which can, similar to the 𝐽/𝜓 directly be produced
in electron positron collisions.

For this work, about 2.3 billion events of the BESIII 𝜓(2𝑆) data set were used to gain fur-
ther insight into the physical properties of the 𝑓0 resonances at masses up to 2GeV. These 𝑓0
states are characterized by their isospin and total angular momentum of zero, as well as their
positive parity and charge conjugation quantum numbers. The existence of what is known
today as the 𝑓0(500) was already predicted as early as 1955 [20], but to this day its true nature
is controversial, and its physical properties have only been determined with great uncertain-
ties (cf. Ref. [21]). For the other 𝑓0 resonances, namely the 𝑓0(980), 𝑓0(1370), 𝑓0(1500), and
𝑓0(1710) the situation is similar, making an analysis of 𝑓0 states more than worthwhile, but
anything but trivial. Due to their broad width, overlapping line shapes and positions at mul-
tiple production thresholds of their possible decay channels, sophisticated analysis methods
using high statistics data are necessary, with models that account for analyticity and unitarity.
Another aspect that makes the analysis of these states evenmore interesting, and equivalently
more challenging, is their unknown substructure. Mixingwith non-conventional hadrons, so-
called exotic states, is predicted for all five 𝑓0 states. Both the 𝑓0(500) and 𝑓0(980) are discussed
to mix with states consisting of four bound quarks [22], or two bound mesons [23]. It is also
strongly suggested that the rest of the mentioned 𝑓0 states mix with the lightest glueball [24].
These glueballs are bound states of gluons, the elementary particles that mediate the strong
interaction, which have the property of coupling themselves to the strong interaction. Learn-
ing more about these resonances, and consequently more about the strong interaction that
governs the construction of these states, is the motivation for this work.

The analysis presented in this work can be divided into two parts. In the first part, events from
the 𝜓(2𝑆) data set will be selected, that contain the signal reaction 𝜓(2𝑆) → (𝜙 → 𝐾+𝐾−)𝜋𝜋
with 𝜋𝜋 being either 𝜋+𝜋−, or 𝜋0𝜋0. During the selection process, it will be possible to deter-
mine the branching ratio for the yet unlisted reaction 𝜓(2𝑆) → 𝜙𝜋0𝜋0, as well as determin-
ing a value with less uncertainty for the already measured branching ratio of 𝜓(2𝑆) → (𝜙 →
𝐾+𝐾−)𝜋+𝜋−. Resulting from the choice of the signal reactions, only 𝑓𝐽 states can appear as the
intermediate resonance of the 𝜋𝜋 system, with 𝐽 = 0, 2, 4, ... being the total angular momen-
tum of the states, thus including the desired 𝑓0 resonances. Another feature of this approach
is that states with high strange quark content are preferably produced as intermediate reso-
nances, resulting from the large strangeness content of the 𝜙meson. These selection criteria
will yield 𝜋𝜋 invariant mass spectra with enough statistics for further analysis of the 𝑓0 reso-
nances.
In the second part, a model based on scattering theory will be implemented to describe the
complete signal reaction. To simplify the complex problem of finding a function that is able
to describe the whole process, the reaction will be decomposed into a sum of its partial waves
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Chapter 1. Introduction

[25]. For the description of the 𝜋𝜋 invariant mass spectra, the so-called K-matrix parameteri-
zation will be used [26], allowing for a unitary and analytical incorporation of 𝑓0 resonances
into the model. With the information provided by the model, it will then be possible to gain
further insights into the properties and inner structure of the 𝑓0 states.
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2. Standard Model of Particle Physics

This chapter starts with a general description of the standard model of particle physics, and
then goes more into detail covering mesons and exotic states, with their corresponding quan-
tum numbers. The goal of these sections is to give a clear motivation for researching light
meson resonances and lay a foundation for the following analysis.

The standard model of particle physics unites the strong, weak, and electromagnetic interac-
tions into one quantum field theory with the gauge group:

SU(3)c × SU(2)L ×U(1)Y.

This product includes the color gauge symmetry SU(3)c, which is part of quantum chromo-
dynamics (QCD) and describes the strong interaction. It also includes the weak isospin group
SU(2)L and the weak hypercharge group U(1)Y, which together describe the unified elec-
troweak interaction [27, 28].
Three generations of fermions are included in the standard model, each generation consist-
ing of two quarks and two leptons, as well as their anti-particles, which have the same mass,
but opposite charge-like quantum numbers. Quarks couple to all three interactions, while
leptons only couple to the weak and electromagnetic interaction. Also included in the model
are the gauge bosons and Higgs boson, resulting from its construction as a gauge theory with
spontaneous symmetry breaking. These gauge bosons function as force carriers for the three
interactions. Photons are the force carrier of the electromagnetic interaction, the 𝑍0, 𝑊 ±

bosons carry the weak interaction, and eight gluons carry the strong interaction. There is
only one scalar boson, the Higgs, which is an excitation of the Higgs field, giving mass to all
charged elementary particles, and the 𝑍0 boson. All the particles mentioned before can be
seen in Fig. 2.1 with their corresponding spin and electric charge [29].
The construction of the standard model results in nineteen free parameters. One way of as-
signing these parameters is as follows: One coupling constant for each interaction, one angle
to describe CP-violation in the strong interaction, nine masses of the charged fermions, four
mixing angles of the Cabibbo-Kobayashi-Maskawa matrix, which gives the strength of the
quark-flavor changing weak interaction, one vacuum expectation value for the Higgs field,
and one mass of the Higgs particle [27].
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Chapter 2. Standard Model of Particle Physics

While this model has been remarkably successful in predicting the data collected by numer-
ous experiments, there are still a lot of aspects that are not understood. Some examples would
be the inclusion of gravity, the description of dark energy and dark matter, or an explanation
for the baryon asymmetry in the universe [28, 29].
The standard model has become the motivation of many works in modern particle physics
which e.g., try to determine its parameters, test its predictions and limits, and find theories
that expand the model to include aspects that are currently not described. This work focuses
on testing the prediction of QCD by investigating the properties of states bound by the strong
interaction. For the classification of such bound states, the quark model is used, which will
be introduced in the next section.
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(fermions)

I II III

interactions / force carriers
(bosons)

mass

charge

spin

Q
U

A
R

K
S

u
≃2.2 MeV

⅔

½

up

d
≃4.7 MeV

−⅓

½

down

c
≃1.28 GeV

⅔

½

charm

s
≃96 MeV

−⅓

½

strange

t
≃173.1 GeV

⅔

½

top

b
≃4.18 GeV

−⅓

½

bottom

L
E

P
T

O
N

S

e
≃0.511 MeV

−1

½

electron

νe
<1.0 eV ²

0

½

electron
neutrino

μ
≃105.66 MeV

−1

½

muon

νμ
<0.17 MeV ²

0

½

muon
neutrino

τ
≃1.7768 GeV

−1

½

tau

ντ
<18.2 MeV ²

0

½

tau
neutrino G

A
U

G
E

 B
O

S
O

N
S

V
E

C
T

O
R

 B
O

S
O

N
S

g
0

0

1

gluon

γ
0

0

1

photon

Z
≃91.19 GeV ²

0

1

Z boson

W
≃80.433 GeV

±1

1

W boson

S
C

A
L

A
R

 B
O

S
O

N
S

H
≃124.97 GeV ²

0

0

higgs

Figure 2.1: All elementary particles predicted by the standard model grouped into quarks, leptons,
gauge bosons, and scalar bosons (excluding anti-particles). For each particle the spin, electric charge
as well as their current estimated mass is given. The fermions are ordered in terms of their generation.
Edited version of Ref. [30].

2.1 Quark Model

The quark model is used for the classification and description of states bound by the strong
interaction consisting of quarks and gluons. As mentioned in the last section, QCD is the
quantum field theory that describes the strong interaction. QCD has a SU(3) gauge symmetry
corresponding to three colors, three anti-colors, and eight gluons. Quarks carry a color charge,
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2.2. Hadrons

while anti-quarks carry an anti-color and gluons carry a color and an anti-color [31, Reviews
Chapter 9]. Even if not explicitly included in the theoretical description of QCD, experimental
results strongly imply that only color neutral states can exist freely. This phenomenon is called
confinement [31, Reviews Chapter 15]. Color neutrality can be achieved by combining all
three (anti-)colors, or by coupling a color and its anti-color. This concept is visualized in the
upper half of Fig. 2.2.
With this restriction, it is now possible to construct strongly interacting bound states made of
quarks and gluons, called hadrons. The construction and classification of these hadrons will
be discussed in the next sections.

red blue

green anti-green

anti-blueanti-red

red anti-red

baryon meson anti-baryon

Figure 2.2: Visualization of the color charge (top) and the three easiest color neutral bound quark states
(bottom). The combination of color charges is shown as the overlapping of the colored circles white
being color neutral combinations.

2.2 Hadrons

Strongly interacting color neutral bound states made of quarks are called hadrons. The two
easiest ways to combine quarks while respecting color neutrality are quark anti-quark (𝑞 ̄𝑞)
states, called mesons, and states made of three (anti-)quarks, called (anti-)baryons. A sim-
ple visualization of such states, only showing the so-called constituent quarks, can be seen in
the lower half of Fig. 2.2. In the field of the strong interaction, which binds the constituent
quarks, virtual quark anti-quark pairs are constantly created and annihilate each other. These
so-called sea quarks and anti-quarks, togetherwith the gluons, whichmediate the interactions
inside the hadrons, influence the mass, spin, momentum, and magnetic moment of hadrons.
All charge-like quantum numbers of the hadrons only depend on their constituents. In ad-
dition to the electric charge and spin quantum numbers of the quarks, which can be seen in
Fig. 2.1, all quarks by convention have a parity of +1 and a baryon quantum number of +1/3.
All other flavor dependent quantum numbers are listed in Table 2.1 [32].
A majority of particles investigated in this work are mesons, therefore the next section will
give a detailed description of their properties.
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Chapter 2. Standard Model of Particle Physics

Table 2.1: Additive quantum numbers depending on the quark flavor according to [31, Summary Ta-
bles].

𝑑 𝑢 𝑠 𝑐 𝑏 𝑡

𝐼 - isospin 1/2 1/2 0 0 0 0
𝐼𝑧 - isospin 𝑧-component −1/2 1/2 0 0 0 0
𝑆 - strangeness 0 0 −1 0 0 0
𝐶 - charm 0 0 0 1 0 0
𝐵 - bottomness 0 0 0 0 −1 0
𝑇 - topness 0 0 0 0 0 1

2.3 Mesons

Mesons are often classified by their 𝐽𝑃𝐶 quantum numbers. 𝐽 is the meson’s total angular
momentum quantum number, which depends on the orbital angular momentum quantum
number 𝑙 and the spin coupling quantum number 𝑠 of their constituent quarks, and can take
values in the following range:

|𝑙 − 𝑠| ≤ 𝐽 ≤ |𝑙 + 𝑠|. (2.1)

𝑃 is the eigenvalue of the parity operator, which changes the signs of the spatial coordinates
of a state. All mesons are parity eigenstates, with their parity eigenvalue being defined as
𝑃 = (−1)𝑙+1. 𝐶 is the eigenvalue of the charge conjugation operator, which transforms a state
into its anti-state. Only mesons that are their own anti-particle are eigenstates of the charge
conjugation operator, and their eigenvalues can be written as 𝐶 = (−1)𝑙+𝑠 [32].
Often, in addition to the 𝐽𝑃𝐶 quantum numbers, the so called 𝐺-parity is defined as
𝐺 = (−1)𝐼+𝑙+𝑠. It is a conserved property of mesons that are their own anti-particle, and
of 𝑢 ̄𝑑 and ̄𝑢𝑑 states, given that isospin is conserved in the interaction. It is currently assumed,
that parity and charge conjugation are conserved in the strong and electromagnetic interac-
tion, while isospin is only approximately conserved in the strong interaction [31, Reviews
Chapter 15].

2.3.1 Light Mesons

Light mesons are mesons only containing the three lightest quarks (𝑢, 𝑑, 𝑠), and which can be
grouped into nonets made out of a singlet and octet states [27]:

3 ⊗ 3̄ = 8 ⊕ 1. (2.2)

The pseudoscalar (𝐽𝑃𝐶 = 0−(+)), and vector (𝐽𝑃𝐶 = 1−(−)) meson nonets, containing the
lightest mesons, can be seen in Fig. 2.3.
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Figure 2.3: The pseudoscalar (a), and vector (b) meson nonet according to Ref. [31, Summary Tables].

I
I

I

Figure 2.4: Spectrum of light meson nonets ordered by their 𝐽𝑃𝐶(𝑛2𝑠+1𝑙𝐽) quantum numbers. Inside
the nonets the nine particles are ordered according to their isospin 𝐼 (three 𝐼 = 1 states, two times two
𝐼 = 1/2 states). Mesons highlighted in blue are established, while the others are controversial entries.
Edited version of Figure 63.1 in Ref. [31, Reviews Chapter 63].
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Chapter 2. Standard Model of Particle Physics

An attempt to order the currently experimentally seen and established light mesons up to
∼ 2GeV, listed by the Particle Data Group (PDG) [31, Summary Tables], into one coherent
spectrum of nonets can be seen in Fig. 2.4. In this spectrum the meson nonets are not only
ordered according to their 𝐽𝑃𝐶 quantumnumbers, but also depending on their radial excitation
𝑛, orbital excitation 𝑙 and spin coupling 𝑠 quantum numbers. Similar to atomic physics the
letters S, P, D, F,... are used for the description of the angular excitation 𝑙 = 0, 1, 2, 3, ..., leading
to the full classification of the nonets by their 𝐽𝑃𝐶(𝑛2𝑠+1𝑙𝐽) quantum numbers [31, Reviews
Chapter 64].
Not all known light mesons, which are listed by the PDG, are shown in the spectrum. Some
of them have controversial properties, which makes their categorization into the spectrum
difficult, like the isoscalar scalar (𝐼𝐺(𝐽𝑃𝐶) = 0+(0++)) 𝑓0(500), 𝑓0(980) and 𝑓0(1500) mesons.
For the listed 𝑓0 mesons it is not clear if they are conventional mesons or are so-called exotic
states [31, Reviews Chapter 63 and 64]. See Section 2.4 for more information on exotic states.
The numbers in the brackets behind the particle names corresponds to their approximatemass
in MeV.
A general property of isoscalar (𝐼 = 0) mesons with equal 𝐽𝑃𝐶 quantum numbers is, that
they mix with each other. While this would also include heavier states with 𝑐 and 𝑏 quark
content, as well as excited states, the mixing between states of different nonets is assumed to
be negligible. The quark flavor wave functions for generic isoscalar states 𝑓 and 𝑓′ with the
meson mixing angle 𝜃 can be written as [31, Reviews Chapter 15]:

𝑓 = 𝜓8 sin 𝜃 + 𝜓1 cos 𝜃, (2.3)

𝑓′ = 𝜓8 cos 𝜃 − 𝜓1 sin 𝜃, (2.4)

with the flavor singlet wave function 𝜓1 and the flavor octet wave function 𝜓8 being defined
as:

𝜓1 =
1
√3

(𝑢 ̄𝑢 + 𝑑 ̄𝑑 + 𝑠 ̄𝑠), (2.5)

𝜓8 =
1
√6

(𝑢 ̄𝑢 + 𝑑 ̄𝑑 − 2𝑠 ̄𝑠). (2.6)

For an ”ideal” mixing angle of 𝜃 = 35.3°, 𝑓′ would be a pure 𝑠 ̄𝑠 state and 𝑓 would be a pure
𝑢 ̄𝑢 + 𝑑 ̄𝑑 state. This is almost the case for the mesons 𝑓 = 𝜔(782) and 𝑓′ = 𝜙(1020) with
a mixing angle of about 36.5°, implying that 𝜙(1020) is almost a pure 𝑠 ̄𝑠 state [31, Reviews
Chapter 15].
This concludes the discussion of lightmesons. Another important kind of mesons, for particle
physics, as well as for this work, are states consisting of a charm and an anti-charm quark.
These charmonium(-like) states will be presented in the next section.
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2.3. Mesons

2.3.2 Charmonium(-like) States

In 1974 two research groups found a new particle with a mass of about 3097MeV, which
would later be called 𝐽/𝜓 [15, 16]. The inner structure of the 𝐽/𝜓 meson is similar to that of
a positronium, but instead of an electron and positron it contains a charm and anti-charm
quark. Due to this similarity pure 𝑐 ̄𝑐mesons are called charmonium states. After this discov-
ery further states containing 𝑐 ̄𝑐 quarks were found, including the 𝜓(2𝑆)meson, which results
from the excitation of the main quantum number of the 𝐽/𝜓 state. The 𝜓(2𝑆) state is the start-
ing point for the analysis performed in this work. Like the vector meson 𝐽/𝜓, the 𝜓(2𝑆)meson
has 𝐽𝑃𝐶 quantum numbers of 1−− but has a higher mass of (3686.10±0.06)MeV, and a width
of (294 ± 8) keV, according to the PDG [31, Summary Tables]. A spectrum of the currently
known states with 𝑐 ̄𝑐 content can be seen in Fig. 2.5 [29, 31].

Figure 2.5: Mass spectrum of states containing 𝑐 ̄𝑐 content, including states whichmay be non-𝑞 ̄𝑞 states
like the 𝜒𝑐1(3872), sorted by their 𝐽𝑃𝐶 quantum number, with an extra column for the 𝑍𝑐 states. States
with blue boxes are established according to the particle data group (PDG) [31, SummaryTables], while
the states with white boxes are controversial, but have assigned quantum numbers. The gray dotted
lines indicate the energy thresholds, above which different 𝐷�̄�meson combinations can be produced.
A 𝐷 meson always contains a charm quark, while �̄� contains an anti-charm quark, making 𝐷�̄� pairs
dominant decay channels for 𝑐 ̄𝑐 states above the threshold.
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Chapter 2. Standard Model of Particle Physics

It has to be noted that not all 𝑐 ̄𝑐 states shown are conventional charmonia, but also charm-
onium-like states are included, which contain 𝑐 ̄𝑐 content but are expected to be exotic states.
The 𝑍𝑐 states would be examples of such exotic states. They decay into charmonia, but carry
isospin, strongly indicating a non-conventional hadronic substructure [31, Reviews Chapter
15]. A more detailed description of the exotic states will be presented in the next section.

2.4 Exotic States

In general, all states which cannot be identified as conventionalmesons, or baryons, are called
exotics. Color neutrality is the only constraint for strongly bound states, thus infinitely many
combinations of quarks and gluons would theoretically be possible. Some examples would be
states made of more than three quarks, like tetraquarks, which are made of four quarks, or
molecules, which are bound meson, or baryon states. Other possibilities would include states
where gluons actively contribute to the charge-like quantum numbers (hybrids), and states
entirely made out of gluons (glueballs) [31, Reviews Chapter 15]. A simple visualization of
such states can be seen in Fig. 2.6. There already are candidates for all mentioned exotics.
Certain candidates for tetraquarks, molecules and glueballs in the light meson sector are of
special interest for this work, and thus will now be discussed in more detail.
It is strongly suggested that the nine scalar states 𝑓0(500), 𝐾∗

0(700), 𝑓0(980) and 𝑎0(980) are ex-
otic states. There are two promising theories on the exotic content of these states [31, Reviews
Chapter 64].

moleculetetraquark glueballhybrid

Figure 2.6: Depiction of four examples of exotic states, made of gluons and quarks and bound by the
strong interaction.

The first one suggests that these nine states correspond to the lightest tetraquark nonet. To
get the lightest tetraquark multiplet one must combine two triplets of light quarks with two
triplets of light anti-quarks:

3 ⊗ 3 ⊗ 3̄ ⊗ 3̄ = 9 ⊕ 36 ⊕ 18 ⊕ 18.

After some reduction steps, one can split all tetraquark states into a nonet, a multiplet with
36 tetraquarks, and one with 18 tetraquarks, as well as a multiplet with 18 anti-tetraquarks.
From symmetry considerations and spin and color conservation follows that the tetraquark
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ground states are a nonet of scalar mesons with masses around 900MeV [22]. This theoret-
ical description would conveniently fit the aforementioned mesons leading to the following
assignment of their quark content [31, Reviews Chapter 15]:

𝑓0(500) = �̄� ̄𝑑𝑢𝑑,

𝑓0(980) =
1
√2

(𝑢 ̄𝑢 + 𝑑 ̄𝑑)𝑠 ̄𝑠,

𝑎00(980) =
1
√2

(𝑢 ̄𝑢 − 𝑑 ̄𝑑)𝑠 ̄𝑠,

𝑎+0 (980) = ̄𝑑 ̄𝑠𝑢𝑠, 𝑎−0 (980) = �̄� ̄𝑠𝑑𝑠,

𝐾∗+
0 (700) = ̄𝑠 ̄𝑑𝑢𝑑, 𝐾∗−

0 (700) = �̄� ̄𝑑𝑑𝑠,

𝐾∗0
0 (700) = ̄𝑠�̄�𝑢𝑑, ̄𝐾∗0

0 (700) = �̄� ̄𝑑𝑢𝑠.

The other proposal for the description of these states would be that they are molecules made
of pions and kaons. Looking at their masses one would expect that the 𝑓0(500) is a 𝜋𝜋 bound
state, the 𝐾∗

0(700) are 𝐾𝜋 molecules and the 𝑓0(980) and 𝑎0(980) are 𝐾 ̄𝐾 states [31, Reviews
Chapter 63].
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Figure 2.7: Glueball spectrum predicted by lattice QCD calculations using the quenched approxima-
tion. On the abscissa are the signs of the parity and charge conjugation eigenvalues. The mass of the
glueball states in terms of the hadronic scale factor 𝑟0 (left), and in GeV (right), are given on the ordi-
nates. Figure taken from Ref. [24].

In Fig. 2.7 the mass and 𝐽𝑃𝐶 quantum number predictions for possible glueballs can be seen.
The masses were determined by lattice QCD calculations using the so-called quenched ap-
proximation, neglecting 𝑞 ̄𝑞 loops [24]. According to multiple theories the glueball ground
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Chapter 2. Standard Model of Particle Physics

state has the 𝐽𝑃𝐶 quantum numbers 0++ and lies in a mass range between 1600MeV and
1700MeV, while the first excited glueball state with 𝐽𝑃𝐶 = 2++ is expected to be at a mass
around 2300MeV [24, 33–35].
When looking at the isoscalar mesons in the 0++(13𝑃0) scalar nonet depicted in Fig. 2.8, it can
be seen that one of the 𝑓0 states appears to be supernumerary. With their 𝐼𝐺(𝐽𝑃𝐶) = 0+(0++)
quantum numbers and masses between 1.3GeV and 1.8GeV these 𝑓0 states are perfect candi-
dates for carrying at least admixtures of the lightest glueball. There also already exist theories
proposing mixing strength between the 𝑓0 resonances and the glueball, like in Refs. [36, 37]
which have to be tested using experimental data.

1𝐽𝑃𝐶 = 0+(+)

𝑆

𝐼3

𝐾0
∗0

𝐾0
∗0

𝐾0
∗+

𝐾0
∗−

𝑎0
− 𝑎0

+
𝑎0
0

𝑓0 1370𝑓0 1710

𝑓0 1500

-1

1
2-1 2

-1 1

Figure 2.8: The scalar meson nonet (0++(13𝑃0)) with a supernumerary isoscalar 𝑓0 state according to
[31, Reviews Chapter 63, summery tables].

Now that multiple theories have been laid out for the contents of the 𝑓0 resonances it is the
experimentalist’s task to extract the real nature of these states. Due to their large widths and
position near production thresholds of their possible decay channels (𝜋𝜋, 4𝜋,𝐾 ̄𝐾, 𝜂𝜂, and 𝜂𝜂′),
the analysis of these states has proven to be rather challenging. Models respecting unitarity
and analyticity are needed to describe the invariantmass spectra of the possible 𝑓0 decay chan-
nels. An approach that satisfies all criteria, and is thus used in this work, will be introduced
in the next chapter.
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3. Quantum Mechanical Scattering Theory

One of the most successful ways to gain information about the substructure of quantum me-
chanical particles and the forces that dictate their interactions are collision experiments. To
extract this information from the results of such experiments, a comprehensive quantumme-
chanical scattering theory is needed that connects the measurable observables with the pa-
rameters of more fundamental theoretical models, like the standardmodel. On themost basic
level, the scattering theory, which will be presented in the next sections, describes the interac-
tion of particles. This includes the easiest case of elastic scattering, but also more complicated
scattering, like resonant production and decay processes.
To introduce the fundamental aspects of scattering theory, the first section of this chapter will
give a detailed description of the non-relativistic elastic scattering problem. After this intro-
duction, the second section will provide an overview of the various aspects that are needed
to formulate a relativistic scattering model for the data analyzed in this work. Also, methods
will be introduced to extract physical parameters from the scattering model.

3.1 Non-Relativistic Scattering

Before being able to discuss more complex scattering models, which can describe the data
analyzed in this work, the fundamental framework of scattering theory must be introduced.
To simplify the following discussion, the quantum mechanical scattering problem is re-
duced to its simplest case, being non-relativistic elastic scattering of two non-identical par-
ticles without substructure. To fully characterize this scattering process, the solution of the
Schrödinger equation has to be determined. Three different approaches will be shown to solve
the Schrödinger equation. The first two approaches start with the stationary Schrödinger
equation, and then use differential equations, in the first case, and integral equations, in the
second one, to find its solutions. In the third approach the time dependent Schrödinger equa-
tion is chosen as a starting point, and time propagation operators are used to find solutions to
the equation.
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Chapter 3. QuantumMechanical Scattering Theory

It will be shown that all three approaches give equivalent results, but each of them provides
a new way of solving the scattering problem. These results from each approach will then be
combined to define a model that can describe experimental data with the results from scatter-
ing theory.

3.1.1 Differential Equations

The starting point for the first approach is the spatial representation of the stationary Schrö-
dinger equation, which describes the two-particle scattering problem [25]:

(−
Δ1
2𝑚1

− Δ2
2𝑚2

+ 𝑤( ⃗𝑟1, ⃗𝑟2)) 𝜙( ⃗𝑟1, ⃗𝑟2) = 𝜖 𝜙( ⃗𝑟1, ⃗𝑟2), (3.1)

with Δ being the Laplace operator and 𝜙 being the wave function describing the scattering
process. This equation also contains the masses of the two scattering particles 𝑚1 and 𝑚2,
their position vectors ⃗𝑟1 and ⃗𝑟2, as well as the potential of the interaction 𝑤 and the energy of
the process 𝜖. If the interaction potential is spatially confined, and energy is conserved, 𝜖 can
be written as the sum of kinetic energies 𝐸kin,1 and 𝐸kin,2 of the two particles, before and after
the interaction takes place:

𝜖 = (𝐸kin,1 + 𝐸kin,2)before =
| ⃗𝑝1|2

2𝑚1
+
| ⃗𝑝2|2

2𝑚2
= (𝐸kin,1 + 𝐸kin,2)after, (3.2)

with ⃗𝑝1 and ⃗𝑝2 being the momenta of the two scattering particles. Equation (3.1) can be split
into one equation describing the dynamics of the center of mass system, which is of no further
interest for the following discussion, and one describing the relative dynamics between both
particles [25]:

(−
Δ𝑟
2𝜇 + 𝑤( ⃗𝑟)) 𝜙rel( ⃗𝑟) = 𝜖rel 𝜙rel( ⃗𝑟), (3.3)

with the reduced mass 𝜇 = 𝑚1𝑚2/(𝑚1 +𝑚2), and the energy 𝜖rel being defined as:

𝜖rel =
1

2(𝑚1 +𝑚2)
(
𝑚2
𝑚1

𝑝21 − 2 ⃗𝑝1 ⋅ ⃗𝑝2 +
𝑚1
𝑚2

𝑝22) . (3.4)

Equation (3.3) effectively describes the scattering of one particle with the mass 𝜇 on an exter-
nal potential 𝑤( ⃗𝑟). To formalize this observation, Eq. (3.3) can be redefined as the stationary
Schrödinger equation of the wave function 𝜓( ⃗𝑟):

(− Δ
2𝑚 + 𝑣( ⃗𝑟)) 𝜓( ⃗𝑟) = 𝐸 𝜓( ⃗𝑟), (3.5)

with the potential 𝑣( ⃗𝑟), energy 𝐸, and the mass𝑚.
The next step will be to solve Eq. (3.5), using the boundary conditions that the wave function
must be analytical for 𝑟 → 0, and can be written as a superposition of an incoming wave 𝜓𝑖,
and a scattered wave 𝜓𝑠 for 𝑟 → ∞. The wave function for 𝑟 → ∞, which will be referred to as
the asymptotic wave function from this point on, is defined as follows:

𝜓( ⃗𝑟)
𝑟→∞
−−−→ 𝜓asymp( ⃗𝑟) = 𝜓i( ⃗𝑟) + 𝜓s( ⃗𝑟). (3.6)
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In the case of a particle with no inner structure the incoming wave 𝜓i can be defined as a
plane wave. If this is the case, the scattered wave function 𝜓s can be defined using Huygens
principle [38], which says that a plain wave scattering on a point-like potential results in a
spherical wave. For the incorporation of spatially distributed potentials, the so-called scatter-
ing amplitude 𝑓(𝜃, 𝜑) has to be introduced, which, in combinationwith the results of Huygens
principle, results in the following scattered wave function:

𝜓s( ⃗𝑟) = 𝑓(𝜃, 𝜑)𝑒
𝑖𝑘𝑟

𝑟 , (3.7)

with the wave number 𝑘 = √2𝑚𝐸. A spatially distributed potential can be interpreted as
infinitely many point-like potentials with varying strengths. The scattering amplitude, which
only depends on the scattering angles 𝜃 and 𝜑, contains the information about all possible
scattering processes, and includes their interference effects into the scattered wave function.
Together with the plane wave one gets the following asymptotic wave function:

𝜓asymp( ⃗𝑟) = 𝑒𝑖𝑘𝑧 + 𝑓(𝜃, 𝜑)𝑒
𝑖𝑘𝑟

𝑟 . (3.8)

Now the goal is to connect the scattering amplitude with the cross section. In general, the
differential cross section can be written in terms of the incoming particle current density 𝑗i
and scattered particle current density 𝑗s [25]:

( 𝑑𝜎𝑑Ω) =
𝑟2𝑗s
𝑗i

. (3.9)

Then the classical particle current densities can be replaced by quantum mechanical proba-
bility current densities, which are defined as follows:

⃗𝑗 = 𝑖
2𝑚 (𝜓∇⃗𝜓∗ − 𝜓∗∇⃗𝜓) . (3.10)

By inserting thewave function for the planewave in 𝑗i andEq. (3.7) in 𝑗s, one gets the following
relation for the differential cross section:

( 𝑑𝜎𝑑Ω) = |𝑓(𝜃, 𝜑)|2, (3.11)

The total cross section can then be calculated by integrating the differential cross section over
all angles 𝜃 and 𝜑:

𝜎 =∬|𝑓(𝜃, 𝜑)|2 d𝜃 d𝜑. (3.12)

In the next step probability conservation will be introduced into the definition of the cross
section by requiring that every current that enters a reasonably large sphere must eventually
leave it again. This condition can be written as:

∬
large sphere

⃗𝑗 ⋅ 𝑑 ⃗𝑓 = 0. (3.13)
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Chapter 3. QuantumMechanical Scattering Theory

By inserting Eq. (3.10) into this integral equation, and using the asymptotic wave function (cf.
Eq. (3.8)) to calculate the probability current density, one gets the so-called optical theorem:

𝜎 = 4𝜋
𝑘 Im𝑓(0, 𝜑). (3.14)

This theorem incorporates probability conservation by requiring that all waves that scatter,
thus having a scattering angle 𝜃 ≠ 0, are excluded from the outgoing wave that did not scatter,
having an angle of 𝜃 = 0. Mathematically this is facilitated by interference effects resulting
from the imaginary part of the scattering amplitude.
Until this point, with Eqs. (3.11) and (3.12) a way was found to connect the experimentally
accessible cross section to the theoretical scattering amplitude, and thus the asymptotic wave
function. Furthermore, with Eqs. (3.2) and (3.14) conditions were derived for the incorpora-
tion of energy and probability conservation into the approach. The next challenge is now to
find a parameterization for the scattering amplitude, which can be used to solve the integral
and gain a direct relation to the total cross section. In the next section one such approach will
be presented for a simplified potential.

Partial Wave Decomposition

In this section, a method will be introduced, that can be used to decompose the scattering
process into partial waves. In the following paragraphs, this decomposition will be used to
solve the scattering problem for a radially symmetrical potential 𝑣( ⃗𝑟) = 𝑣(𝑟), to establish the
method. Later in Sections 3.1.3 and 3.2.5 a similar method will be used for different descrip-
tions of the scattering process.
In case of a radially symmetrical potential, the dependency of the wave function on the az-
imuth angle 𝜑 can be eliminated by demanding that the incoming wave propagates in 𝑧-
direction. It is thus possible to expand the wave function as follows [25]:

𝜓(𝑘, ⃗𝑟) =
∞
∑
𝑙=0

𝑅(𝑘, 𝑟)
𝑘𝑟 ⋅ 𝑃𝑙(cos 𝜃), (3.15)

with 𝑅(𝑘, 𝑟) being the radial wave function and 𝑃𝑙(cos 𝜃) being Legendre polynomials. When
inserting this wave function into Eq. (3.5) one gets the following differential equation for the
radial wave function:

𝑑2𝑅𝑙(𝑘, 𝑟)
𝑑𝑟2 + (𝑘2 − 𝑙(𝑙 + 1)

𝑟2 − 2𝑚 ⋅ 𝑣(𝑟)) 𝑅𝑙(𝑘, 𝑟) = 0. (3.16)

The problem can now be split into three concentric spherical regions around the scattering
center at 𝑟 = 0, still assuming that the potential 𝑣(𝑟) is spatially confined.

1. The scattering region with 𝑣(𝑟) ≠ 0, including the analyticity boundary condition for
𝑟 → 0.

2. The intermediate region with 𝑣(𝑟) = 0, but the asymptotic boundary condition does not
apply.
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3.1. Non-Relativistic Scattering

3. The asymptotic region with 𝑣(𝑟) = 0 and 𝑟 → ∞, where the asymptotic boundary con-
dition applies, which means Eq. (3.8) can be used.

To solve the Schrödinger equation in the first region, the potential has to be known, which is
not the case for this general discussion, thus this step will be skipped. For 𝑣(𝑟) = 0, Eq. (3.16)
can be solved in the intermediate region using the Bessel-Riccati functions [39]. The exact
solution is of no further interest, but for 𝑟 → ∞ the wave function in the intermediate region
can be written as:

𝜓inter( ⃗𝑟)
𝑟→∞
−−−→

∞
∑
𝑙=0

(2𝑙 + 1)𝑖𝑙𝑒𝑖𝛿𝑙
𝑘 sin (𝑘𝑟 − 𝑙𝜋2 + 𝛿𝑙)

𝑃𝑙(cos 𝜃)
𝑟 , (3.17)

with 𝛿𝑙 being the so-called scattering phases, which at this point are just constants resulting
from solving Eq. (3.16).
Now, the asymptotic wave function (cf. Eq. (3.8)) will be brought to the form of Eq. (3.15).
This is achieved by expanding the plain wave function using the asymptotic representation of
the Bessel functions:

𝑒𝑖𝑘𝑧
𝑟→∞
−−−→

∞
∑
𝑙=0

(2𝑙 + 1)𝑖𝑙
𝑘 sin (𝑘𝑟 − 𝑙𝜋2 )

𝑃𝑙(cos 𝜃)
𝑟 . (3.18)

By comparing this equation with Eq. (3.17), it can be seen that both are representations of a
plain wave but have a phase shift 𝛿𝑙 between them, giving 𝛿𝑙 the name scattering phase. To get
the full partial wave decomposition of the asymptotic wave function, the scattering amplitude
must be expanded in respect to partial scattering amplitudes 𝑓𝑙 [39]:

𝑓(𝜃) =
∞
∑
𝑙=0

𝑓𝑙 ⋅ 𝑃𝑙(cos 𝜃). (3.19)

Now, both Eqs. (3.18) and (3.19) can be inserted into Eq. (3.8) to get the following representa-
tion of the asymptotic wave function:

𝜓asymp =
∞
∑
𝑙=0

((2𝑙 + 1)𝑖𝑙
𝑘 sin (𝑘𝑟 − 𝑙𝜋2 ) + 𝑓𝑙 ⋅ 𝑒𝑖𝑘𝑟)

𝑃𝑙(cos 𝜃)
𝑟 . (3.20)

By demanding an analytical transition from Eq. (3.17) to Eq. (3.20), one gets the following
relation between the partial scattering amplitude and the scattering phase [25]:

𝑓𝑙 =
2𝑙 + 1
2𝑖𝑘 (𝑒2𝑖𝛿𝑙 − 1) . (3.21)

To get the connection between the cross section and the partial scattering amplitude, Eq. (3.19)
has to be inserted into Eq. (3.12). Then, the relation between the cross section and the scatter-
ing phase can be derived by substituting 𝑓𝑙 using Eq. (3.21):

𝜎 = 4𝜋
∞
∑
𝑙=0

|𝑓𝑙|2

2𝑙 + 1 =
4𝜋
𝑘2

∞
∑
𝑙=0
(2𝑙 + 1) sin2 𝛿𝑙, (3.22)

This kind of partial wave decomposition allows for the inclusion of angular momentum con-
servation, by only allowing specific angular momentum quantum numbers in the sum. For
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this simple example, using a radially symmetric potential, it is now possible to fully character-
ize the asymptotic wave function for a reaction, using the results of a cross section measure-
ment.
This concludes the approach of using differential equation to solve the stationary Schrödinger
equation of the scattering problem. In the next section, an approach using integral equations
will be introduced to find a way to characterizing the scattering amplitude for an arbitrary
potential.

3.1.2 Integral Equations

The second approach also starts with the stationary Schrödinger equation from Eq. (3.5), but
this time written in bra-ket notation:

(𝐸 − �̂�) |𝜓⟩ = ̂𝑉 |𝜓⟩ , (3.23)

with the potential operator ̂𝑉, which is related to the potential 𝑣( ⃗𝑟) over:

⟨ ⃗𝑟| ̂𝑉 | ⃗𝑟′⟩ = 𝛿( ⃗𝑟 − ⃗𝑟′)𝑣( ⃗𝑟). (3.24)

For the scattering problem at hand, the Hamilton operator is defined as the kinematic energy
operator in spatial representation:

�̂� = Δ
2𝑚. (3.25)

The homogeneous solution ( ̂𝑉 = 0) of Eq. (3.23) is a plain wave:

|𝜓hom⟩ = | ⃗𝑘⟩ , (3.26)

which in spatial representation is defined as:

⟨ ⃗𝑟| ⃗𝑘⟩ = 𝜓( ⃗𝑟)hom = 1
(2𝜋)3/2

𝑒𝑖�⃗��⃗�. (3.27)

The solution of the inhomogeneous part can be expressed using the Green’s operator ̂𝐺 [25]:

|𝜓inhom⟩ = ̂𝐺(𝐸) ̂𝑉 |𝜓⟩ . (3.28)

Then, using Eqs. (3.26) and (3.28), the formal solution for Eq. (3.23) can be written as:

|𝜓⟩ = |𝜓hom⟩ + |𝜓inhom⟩ = | ⃗𝑘⟩ + ̂𝐺(𝐸) ̂𝑉 |𝜓⟩ . (3.29)

This equation is called Lippmann-Schwinger equation and can be explicitly written as an in-
tegral equation in spatial representation for the state |𝜓⟩:

⟨ ⃗𝑟|𝜓⟩ = ⟨ ⃗𝑟| ⃗𝑘⟩ +∫𝑑3𝑟′∫𝑑3𝑟″ ⟨ ⃗𝑟| ̂𝐺(𝐸) | ⃗𝑟′⟩ ⟨ ⃗𝑟′| ̂𝑉 | ⃗𝑟″⟩ ⟨ ⃗𝑟″|𝜓⟩ (3.30)

⇔ 𝜓( ⃗𝑟) = 𝑒𝑖�⃗��⃗�

(2𝜋)3/2
+∫𝑑3𝑟′𝐺( ⃗𝑟, ⃗𝑟′; 𝐸) ⋅ 𝑣( ⃗𝑟′) ⋅ 𝜓( ⃗𝑟′) (3.31)
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Using the boundary conditions that were introduced in the last section the following repre-
sentation of the Greens function can be derived for 𝑟 → ∞ [25]:

𝐺( ⃗𝑟, ⃗𝑟′)
𝑟→∞
−−−→ − 𝑚

2𝜋𝑟𝑒
𝑖𝑘0𝑟 ⋅ 𝑒−𝑖�⃗��⃗�′, (3.32)

with ⃗𝑘0 being the wave vector of the incoming wave, and ⃗𝑘 being the wave vector of the
scattered wave. This asymptotic definition of the Greens function can now be inserted into
Eq. (3.31) resulting in the following definition for the asymptotic wave function in spatial rep-
resentation:

𝜓asymp( ⃗𝑟) =
1

(2𝜋)3/2
{𝑒𝑖�⃗�0�⃗� + [−𝑚√2𝜋∫ d3𝑟′𝑒𝑖�⃗��⃗�′ ⋅ 𝑣( ⃗𝑟′) ⋅ 𝜓( ⃗𝑟′)] 𝑒

𝑖𝑘0𝑟

𝑟 } (3.33)

= 1
(2𝜋)3/2

{𝑒𝑖�⃗�0�⃗� + [−𝑚√2𝜋 ⟨ ⃗𝑘| ̂𝑉|𝜓⟩] 𝑒
𝑖𝑘0𝑟

𝑟 } . (3.34)

Then, by comparing with Eq. (3.8) the scattering amplitude can be identified as:

𝑓(𝜃, 𝜑) = −𝑚√2𝜋 ⟨ ⃗𝑘| ̂𝑉|𝜓⟩ . (3.35)

Hence, the whole information of the scattering process is contained in the matrix element
⟨ ⃗𝑘| ̂𝑉 |𝜓⟩, which includes the still unknown wave function 𝜓( ⃗𝑟). To gain further insight into
the scattering amplitude without knowing the scattering wave function, one can define the
so-called transition operator ̂𝑇, which has the following property [25]:

̂𝑇 | ⃗𝑘0⟩ = ̂𝑉 |𝜓⟩ . (3.36)

By using this definition, the information about the scattering process is transferred from the
state |𝜓⟩, to the operator ̂𝑇. Inserting this definition into Eq. (3.35) results in:

𝑓(𝜃, 𝜑) = −𝑚√2𝜋 ⟨ ⃗𝑘| ̂𝑇| ⃗𝑘0⟩ |𝑘=𝑘0. (3.37)

The matrix element 𝑇 = ⟨ ⃗𝑘| ̂𝑇| ⃗𝑘0⟩ can be interpreted as the probability that an incoming plane
wave | ⃗𝑘0⟩ transitions to an outgoing planewave | ⃗𝑘⟩. For elastic scattering processes, the energy
is conserved, thus the condition 𝑘 = 𝑘0must be fulfilled. 𝑇matrix elements which satisfy this
condition are called on-shell 𝑇matrix elements. Bymultiplying Eq. (3.29) from the left with ̂𝑉
and inserting ̂𝑇 into Eq. (3.31) one gets the Lippmann-Schwinger equation for the ̂𝑇 operator:

̂𝑇 | ⃗𝑘0⟩ = ̂𝑉 | ⃗𝑘0⟩ + ̂𝑉 ̂𝐺(𝐸) ̂𝑇 | ⃗𝑘0⟩ , (3.38)

which can be written as the following operator equation:

̂𝑇 = ̂𝑉 + ̂𝑉 ̂𝐺 ̂𝑇. (3.39)

The ̂𝑇 operator connects the potential, which governs the scattering process, with the scatter-
ing amplitude, which is directly connected to the experimental cross section. Hence, solving
Eq. (3.38) for a given potential operator ̂𝑉, provides a direct way to parameterize the scattering
amplitude over Eq. (3.37).
But more often than not, the Lippmann-Schwinger equation for the ̂𝑇 operator cannot be
solved exactly, and approximationmethods have to be used. These approximated solutions do
not necessarily fulfill the optical theorem (cf. Eq. (3.14)) and thus violate probability conser-
vation. A way to resolve this problem will be presented in the next section.
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3.1.3 Time Dependent Approach

Until now only the solutions of the time independent stationary Schrödinger equation were
discussed. To gain further insight into the scattering problem, in the third approach, the time
evolution of the particle states will be considered. The transition of an initial state |𝜓i(𝑡i)⟩
into a final state |𝜓f(𝑡f)⟩ can generally be described by time evolution operators �̂�(𝑡𝑓, 𝑡𝑖). A
common approach to describe the time evolution of the scattering process is to assume that
the initial and final states at 𝑡i = −∞ and 𝑡f = ∞ are free, while the interaction takes place
at around 𝑡 = 0 [25, 40]. The operator describing the whole-time evolution of the scattering
process is the unitary ̂𝑆 operator, which is defined over the Møller operators Ω̂+ and Ω̂− as
[25]:

̂𝑆 = Ω̂†
−Ω̂+. (3.40)

The Møller operators are connected to the time dependent potential via:

Ω± = lim
𝑡→∓∞

𝒯{exp [𝑖∫
𝑡

0
d𝑡′ ̂𝑉(𝑡′)]} , (3.41)

with 𝒯 implying a time ordered product, which ensures the time sequence of the process is
not broken. To determine a more direct relation between the ̂𝑆 operator and the ̂𝑉 operator,
again assuming that the scattering potential is spatially confined, perturbation theory can be
used. To make such an approach possible, one uses the adiabatic theorem [41] by introducing
the following small continuous perturbation in the potential ̂𝑉:

̂𝑉(𝑡) → ̂𝑉𝜖(𝑡) = 𝑒−𝜖⋅|𝑡| ⋅ ̂𝑉(𝑡), (3.42)

using the small positive perturbation parameter 𝜖. This new potential can now be inserted
into the definition of the Møller operators, and the exponential function can be expanded
according to its power series, which yields:

Ω± = lim
𝑡→∓∞

lim
𝜖→0

∞
∑
𝑛=0

(−𝑖)𝑛∫
𝑡

0
d𝑡1 ̂𝑉𝜖(𝑡1)∫

𝑡1

0
d𝑡2 ̂𝑉𝜖(𝑡2)...∫

𝑡𝑛−1

0
d𝑛 ̂𝑉𝜖(𝑡𝑛). (3.43)

Inserting this definition into Eq. (3.40) results in the following equation:

̂𝑆 = lim
𝜖→0

∞
∑
𝑛=0

(−𝑖)𝑛∫
∞

−∞
𝑑𝑡1 ̂𝑉𝜖(𝑡1)∫

𝑡1

−∞
𝑑𝑡2 ̂𝑉𝜖(𝑡2)⋯∫

𝑡𝑛−1

−∞
𝑑𝑡𝑛 ̂𝑉𝜖(𝑡𝑛). (3.44)

The calculation of the matrix element ⟨ ⃗𝑘′| ̂𝑆| ̂𝑘⟩ can then be split into orders of 𝜖. Solving up to
the first order results in:

⟨ ⃗𝑘′| ̂𝑆| ⃗𝑘⟩ = 𝛿( ⃗𝑘 − ⃗𝑘′) − 2𝜋𝑖𝛿(𝐸(𝑘) − 𝐸(𝑘′)) ⟨ ⃗𝑘′| ̂𝑉 | ⃗𝑘⟩ . (3.45)

Starting from this equation it can be shown that the 𝑆matrix element are connected to the 𝑇
matrix elements via:

⟨ ⃗𝑘′| ̂𝑆| ⃗𝑘⟩ = 𝛿( ⃗𝑘 − ⃗𝑘′) − 2𝜋𝑖𝛿(𝐸(𝑘) − 𝐸(𝑘′)) ⟨ ⃗𝑘′| ̂𝑇| ⃗𝑘⟩ . (3.46)
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A detailed derivation for this relation can be found in [25, Section 3.6.5]. This equation shows
the new features which were introduced by this approach. The 𝑆 matrix element not only
describes the interacting part of the process, which is included in the 𝑇 matrix element, but
also incorporates the cases in which no interaction takes place, which is facilitated by the
first part of the sum. Energy and momentum conservation are intrinsically ensured by the
𝛿-functions, only allowing for on-shell 𝑇matrix elements. That the 𝑇matrix elements, which
resulted from solving the time-independent Schrödinger equation, are directly connected to
the results of the time-dependent formulation, show the equivalence of the two approaches.
Eq. (3.46) can also be written as an operator equation:

̂𝑆 = 1̂ − 2𝜋𝑖𝛿(𝐸in − �̂�) ̂𝑇, (3.47)

with �̂� being the kinetic energy operator, which was defined in Eq. (3.25). By defining the
𝑇matrix elements using Eq. (3.46), which includes the unitary ̂𝑆 operator, it can be ensured,
that the𝑇matrix elements fulfill the optical theorem, and thus conserve probability. However,
this approach requires that the 𝑆 matrix elements are known, which is a problem in itself.
Nevertheless, there exists a very successful approach to derive the 𝑇 matrix elements, using
the unitarity of the ̂𝑆 operator, which will be introduced in the next section.

The K Operator

As addressed at the end of Section 3.1.2, often only approximate solutions for the Lippmann-
Schwinger equation of the ̂𝑇 operator can be derived, which not necessarily fulfill the optical
theorem. In this section, a new operator will be introduced, which uses the unitarity of the ̂𝑆
operator and its connection to the ̂𝑇 operator to formulate a new approach for solving the scat-
tering problem. This new operator is called the ̂𝐾 operator, and is defined over the ̂𝑆 operator
as follows [25]:

̂𝑆 = (1̂ − 𝑖𝜋𝛿(𝐸 − �̂�) ̂𝐾) 1
1̂ + 𝑖𝜋𝛿(𝐸 − �̂�) ̂𝐾

. (3.48)

From the unitarity of the ̂𝑆 operator it can be derived that the ̂𝐾 operator has to be hermitian,
and thus has to fulfill the following relation:

̂𝐾† = ̂𝐾. (3.49)

By inserting Eq. (3.48) into Eq. (3.47) one gets a relation that connects the ̂𝑇 and the ̂𝐾 opera-
tors:

̂𝑇 = ̂𝐾 − 𝑖𝜋 ̂𝑇𝛿(𝐸 − �̂�) ̂𝐾. (3.50)

This equation is called Heitler’s damping equation. In the next step, Eq. (3.50) can be inserted
into the Lippmann-Schwinger equation for the ̂𝑇 operator, defined in Eq. (3.38), to get the
following integral equation:

̂𝐾 = ̂𝑉 + ̂𝑉 ( 1
𝐸 − �̂� + 𝑖𝜖

+ 𝑖𝜋𝛿(𝐸 − �̂�)) ̂𝐾 (3.51)

̂𝐾 = ̂𝑉 + ̂𝑉 ̂𝐺𝑠 ̂𝐾. (3.52)
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The argument in brackets can be identified as the Green’s function for the boundary condition
of standing waves ̂𝐺𝑠. Now, the only difference between Eq. (3.52) and Eq. (3.39) is the Green’s
function, which for the ̂𝐾 operator equation has a real matrix representation ⟨ ⃗𝑟| ̂𝐺𝑠| ̂𝑟′⟩, result-
ing in hermitian ̂𝐾 operators for every (approximate) solution of Eq. (3.52). After a solution
for Eq. (3.52) is found, Eq. (3.50) can be used to determine the on-shell 𝑇 matrix elements,
which intrinsically fulfill the optical theorem. Thus, an approach was found that allows for
an energy and probability conserving definition of the 𝑇matrix elements, which can then be
used to parameterize the experimentally approachable cross section.
As the last step of the discussion of non-relativistic scattering theory, the partial wave decom-
position of the 𝑇 and 𝐾matrix elements will be presented.

Partial Wave Decomposition

In this section the partialwave decomposition of the𝑇 and𝐾matrix elementswill be presented
and used to derive relations between the two matrix elements, as well as between partial 𝑇
matrix elements and the cross section. Like in Section 3.1.1, a spherical symmetric potential
𝑣( ⃗𝑟) = 𝑣(𝑟) is assumed for the following discussions. Using the partial wave decomposition of
the on-shell 𝑇matrix element [39]:

⟨ ⃗𝑘′| ̂𝑇| ⃗𝑘⟩ = ∑
𝑙

2𝑙 + 1
4𝜋 𝑇𝑙(𝑘)𝑃𝑙(cos 𝜃), (3.53)

as well as the partial wave decomposition of the scattering amplitude in Eq. (3.19), and insert
them in Eq. (3.37), one gets the following equation:

𝑓𝑙 = −2𝑙 + 1
√8𝜋

𝑚𝑇𝑙. (3.54)

This definition of the partial scattering amplitude can now be inserted into Eq. (3.22) to gain
the direct relation between the cross section and the partial 𝑇matrix element:

𝜎 = 𝑚2

2𝜋 ∑
𝑙
(2𝑙 + 1)|𝑇𝑙|2. (3.55)

The partial𝑇matrix elements shall now be expressed in terms of the partial𝐾matrix elements
which are defined as follows [39]:

⟨ ⃗𝑘′| ̂𝐾| ⃗𝑘⟩ = ∑
𝑙

2𝑙 + 1
4𝜋 𝐾𝑙(𝑘′, 𝑘)𝑃𝑙(cos 𝜃). (3.56)

As the first step, Heitler’s damping equation (cf. Eq. (3.50)) must be written as an integral
equation in its on-shell momentum representation:

⟨ ⃗𝑘′| ̂𝑇| ⃗𝑘⟩ = ⟨ ⃗𝑘′| ̂𝐾| ⃗𝑘⟩ − 𝑖𝜋𝑚𝑘∫ d𝑘″ ⟨ ⃗𝑘′| ̂𝐾| ⃗𝑘″⟩ ⟨ ⃗𝑘″| ̂𝑇| ⃗𝑘⟩ . (3.57)

By inserting the on-shell partial wave decomposition of the 𝑇 and 𝐾matrix element into this
equation one gets:

𝑇𝑙(𝑘) = 𝐾𝑙(𝑘) − 𝑖𝜋𝑚𝑘𝐾𝑙(𝑘)𝑇𝑙(𝑘). (3.58)

24



3.1. Non-Relativistic Scattering

This equation is not an integral equation, but an algebraic one, which means that one can
simply solve for 𝑇𝑙 resulting in the following equation:

𝑇𝑙(𝑘) = [1 + 𝑖𝜋𝑚𝑘𝐾𝑙(𝑘)]−1𝐾𝑙(𝑘). (3.59)

The last step is now to find a definition for the partial 𝐾 matrix element. As a starting point
one uses themomentum representation of the integral equation resulting fromEq. (3.52) [25]:

⟨ ⃗𝑘′| ̂𝐾| ⃗𝑘⟩ = ⟨ ⃗𝑘′| ̂𝑉 | ⃗𝑘⟩ − 2𝑚 ⋅ 𝒫∫ d𝑘″ 𝑘″2 ⟨ ⃗𝑘′| ̂𝑉 | ⃗𝑘″⟩ ( 1
𝑘2 − 𝑘″2 ) ⟨

⃗𝑘″| ̂𝐾| ⃗𝑘⟩ , (3.60)

with 𝒫 indicating that Cauchy’s principal value is used for this improper integral. Now the
last thingmissing for the definition of an integral equation for the partial𝐾matrix elements is
the partial wave decomposition of the potential matrix elements, which is defined as follows
[39]:

⟨ ⃗𝑘′| ̂𝑉 | ⃗𝑘⟩ = ∑
𝑙

2𝑙 + 1
4𝜋 𝑣𝑙(𝑘′, 𝑘)𝑃𝑙(cos 𝜃). (3.61)

The partial waves of the potential are defined in the following way [25]:

𝑣𝑙(𝑘′, 𝑘) =
2
𝜋 ∫ d𝑟 𝑟2𝑗𝑙(𝑘′𝑟)𝑣(𝑟)𝑗𝑙(𝑘𝑟), (3.62)

with 𝑗𝑙 being the spherical Bessel functions. By inserting Eqs. (3.56) and (3.61) into Eq. (3.60)
the definition for the on-shell partial 𝐾matrix element can be derived:

𝐾𝑙(𝑘) = 𝑣𝑙(𝑘) + 2𝑚 ⋅ 𝒫∫ d𝑘″ 𝑘″2𝑣𝑙(𝑘, 𝑘″) (
1

𝑘2 − 𝑘″2 ) 𝐾𝑙(𝑘
″, 𝑘). (3.63)

Equation (3.63) can now be solved for a given potential, which was e.g., derived from theoret-
ical considerations of the particle’s interaction, yielding the partial 𝐾matrix element. This el-
ement can then be inserted into Eq. (3.59) to directly get the partial 𝑇matrix elements, which
are connected to the cross section over Eq. (3.55). Using this approach incorporates energy
and probability conservation, while the decomposition into partial waves, dependent on the
angular momentum quantum number 𝑙, allows for the inclusion of angular momentum con-
servation. This concludes the non-relativistic approach to the scattering problem. In the next
section, the established framework will be extended to fit the requirements for the analysis
performed in this work.
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3.2 Relativistic Scattering

In this section, Lorentz invariance, multiple scattering channels and spin will be introduced
into the description of the non-relativistic scattering theory introduced in Section 3.1. Further-
more, different parameterizations for the scattering problem, as well as methods to extract the
physical parameters of interest from such parameterizations will be presented.
As the first step, the Lorentz invariant representation of the two-particle scattering problem
will be established. The following discussion considers two asymptotic states |𝑝1, 𝑝2⟩ and
|𝑝′1, 𝑝′2⟩ each state consisting of two non-interacting particles with four-momenta 𝑝1 and 𝑝2,
and𝑝′1 and𝑝′2 respectively. The transition between the two states is facilitated by the ̂𝑆 operator
leading to the following 𝑆matrix element:

⟨𝑝′1, 𝑝′2| ̂𝑆|𝑝1, 𝑝2⟩ = 𝑆(𝑝1, 𝑝2; 𝑝′1, 𝑝′2). (3.64)

For the following discussions only the interacting part of the 𝑆matrix elements is of interest.
It is described by the 𝑇 matrix elements, which can be connected to the 𝑆 matrix elements
using Eq. (3.47) and by applying the relativistic normalization [31, Reviews Chapter 50]:

⟨𝑝′|𝑝⟩ = (2𝜋)32𝐸(𝑝)𝛿( ⃗𝑝′ − ⃗𝑝) (3.65)

𝐸(𝑝) = √| ⃗𝑝|2 +𝑚2, (3.66)

with ⃗𝑝 being the three-momentum, and 𝑚 being the invariant mass of the state. This results
in the following relation between the two matrix elements:

𝑆(𝑝1, 𝑝2; 𝑝′1, 𝑝′2) =(2𝜋)32𝐸( ⃗𝑝1 + ⃗𝑝2)𝛿( ⃗𝑝1 + ⃗𝑝2 − ⃗𝑝′1 − ⃗𝑝′2) (3.67)

− 𝑖(2𝜋)4𝛿(𝑝1 + 𝑝2 − 𝑝′1 − 𝑝′2) ⟨𝑝′1, 𝑝′2| ̂𝑇|𝑝1, 𝑝2⟩ , (3.68)

with the 𝑇matrix element being defined as:

⟨𝑝′1, 𝑝′2| ̂𝑇|𝑝1, 𝑝2⟩ = 𝑇(𝑝1, 𝑝2; 𝑝′1, 𝑝′2). (3.69)

To ensure Lorentz invariance, the so-calledMandelstam variables will be used from this point
on. The Mandelstam variables can be defined via the four-momenta 𝑝𝑖 and masses𝑚𝑖 as [42]:

𝑠 = (𝑝1 + 𝑝2)2 (3.70)

𝑡 = (𝑝1 − 𝑝3)2 (3.71)

𝑢 = (𝑝1 − 𝑝4)2 (3.72)

𝑠 + 𝑡 + 𝑢 = 𝑚2
1 +𝑚2

2 +𝑚2
3 +𝑚2

4. (3.73)

For two-body scattering processes the total energy is given by √𝑠 and the scattering angle is
related to 𝑡, allowing for the matrix element 𝑇(𝑝1, 𝑝2; 𝑝′1, 𝑝′2) to be written in dependence of
the Mandelstam variables as 𝑇(𝑠, 𝑡) [31, Reviews Chapter 50]. This Lorentz invariant repre-
sentation of the 𝑇matrix element can now be used for all further discussions of the relativistic
scattering problem.
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3.2. Relativistic Scattering

3.2.1 Multi Channel Scattering

Until now only two particle scattering processes were considered, where the particles of the
initial state |𝑝1, 𝑝2⟩ are the same as in the final state |𝑝′1, 𝑝′2⟩, like in Fig. 3.1b. However, for the
description of the processeswhich are analyzed in thiswork, it is necessary to includemultiple
channels, each containing two particles which participate in the scattering. The most general
case is depicted in Fig. 3.1a, and one example for different incoming and outgoing channels
can be seen in Fig. 3.1c.

A1

A2

B1

B2
𝑝2

𝑝1 𝑝1
′

𝑝2
′

Channel
𝑎

Channel
𝑏

Interaction

(a)
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𝜋−

𝜋+

𝜋−𝑝2

𝑝1 𝑝1
′

𝑝2
′

Channel
𝜋𝜋

Channel
𝜋𝜋

Interaction

(b)

𝜋+

𝜋−

𝐾+

𝐾−𝑝2

𝑝1 𝑝1
′

𝑝2
′

Channel
𝜋𝜋

Channel
𝐾𝐾

Interaction

(c)

Figure 3.1: Schematic depictions of two-particle scattering processes. In (a) the process of an arbitrary
channel 𝑎 containing the particles A1 and A2 transitioning to a channel 𝑏 containing the particles B1
and B2 is shown. In (b) and (c) the scattering of two specific channels is depicted. Figure (a) depict
a scattering process for which the incoming and outgoing channels are the same. Figure (b) depicts a
process in which the incoming 𝜋𝜋 channel transitions to a 𝐾𝐾 channel.

Due to time symmetry and the cases where the interaction does not change the channel, every
incoming channel 𝑎 is also a possible outgoing channel 𝑏, and vice versa. The inclusion of
multiple channels can be formalized by redefining the 𝑇 matrix elements from Eq. (3.69) as
follows [31, Reviews Chapter 50]:

⟨𝑝′1, 𝑝′2| ̂𝑇|𝑝1, 𝑝2⟩ → ⟨𝑝′1, 𝑝′2; 𝑏| ̂𝑇|𝑝1, 𝑝2; 𝑎⟩ = 𝑇𝑏𝑎(𝑠, 𝑡). (3.74)

For a scattering process including the transitions depicted in Figs. 3.1b and 3.1c the 𝑇matrix
which describes the entire process can then be written as:

𝑇(𝑠, 𝑡) = (
𝑇𝜋𝜋,𝜋𝜋(𝑠, 𝑡) 𝑇𝐾𝐾,𝜋𝜋(𝑠, 𝑡)
𝑇𝜋𝜋,𝐾𝐾(𝑠, 𝑡) 𝑇𝐾𝐾,𝐾𝐾(𝑠, 𝑡)

) . (3.75)

From this point on the relativistic 𝑇matrix elements can be connected to the cross section and
parameterized using the partial wave method presented in Section 3.1.3. Explicit parameteri-
zations for the 𝑇matrix elements will be presented in Section 3.2.4. A property that every pa-
rameterization has in common is its multi-valued character. Understanding the multi-valued
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Chapter 3. QuantumMechanical Scattering Theory

character of the 𝑇matrix elements is elementary for the extraction of physical quantities from
the parameterizations. As such, the next section will give a general introduction into multi-
valued complex functions.

3.2.2 Multi-Valued Complex Functions

To understand the multi-valued character of the 𝑇matrix element it is helpful to consider the
definition of the square root first. The square root is inherently multi-valued, as it is defined
as the solution of the equation 𝑤2 = 𝑥. In case of a positive real argument inside the square
root, it is possible to distinguish between two cases:

𝑓+ ∶ ℝ+ → ℝ+, 𝑥 ↦ +√𝑥 (3.76)

𝑓− ∶ ℝ+ → ℝ−, 𝑥 ↦ −√𝑥. (3.77)

The two cases are shown in Fig. 3.2. For complex valued arguments, the definition is not as
straight forward.
As the first step for understanding the properties of the complex square root, the complex
coordinate 𝑧 is transformed into polar coordinates, leading to the following definition:

𝑓(𝑧) = √𝑧 = √|𝑧|𝑒𝑖
𝜑
2 . (3.78)

From this equation the multi-valued characteristic can directly be seen. When starting at an
arbitrary point on the complex plane with the distance |𝑧| from the origin and an angle 𝜑 to
the real axis and going along a full circle Δ𝜑 = 2𝜋 around the origin, one ends up on the same
point as before. But by using the substitution 𝜑 → 𝜑 + 2𝜋 for Eq. (3.78) the function changes
the sign, leading to two possible values for the same point on the 𝑧 plain.

Figure 3.2: The two branches of the square root function with positive real arguments.
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3.2. Relativistic Scattering

Characteristic points of multi-valued functions are the so-called branchpoints. A branchpoint
is defined as a point where all neighboring points havemore function values than the function
at the point itself [43]. In the case of the square root the only branch point is the origin.
A possible solution to redefine multi-valued complex functions, so that they become single
valued, is to set so-called branch cuts. Branch cuts stop functions from performing a 2𝜋 rota-
tion on the complex plain by creating a border no function can pass. To achieve the wanted
effect for the square root, the cut must start at the branch point at the origin and has to end
at infinity. The shape or direction of the branch cut is completely arbitrary, but in scattering
theory it is usually chosen to be along the positive real axis [43].

(a) 1st branch - real part (b) 1st branch - imaginary part

(c) 2nd branch - real part (d) 2nd branch - imaginary part

Figure 3.3: Real and imaginary parts of the two branches 𝑓I(𝑧) and 𝑓II(𝑡) of the square root function
on the complex plane. The branch point of the square root is indicated as a red dot, and the chosen
branch cut can be seen as a red line along the positive real axis. A 3d depiction of these plots can be
seen in Fig. A.1.

Using this cut for the square root, again leads to two single valued functions, called the
branches of the square root function. The two branches, as well as the branch cut of the
square root function can be seen in Fig. 3.3. One chooses the first branch, also called prin-
cipal branch, in such a way that √𝑧 = +𝑖√|𝑧| holds for negative real 𝑧. When going back to
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Eq. (3.78) this would mean, that the polar angle of the first branch is defined for 0 < 𝜑 ≤ 2𝜋.
The polar angle of the second branch is defined for 2𝜋 < 𝜑 ≤ 4𝜋, completing the full cycle on
the plane of the square root.
While the cut solves the ambiguity of the function, by design, the function becomes non-
analytic along the cut, in this case for all positive real numbers. The problem with such
non-analyticity is that the Cauchy integral and residue theorem, which are needed to extract
the physical parameters from the 𝑇 matrix elements, are no longer applicable. Methods for
the extraction of these parameters will be presented in Section 3.2.3.
To overcome this problem one introduces an analytical continuation at the branch cuts. To
achieve such a continuation, one defines the different branches of the square root not as
different functions, but as different so-called Riemann sheets of that function [44]. By doing
so, the Riemann sheet number 𝑘 becomes a parameter of the function and the branch cut
becomes a connection between the different Riemann sheets. If integrating along a path
that crosses a branch cut, one now just changes the sheet, making the multi-valued function
fully analytical. For example, the complex square root function would then become a fully
analytical function with its two branches corresponding to two Riemann sheets.
Now that the analytical handling of multi-valued functions by introducing Riemann sheets
has been established, the concept can be used for the discussion of the 𝑇matrix elements.

3.2.3 Properties of Reaction Amplitudes

The 𝑇matrix elements are reaction amplitudes describing the transition of a two-particle ini-
tial state into a two-particle final state. These kinds of reactions can be written as follows:

𝑃1 + 𝑃2 → 𝑅 → 𝑃3 + 𝑃4,

including possible resonances 𝑅 appearing during the transition. Other reaction amplitudes
will be introduced later, but the following applies for all of them. Reaction amplitudes are
multi-valued functions on the complex 𝑠-plane. For the case of channels containing two par-
ticles, square root-like branch points appear at the two-particle production threshold of every
channel, meaning the number of Riemann sheets doubles for every contributing channel.
Poles of the reaction amplitude on the first Riemann sheet, also called the physical sheet,
correspond to bound states, while poles on all other Riemann sheets, also called unphysical
sheets, refer to resonances. For resonances, the poles on the unphysical sheet nearest to the
physical one, contribute themost to the observable properties, like themeasured cross section.
So, it is crucial for the search of resonances to find the right unphysical sheet on the complex 𝑠
plane, which smoothly connects to the physical sheet in the right energy region [31, Reviews
Chapter 50].
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The position of a pole corresponding to a resonance on the unphysical sheet of the complex
𝑠 plane are model- and parameterization independent. From the position of the pole 𝑠𝑅, the
physical mass 𝑀R and width ΓR of the resonance can be directly determined [31, Reviews
Chapter 50]:

√𝑠R = 𝑀R − 𝑖ΓR/2. (3.79)

Another important property of the pole is its residueℛ𝑏𝑎, which for the 𝑇matrix element can
be determined using Cauchy’s residue theorem [44]:

ℛ𝑏𝑎 = − 1
2𝜋𝑖 ∮ d𝑠𝑇𝑏𝑎. (3.80)

With this residue, the parameter ̃𝑔𝑎 can be introduced, which gives the strength of the coupling
of the pole to the channel 𝑎 [31, Reviews Chapter 50]:

̃𝑔𝑎 = ℛ𝑏𝑎/√ℛ𝑏𝑏. (3.81)

For narrow resonances, which only couple to channels, which energetically lie below the rest
mass of the resonance, and which decay without angular momentum transfer (S-wave), the
partial width for a two-body channel 𝑎 can be defined as follows [31, Reviews Chapter 50]:

ΓR→𝑎 =
| ̃𝑔𝑎|2

𝑀𝑅
𝜌𝑎(𝑀2

R), (3.82)

with 𝜌𝑎 being the two-body phase space factor, which is defined as [31, Reviews Chapter 49]:

𝜌𝑎(𝑠) =
1
8𝜋

| ⃗𝑝𝑎|
√𝑠

. (3.83)

The momentum of the two particles of channel 𝑎 in their center-of-momentum frame is de-
fined as [31, Reviews Chapter 49]:

| ⃗𝑝𝑎| =
√𝜆(𝑠,𝑚2

1,𝑎, 𝑚2
2,𝑎)

2√𝑠
, (3.84)

with 𝜆(𝑥, 𝑦, 𝑧) = 𝑥2 + 𝑦2 + 𝑧2 − 2𝑥𝑦 − 2𝑦𝑧 − 2𝑥𝑧 being the Källén function [45]. The phase
space factor, or rather the momentum contributing to this factor is the reason for the multi-
valued character of reaction amplitudes. | ⃗𝑝𝑎| has two branch points for complex 𝑠, one at
the production threshold 𝑠th = (𝑚1 + 𝑚2)2, and one unphysical branch point at 𝑠unphy =
(𝑚1 − 𝑚2)2. The branch point at the production threshold leads to the already mentioned
doubling of Riemann sheets at each channel opening. How the unphysical branch points are
treated will be explained at the end of the next section.
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Asmentioned before there are several ways to define a reaction amplitude. One of them is the
production amplitude𝒜𝑐 for the two-particle decay channel 𝑐, which contains the particles𝐶1
and 𝐶2. The production amplitude describes processes like:

𝑃1 + 𝑃2 → 𝑅 + 𝑆 → (𝐶1 + 𝐶2) + 𝑆,

𝐼 → 𝑅 + 𝑆 → (𝐶1 + 𝐶2) + 𝑆,

introducing spectator particles 𝑆, which are produced together with the resonance, and sin-
gle particle initial states 𝐼. The partial width of such a resonant production process can be
calculated by [31, Reviews Chapter 50]:

ΓR→𝑎 =
(2𝜋)4
2𝑀R

∫|𝒜𝑎|2dΦ𝑎, (3.85)

where ∫ dΦ𝑎 is the integral over the two-body phase space.
In the next section parameterizations for reaction amplitudes used in this work will be pre-
sented.

3.2.4 Amplitude Parameterizations

First the relativistic Breit-Wigner parameterization shall be introduced. It can be used for the
description of narrow, isolated resonances. The corresponding decay amplitude reads [31,
Reviews Chapter 50]:

𝒜𝑎(𝑠) =
𝛼 ⋅ 𝑔𝑎 ⋅ (𝑝𝑎(𝑠)/𝑝0)𝑙 ⋅ 𝐵𝑙(𝑝𝑎(𝑠)/𝑝0)

𝑀2
BW − 𝑠 − 𝑖𝑀BWΓ(𝑠)

. (3.86)

If the nominal resonance mass lies above the production threshold of the channel 𝑎, then the
energy-dependent width of the resonance can be written as follows:

Γ(𝑠) = ΓBW ⋅
𝜌𝑎(𝑠)

𝜌𝑎(𝑀2
BW)

⋅ (
𝑝𝑎(𝑠)

𝑝𝑎(𝑀BW)
)
2𝑙
⋅ (

𝐵𝑙(𝑝𝑎(𝑠)/𝑝0)
𝐵𝑙(𝑝𝑎(𝑀BW)/𝑝0)

)
2
. (3.87)

The description of the components of this parameterization can be seen in Table 3.1.

Table 3.1: Description of the parameters and functions used in Eq. (3.86).

Parameter Description

𝛼 coupling strength to the resonance
𝑔𝑎 coupling strength to channel 𝑎
𝑝0 scale parameter (0.2GeV to 1GeV)
𝑙 relative angular momentum of channel 𝑎
𝑀BW Breit-Wigner mass
ΓBW Breit-Wigner width
𝐵𝑙(𝑝/𝑝0) Blatt-Weisskopf factors (Eq. (A.2))
𝑝𝑎(𝑠) absolute momentum (Eq. (3.84))
𝜌𝑎(𝑠) phase space factor (Eq. (3.83))
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The 𝑠 dependent momentum implements the correct behavior of the function at the produc-
tion threshold, while the Blatt-Weisskopf factors compensate for the rapid growth of (𝑝𝑎)𝑙 for
𝑙 > 0.
Asmentioned in the beginning of this section, the Breit-Wigner distribution can only describe
narrow, isolated resonances. The Breit-Wigner parameters𝑀BW and ΓBW only agree with the
pole parameters𝑀𝑅 and Γ𝑅 if there are no other resonances present in the partial wave of the
channel, and if the resonance’s line-shape is not distorted by uneven background levels, like
at a production threshold. It also has to be mentioned that trying to describe multiple reso-
nances in a channel as a sum of Breit-Wigner distributions leads to a violation of unitarity.
Hence, a more sophisticated approach has to be used to describe more complex situations [31,
Reviews Chapter 50].
By using the definition of the partial 𝐾matrix element in Eq. (3.63) and generalizing it for the
multi-channel case, it is possible to construct a reaction amplitude, which guarantees unitar-
ity. Analogously to Eq. (3.59) one can define the unitary 𝑇 matrix as [31, Reviews Chapter
50]:

𝑇 = 𝑛 [𝟙 − 𝑖𝜌𝐾𝑛2]−1 𝐾𝑛, (3.88)

with 𝜌 being the diagonal phase space matrix with elements 𝜌𝑎𝑎 = 𝜌𝑎(𝑠) (cf. Eq. (3.83)), and
𝑛 being a diagonal matrix, where the matrix elements are defined as:

𝑛𝑎𝑎 = (𝑝𝑎(𝑠)/𝑝0)
𝑙 𝐵𝑙(𝑝𝑎(𝑠)/𝑝0). (3.89)

As for the Breit-Wigner parameterization, 𝑛 incorporates the threshold and high energy be-
havior for partial waves with 𝑙 > 0. One possible parameterization for the K matrix, being a
hermitian solution of Eq. (3.63), is:

𝐾𝑏𝑎(𝑠) = ∑
R

𝑔(R)𝑏 𝑔(R)𝑎

𝑚2
R − 𝑠

+
𝑁NR

∑
𝑖=1

𝑏(𝑖)𝑏𝑎𝑠𝑖, (3.90)

where 𝑔(R)𝑎 and 𝑔(R)𝑎 are the coupling strengths between a resonance R and a channel 𝑎, and
channel 𝑏 respectively,𝑚R is the so called bare mass of 𝑅, and 𝑏

(𝑖)
𝑎𝑏 are non-resonant coupling

parameters [31, Reviews Chapter 50]. In order for the 𝐾 matrix to be hermitian, leading to
a unitary 𝑇 matrix, all aforementioned parameters need to be real. This definition of the 𝐾
matrix consists of two parts, the first part being the resonant one, describing the resonant
scattering from channel 𝑎 to channel 𝑏 and being deeply connected to the poles of the𝑇matrix.
The second part consists of a polynomial whose order is given by 𝑁NR, and which describes
the non-resonant part of the scattering process.
Due to themulti-channel character of this parameterization, it is possible that themomentum
𝑝𝑎 has to be calculated in the unphysical region below the production threshold of channel 𝑎.
To stay on the physical sheet, one may employ the analytic continuation:

𝑝𝑎 = 𝑖√𝑝2𝑎, for 𝑝2𝑎 < 0. (3.91)

This continuation results in Flatté-like line-shapes around the threshold [46].
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The 𝐾matrix approach can now be modified in order to parameterize production amplitudes.
So instead of a channel of two particles scattering into two particles, the amplitudes describe
the production of a two-particle channel 𝑐 resulting from the decay of one particle. One pos-
sible parameterization uses the so-called projection vector [31, Reviews Chapter 50]:

𝑃𝑐 = ∑
R

𝛼(R)𝑔(R)𝑐

𝑚2
R − 𝑠

+
�̃�NC

∑
𝑖=0

̃𝑏(𝑖)𝑐 𝑠𝑖. (3.92)

The elements of the projection vector exhibit the same resonant, andnon-resonant structure as
the 𝐾matrix, but only in respect to a decay channel 𝑐. It also contains the new parameter 𝛼(𝑅),
which gives the resonance’s production strength. Analogously to Eq. (3.88), the production
amplitude can be defined as

⃗𝒜(𝑠) = 𝑛 [𝟙 − 𝑖𝜌𝐾𝑛2]−1 ⃗𝑃. (3.93)

Again, for the amplitude to be unitary, 𝛼(𝑅) and ̃𝑏(𝑖)𝑐 have to be real.
One problem with the parameterizations presented in Eqs. (3.88) and (3.93) is the behavior
of the phase space factor 𝜌𝑎 below the production threshold of channel 𝑎. The factor is non-
analytical at 𝑠 = 0 (c.f. Eq. (3.83)) and due to its branch point at 𝑠unphy = (𝑚1 −𝑚2)2 develops
an unphysical cut at positive energies for two-particle channels with unequal masses. As a
solution, one can substitute the arguments of the phase space matrix −𝑖𝜌𝑎 with the so called
Chew-Mandelstam functions Σ𝑎, which are defined to have the same imaginary part above
threshold, but are fully physical and analytical [47]. The Chew-Mandelstam functions are
defined as follows:

Σ𝑎(𝑠) =
1
16𝜋[

2𝑝𝑎
√𝑠

log (
𝑚2
1,𝑎 +𝑚2

2,𝑎 − 𝑠 + 2√𝑠𝑝𝑎
2𝑚1,𝑎𝑚2,𝑎

)

− (𝑚2
1,𝑎 −𝑚2

2,𝑎) (
1
𝑠 −

1
(𝑚1,𝑎 +𝑚2,𝑎)2

) log (
𝑚1,𝑎
𝑚2,𝑎

) ]

(3.94)

The fully analytical amplitude then reads:

⃗𝒜(𝑠) = 𝑛 [1 + Σ𝐾𝑛2]−1 ⃗𝑃, (3.95)

with Σ being a diagonal matrix containing the Chew-Mandelstam functions Σ𝑎𝑎 = Σ𝑎(𝑠).
With these definitions, the only thing missing for a complete treatment of the two-particle
scattering problem is the incorporation of the spin. For this, the next chapter will introduce
the helicity formalism.

3.2.5 Helicity Formalism

Several reactions relevant for this work contain particles with excited angularmomenta 𝐽. The
angularmomentumdirectly influences the angular distribution of the final state particles, and
thus it is of utmost importance to find a model that introduces angular dependence into the
reaction amplitude.
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One possible representation that can be used for relativistic scattering and production pro-
cesses is the helicity formalism. In the center of this formalism stands the name-giving helicity
operator, which is defined as:

ℎ =
⃗𝐽 ⃗𝑝
| ⃗𝑝|

, (3.96)

with ⃗𝐽 and ⃗𝑝 being the total angular momentum and linear momentum [48].
The helicity operator has relativistic eigenstates together with either the total angular mo-
mentum operator ̂⃗𝐽, or the momentum ̂⃗𝑝, and the moduli of its eigenstates are conserved in
relativistic processes. As an example, one can now construct the reaction amplitude of the
angular momentum eigenstates for the reaction 𝑅 → 𝑃1 + 𝑃2, in the rest frame of the initial
state 𝑅, as follows:

𝐴( ⃗𝑝𝑓) = ⟨ ⃗𝑝𝑓, 𝜆1; − ⃗𝑝𝑓, 𝜆2|�̂�|𝐽, ̃𝜆⟩ , (3.97)

with ⃗𝑝𝑓 and 𝜆1,2 being the momentum and helicity eigenvalues of the final state, containing
𝑃1 and 𝑃2, and 𝐽 and ̃𝜆 being the total angular momentum and helicity eigenvalues of the initial
state 𝑅. �̂� is the time-evolution operator, which describes the transition between the states,
and can be substituted with the scattering operator ̂𝑆 in the case of asymptotic initial and final
states [48].
Because the absolutemomenta of the final state particles have to be identical, and themomen-
tum vectors must be anti-parallel in the rest frame of the initial state 𝑅, it is possible to fully
define the amplitude using the polar and azimuthal angles 𝜃 and 𝜑. Hence, the amplitude can
be written as:

𝐴(𝜃, 𝜑) = ⟨𝜃, 𝜑, 𝜆1, 𝜆2|�̂�|𝐽, ̃𝜆⟩ . (3.98)

The reference frame for the angles is called the helicity frame. The 𝑧 axis is defined in the
direction of the momentum of the mother particle 𝑅, while the orthogonal 𝑥 and 𝑦 axes are
arbitrary chosen to be in the laboratory frame, with 𝑦 being in vertical direction. The resulting
reference frame with the corresponding angles for 𝑃1 can be seen in Fig. 3.4 [48].
To further simplify the amplitude, a complete set of helicity final states, with a total angular
momentumof 𝑗 andhelicity ̃𝜆′, can be inserted intoEq. (3.98). Then by using the orthogonality
of the angular momentum states, one gets:

𝐴(𝜃, 𝜑) = ∑
𝑗, ̃𝜆′,𝜆′1,𝜆′2

⟨𝜃, 𝜑, 𝜆1, 𝜆2|𝑗, ̃𝜆′, 𝜆′1, 𝜆′2⟩ ⟨𝑗, ̃𝜆′, 𝜆′1, 𝜆′2|�̂�|𝐽, ̃𝜆⟩ (3.99)

= ∑
𝑗, ̃𝜆′,𝜆′1,𝜆′2

⟨𝜃, 𝜑, 𝜆1, 𝜆2|𝑗, ̃𝜆′, 𝜆′1, 𝜆′2⟩ 𝛿 ̃𝜆′, ̃𝜆𝛿𝑗,𝐽𝐴𝜆′1,𝜆′2 (3.100)

= ∑
𝜆′1,𝜆′2

⟨𝜃, 𝜑, 𝜆1, 𝜆2|𝐽, ̃𝜆, 𝜆′1, 𝜆′2⟩ 𝐴𝜆′1,𝜆′2, (3.101)

with𝐴𝜆′1,𝜆′2 being the constant helicity amplitude, which gives the coupling between the initial
state and the helicity states of the final state particles. This result can be further simplified by
using the complex conjugate of the Wigner D-matrix, which describes the transformation of
angular momentum eigenstates under rotation.
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Chapter 3. QuantumMechanical Scattering Theory

By using Eq. (A.4) the amplitude can be written as [48]:

𝐴(𝜃, 𝜑) = √
2𝐽 + 1
4𝜋 ⋅ 𝐷𝐽∗

̃𝜆,𝜆1−𝜆2
(𝜑, 𝜃, −𝜑)𝐴𝜆1,𝜆2. (3.102)

While this approach is Lorentz invariant, the helicity states are not eigenstates of the parity op-
erator and thus do not conserve parity. In the following a definition for the reaction amplitude
𝐴(𝜃, 𝜑) will be derived which intrinsically conserves parity.

𝜑𝑃1
𝜃𝑃1

𝑃1

𝑃2

𝑅

𝑦

𝑧

𝑥

Figure 3.4: The polar angle 𝜃 and the azimuthal angle 𝜑 of 𝑃1 from the decay 𝑅 → 𝑃1 + 𝑃2 in the
helicity frame. In this frame the particle 𝑅 is resting, the light magenta arrow indicates the momentum
direction of 𝑅 in the laboratory frame.

If 𝑙 and 𝑠 are good quantum numbers of the process 𝑅 → 𝑃1 + 𝑃2, it is possible to use Eq. (A.3)
to get:

|𝐽, ̃𝜆, 𝜆1, 𝜆2⟩ = ∑
𝑙,𝑠
√

2𝑙 + 1
2𝐽 + 1 ⟨𝑙, 0; 𝑠, 𝜆|𝐽, 𝜆⟩ ⟨𝑠1, 𝜆1; 𝑠2, −𝜆2|𝑠, 𝜆⟩ |𝐽,

̃𝜆, 𝑙, 𝑠⟩ , (3.103)

with 𝜆 = 𝜆1 − 𝜆2, 𝑠1 and 𝑠2 being the spins of the daughter particles, and ⟨𝑙, 0; 𝑠, 𝜆|𝐽, 𝜆⟩
and ⟨𝑠1, 𝜆1; 𝑠2, −𝜆2|𝑠, 𝜆⟩ being Clebsch-Gordan coefficients [49]. Inserting this relation into
Eq. (3.99) results in:

𝐴(𝜃, 𝜑) = ∑
𝑗, ̃𝜆′,𝑙,𝑠,𝜆′1,𝜆′2

⟨𝜃, 𝜑, 𝜆1, 𝜆2|𝑗, ̃𝜆′, 𝜆′1, 𝜆′2⟩√
2𝑙 + 1
2𝑗 + 1

⋅ ⟨𝑙, 0; 𝑠, 𝜆′|𝑗, 𝜆′⟩ ⟨𝑠1, 𝜆′1; 𝑠2, −𝜆′2|𝑠, 𝜆′⟩ ⟨𝑗, ̃𝜆′, 𝑙, 𝑠|�̂�|𝐽, ̃𝜆⟩ ,

(3.104)

= ∑
𝑗, ̃𝜆′,𝜆′1,𝜆′2,𝑙,𝑠

⟨𝜃, 𝜑, 𝜆1, 𝜆2|𝑗, ̃𝜆′, 𝜆′1, 𝜆′2⟩√
2𝑙 + 1
2𝑗 + 1

⋅ ⟨𝑙, 0; 𝑠, 𝜆′|𝑗, 𝜆′⟩ ⟨𝑠1, 𝜆′1; 𝑠2, −𝜆′2|𝑠, 𝜆′⟩ 𝛿 ̃𝜆′, ̃𝜆𝛿𝑗,𝐽𝐴𝑙,𝑠,

(3.105)

𝐸𝑞. (A.4)
= ∑

𝑙,𝑠
√

2𝑙 + 1
4𝜋 ⋅ 𝐷𝐽∗

̃𝜆,𝜆(𝜑, 𝜃, −𝜑) ⋅ ⟨𝑙, 0; 𝑠, 𝜆|𝐽, 𝜆⟩

⋅ ⟨𝑠1, 𝜆1; 𝑠2, −𝜆2|𝑠, 𝜆⟩ ⋅ 𝐴𝑙,𝑠,

(3.106)
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with 𝐴𝑙,𝑠 being the constant canonical amplitude [49]. This definition of the angular depen-
dent reaction amplitude now intrinsically incorporates Lorentz invariance, as well as parity
conservation. Together with the parameterizations of the energy dependent reaction ampli-
tudes presented in Section 3.2.4, the total reaction amplitude for a relativistic two body scat-
tering processes can be defined.

This concludes the theory part of this thesis. The concepts introduced in the last chapters lay
the groundwork for the following analysis of reactions detected by the BESIII detector. The
next chapter will now go into detail about the experimental setup, which was used for the
collection and processing of the data analyzed in this work.
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4. Experimental Setup

In this chapter, the soft- and hardware components used for data acquisition, processing and
analysis will be presented. The data acquisition is facilitated by the BESIII (Beijing Spectrom-
eter III) experiment at the Institute of High Energy Physics (IHEP). All different acceleration
and detection systems will be introduced, giving information about their general architecture
and design parameters. Then the soft- and hardware used for the different steps of the analysis
will be specified, starting with the framework used at the BESIII computing platform. Sub-
sequently, the data and Monte-Carlo (MC) samples used in this work will be presented. And
finally, the framework used for the analysis outside the BESIII computing platform will be
introduced.

Figure 4.1: Areal view of the research facility containing the LINAC (yellow), the BEPCII collider ring
(red), and the BESIII experiment (green). Adapted from Ref. [50].
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4.1 Data Acquisition

All data analyzed in this work was collected by the BESIII experiment, detecting particles
created in electron positron collisions at the IHEP of the Chinese Academy of Sciences in Bei-
jing. The research facility can be seen in Fig. 4.1. Data acquisition can be split into two steps,
which both will be presented in the next sections. Step one is the acceleration and collision of
electrons and positrons, facilitated by the BEPCII (Beijing Electron Positron Collider II). The
second step is the detection of the particles resulting from the collision by the BESIII detector.

4.1.1 BEPCII

Before collisions at high energies can occur, the electrons and positrons must be accelerated.
The acceleration and collision process takes place at the BEPCII. In the first step, a linear accel-
erator (LINAC) accelerates electrons and positrons up to 1.89GeV and injects electrons with
a rate of 200mA/min and positrons with 50mA/min into the collider rings [51]. The collider
itself consists of two separate rings, one for electrons and one for positrons, which circulate
through the rings in opposite directions. In the rings, 93 bunches can be stored, which can
be brought to collision at the interaction point with a horizontal crossing-angle of ±11mrad
[51]. The BEPCII is designed for center-of-mass energies between 2GeV and 4.6GeV, with an
optimized luminosity at 2 × 1.89GeV of 1 ⋅ 1033 cm−2s−1 [51]. Through several updates after
the commissioning, to date, center-of-mass energies up to almost 5GeV are possible [19, 52].
All design parameters of the BEPCII are listed in Table A.1, and a schematic drawing of the
collider ring can be seen in Fig. 4.2.

4.1.2 BESIII

Using the beams provided by BEPCII, the BESIII detector is designed to collect high precision
and high statistics data in the 𝜏-charm energy region. The detector system is built symmetric
around the interaction point, covering 93% of the solid angle [51]. As depicted in Fig. 4.3,
the spectrometer consists of multiple layers of detector systems, which will be explained in
detail in the next subsections. A superconducting solenoid, that provides an magnetic field
of 1T, is positioned between the electromagnetic calorimeter and the muon identifier. The
correspondingmagnetic flux return yoke is located in the outer layer of BESIII with themuon
identifier between its steel plates.

Multilayer Drift Chamber

The multilayer drift chamber (MDC) is the nearest detector system to the interaction point.
It encases the beam pipe, starting at in inner radius of 59mm and ending at an outer radius
of 810mm [51]. The chamber is filled with a 60:40 He/C3H8 gas mixture and 43 radially dis-
tributed layers of azimuthal distributed wires [51]. While the ionization of the gas allows for
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an energy loss measurement, the wires detecting the ionized gas also provide information on
the positions of particles. Thus, this detector allows for the reconstruction of the paths of
charged particles, as well as the measurement of their momentum and energy loss. Radially,
the position of a particle can be measured with a resolution of 130 µm, while the resolution
along the beam pipe is approximately 2mm [51]. The uncertainty of the momentum mea-
surement is 0.5% and that of the energy loss amounts to 6% [51]. The detector is also used for
the reconstruction of hadrons with long enough lifetimes, that they decay inside the detector
volume, like the 𝐾0

𝑆 meson, or theΛ baryon. Reconstructed charged tracks can also be extrap-
olated to provide positional information in the outer detectors, and can be used as a trigger
signal to reject background tracks.

Figure 4.2: Schematic drawing of the BEPCII collider ring, with a picture in the middle of some of
the ion optics elements along the beam lines. The orange elements are dipole magnets, and the blue
ones are quadrupoles. These magnets can also be seen as rectangles in the schematic drawing. The
positions of the radio frequency cavities (RF), the interaction point (IP), and the synchrotron radiation
monitor (SR) are marked in the schematic drawing. Also indicated are the circulation directions and
corresponding beam pipes, of the positrons and electrons. Figure taken from Ref. [53].

Time-of-Flight System

The time-of-flight (TOF) system consists of a barrel and two end caps. The barrel has two
layers of 88 staggered trapezoidal plastic scintillators, while the end caps are each built up
from a single layer of 48 fan-shaped scintillators [51]. Fine mesh photomultiplier tubes are
attached to each of the 5 cm thick counters [51]. This design allows for a time resolution of
68 ps in the barrel [52] and 60 ps in the end caps [55], but leaves a blind spot for polar angles
with 0.83 < | cos 𝜃| < 0.85 [51]. The TOF system is used as a trigger for charged particles and
can be used together with the information from the MDC for particle identification. This is
particularly useful for the separation of charged kaons and pions.
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Figure 4.3: Schematic drawing of the BESIII detector. The distinct parts of the spectrometer are colored
as follows: Multilayer drift chamber (red), time-of-flight system (orange), electromagnetic calorimeter
(purple), superconducting solenoid (green), muon identifier (blue). Also depicted is the maximum
polar angle at which themultilayer drift chamber and electromagnetic calorimeter can detect particles.
Adapted from Ref. [51].

Electromagnetic Calorimeter

The electromagnetic calorimeter (EMC) consists of 6240 CsI(Tl) crystals placed between the
TOF system and the solenoid coil [51]. This sub-detector provides an angular coverage of
| cos 𝜃| < 0.83 for the barrel part, and of 0.85 < | cos 𝜃| < 0.95 for the end caps [51]. Pho-
tons, which are produced in the scintillators by electromagnetic showers, are then detected by
photo diodes, which are attached to the ends of the crystals. With this design, the detection
of photons and electrons with energies between 20MeV and 2GeV is made possible [51]. In
this range, it reaches energy resolutions of 2.5% at 1GeV and 4% at 100MeV [51]. Due to its
layered crystal arrangement, the EMC also possesses an energy dependent position resolution
of under 6mm/√𝐸(GeV) [51]. With these parameters, an accurate separation of electrons
and charged pions is realized, and the precise reconstruction of the invariant mass of the 𝜋0

is made possible.
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Figure 4.4: Schematic view of the multilayer drift chamber. Figure taken from Ref. [54].

Muon Identifier

Outside the solenoid coil and inside the flux return yoke, the resistive plate counters (RPC) of
the muon detector are located. Nine layers of RPCs are placed between the yoke’s steel plates
at the barrel, and eight layers are placed in the end caps [51]. To provide position information,
the RPCs have 4 cm wide readout strips in polar and azimuthal direction, in which the mo-
mentum of muons can be measured [51]. Muons can be identified via the RPCs, starting at
a cut-off momentum at 400MeV, using the track reconstruction of the MDC and the energy
measurement of the EMC [51].

Trigger & Data Acquisition Systems

The trigger and data acquisition (DAQ) systems are designed to read out and process data
taken by all the detector systems in the 8ns between bunch collision. A two-level trigger sys-
tem is employed to reduce the data traffic by filtering out background reactions. The hardware
trigger uses the trigger information of the MDC, TOF, and EMC sub-triggers to reduce cosmic
ray, and beam related background events. To ensure (nearly) dead-time free data processing,
the read-out electronics operate at a frequency of 41.65MHz and are synchronized with the
RF cavities of the LINAC [51]. TheDAQ system then collects the data from all the sub-detector
systems, sending them to a computer cluster. After reaching the cluster, the data gets recon-
structed and filtered by the software trigger system. Then the remaining reconstructed events
get written down into permanent storage with a final event rate of about 2 kHz signal events,
and 1 kHz background events [51].
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4.2 Analysis Framework

After the acquisition of data, multiple steps of data processing and analysis follow. The next
sections will introduce the different soft- and hardware components used in this work.

4.2.1 Computing at the IHEP Grid

The first steps are performed on the BESIII computing platform, which includes the IHEP
computing grid in Beijing [56], as well as remote connections to multiple other high perfor-
mance computing clusters in China. Data processing and analysis, as well as the simulation
of Monte-Carlo (MC) events, are implemented using the GAUDI based BESIII offline soft-
ware system (BOSS) [57, 58]. Information about the detector material and geometry, and the
strength of the magnetic field inside the detectors, are contained within BOSS.
To generateMonte-Carlo events, the software package KKMC is used in the framework of Be-
sEvtGen, which includes awide range of generationmodels [59, 60]. First, theKKMCpackage
is used to simulate the production of 𝑐 ̄𝑐 states, including initial state radiation effects. Then,
the models included in BesEvtGen are used to simulate the decay processes of the 𝑐 ̄𝑐 states,
including final state radiation effects. The thus generated events are then fed into a detec-
tor simulation created with the Geant4 based BESIII object-oriented simulation tool (BOOST)
[61, 62].
For data events, as well as simulations, the BOSS framework provides the possibility to select
specific events from the raw reconstructed samples. For this purpose, the final state filter (FS-
Filter) software tool, written by Ryan Mitchel, was used. The tool allows for the selection of
events which belong to a given set of final state particles, using the information proved by the
detectors, and incorporating the results of particle identification, as well as vertex and kine-
matic fits. More information on the event selection can be found in Chapter 5. Selected events
are then written into ROOT files, which can be used for further analysis.

4.2.2 BESIII Datasets & Simulations

For this work, the 2021𝜓(2𝑆) data set was used, containing (2.264±0.009) billion𝜓(2𝑆) events
[63, internal communication]. For simulations, 5 million events each were generated for the
reactions:

𝜓(2𝑆) → (𝜙 → 𝐾+𝐾−)𝜋+𝜋−,

𝜓(2𝑆) → (𝜙 → 𝐾+𝐾−)𝜋0𝜋0,

using the BesEvtGen ”PHSP” model, which generates all reactions evenly distributed in their
phase space [60]. From now on, these two Monte-Carlo samples will be referred to as signal
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Monte-Carlo. Additionally, about 10 million events each were generated for the reactions:

𝜓(2𝑆) → 𝐾+𝐾−𝜋+𝜋−,

𝜓(2𝑆) → 𝐾+𝐾−𝜋0𝜋0,

using the ”PhspStpf” model, which also generates reactions evenly distributed in their phase
space, but allows for an invariant mass window, in which events are generated (N. Hüsken,
private communication, August 19, 2022). In this case, a mass window for the two-kaon sys-
tem was chosen to be 0.9GeV < 𝑚(𝐾𝐾) < 1.1GeV. Furthermore, 41 million events of the
reaction 𝜓(2𝑆) → 𝐾+𝐾−𝜋+𝜋− were generated using the ”PHSP” model. These three Monto-
Carlo samples will be referred to as phase space Monte-Carlo. The exact number of generated
Monte-Carlo events can be found in Table A.2.
In addition to these exclusive Monte-Carlo samples, one inclusive Monte-Carlo sample, con-
taining all listed reactions, was used for each final state. Listed reactions are included in these
samples using the physical properties provided by the PDG, and EvtGen models, while reac-
tions with unknown branching fractions are generated using the Lundcharm model [64–66].
In this work, 0.5 billion inclusiveMonte-Carlo𝜓(2𝑆) events, provided by the BESIII collabora-
tion, were used. The reconstruction and initial event selection of all aforementioned samples
was performed in BOSS version 7.0.7p1.

4.2.3 Analysis Software and Hardware

After selecting the data and simulation samples on the IHEP cluster, the results are accessible
as ROOT-files. ROOT is an object-oriented computation framework, using the C++ inter-
preter cling [67, 68]. It is specialized for the fast handling and analysis of high statistics data
samples, and thus was used for a significant part of the analysis.
As part of this work, a partial wave analysis (PWA) was performed using the object-oriented
partial wave interactive analysis software (PAWIAN), which is written in C++ [69]. PAWIAN
is highly customizable, allowing for the implementation of the models described in Chap-
ter 3. For fitting, PAWIAN, as well as ROOT, use the minimization package MINUIT2, which
is a C++ package based on the FORTRAN package MINUIT [70, 71]. Due to the consider-
able number of data points and fit parameters used in PWAs, an equivalently large amount
of computation power is needed to get results in a reasonable time. For efficient computa-
tions, PAWIAN uses MPI (massage passing interface), and OpenMP (Open Multi-Processing)
parallelization methods, allowing for the parallel fitting of data on multiple processors and
processor cores. To use the full potential of such parallelization, PAWIAN computations were
performed on the PALMA II (”Paralleles Linux-System für Münsteraner Anwender”) com-
puter cluster, located in Münster, which includes over 18000 processor cores amounting to a
computing power of over 800TFlops.
This concludes this chapter, introducing the hard- and software used to acquire, process, and
analyze data, and generate and simulate MC samples. In the next two chapters, the presented
tools will be used to perform a rigorous analysis of the data, starting with the event selection.
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This chapter will show the steps taken to create the data and Monte-Carlo samples, which
will be analyzed in the next chapter, using the software tools introduced in the previous chap-
ter. In Section 4.2.1 it was mentioned that custom selection criteria can be introduced, when
converting the raw data into ROOT files using the FSFilter software tool. Possible final state
particles, implemented by the FSFilter are: Λ, Λ̄, 𝑒±, 𝜇±, 𝑝, ̄𝑝, 𝜂, 𝛾, 𝐾±, 𝐾0

S , 𝜋±, and 𝜋0.
For this work the two final states

𝐾+𝐾−𝜋+𝜋−,

𝐾+𝐾−𝜋0𝜋0,

were chosen to be analyzed. The next sections will go into detail for the selection criteria
applied for charged tracks, and neutral particles. These criteria were chosen to maximize
the probability, that the events in the data set correspond to the aforementioned final state
particles, resulting from the decay of 𝜓(2𝑆).

5.1 Charged Track Selection

As the first step, all charged tracks belonging to an event have to be identified as specific par-
ticles. For this purpose, the particle identification (PID) system assigns a probability to each
charged track for it to be a 𝑒±, 𝜇±, 𝜋±, 𝐾±, 𝑝, or ̄𝑝. To calculate this probability, the PID system
uses themeasuredmomentum in theMDC, and the time-of-flight determined by the TOF sys-
tem. The only requirement for a track to be identified as one of the aforementioned particles is
that the probability for the particle hypothesis is higher than 10−5, meaning that one charged
track can be identified as multiple particles. Due to the geometry of the detector system, no
charged tracks with a polar angle of | cos 𝜃| > 0.93 are accepted. All charged tracks fulfill-
ing the previously mentioned criteria are written into a list, with their corresponding particle
hypotheses. All selection criteria for charged tracks can be found in Table A.3.
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5.2 Neutral Particle Selection

Multiple restrictions are implemented to maximize the ratio between photons, resulting from
the decay of the 𝜋0 final state particles, and other neutral tracks. For a neutral particle to be
accepted, the time between the start of the event and the detection of the showers in the EMC,
resulting from said particle, has to be shorter than 700ns. All neutral particles coming from
the collision should be detected after this time, resulting in a reduction of neutral background
events coming from other sources if this criterion is applied. Additionally, the particles are re-
quired to deposit an energy of above 25MeV in the barrel part of the detector (| cos 𝜃| < 0.8),
or above 50MeV in the end caps (0.86 < | cos 𝜃| < 0.92). This criterion is applied to account
for the geometry of the detector, only accepting particles which have angles that lie within the
detection range and implements a higher energy threshold for the less sensitive end caps. An-
other requirement is that the angle between the neutral particles and the next charged track
has to be larger than 10°, to reduce the photon background, resulting from the interaction of
charged particles with matter.
For the final states analyzed in this work, all photons have to be produced in 𝜋0 → 𝛾𝛾 decays.
Given this restriction, every combination of two accepted neutral particles is written into a list
as a possible 𝜋0 candidate.
For every event now exists a list of possible final state particles, from which the desired final
state can be assembled. Because some tracks appear multiple times on that list, the only re-
striction for the combination of particles is, that no track appears more than once in the final
state. All selection criteria for neutral particles can be found in Table A.4.

5.3 Vertex Fit

Due to the width of the electron and positron beams, the exact position, at which the collision
takes place, is unknown. To determine the position of this so-called primary vertex, a vertex
fit is performed if at least two charged tracks form a common vertex. The fit varies the param-
eters of the reconstructed charged tracks within their uncertainties to form a common vertex
that has a minimal distance 𝑑 to the interaction point, which is given for each run. This fit
yields the position of the primary vertex and updates the three-momenta of the contributing
particles. Assuming only short-lived resonances, one expects the primary vertex to be near to
the interaction point. Thus, it is required that all resulting vertices have to be inside a cylindri-
cal volume around the interaction point, with a height of 20 cm in the direction of the beam
pipe, and a radius of 1 cm perpendicular to the beam pipe. A depiction of the primary vertex,
as well as the cylindrical volume, can be seen in Fig. 5.1.
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5.4 Kinematic Fit

In the last step of the final state reconstruction, the four-momenta of the selected final state
particles are varied within their uncertainties, to fit the four-momentum of the initial 𝜓(2𝑆)
state. This kinematic fit thus is constrained to conserve momentum and energy. For each 𝜋0

contained in the final state, an additional constraint is added for the invariant mass of the
two-photon system corresponding to the neutral pion.
The four-momenta determined in this way are then written to a ROOT-file along with all the
parameters used for the selection criteria and determined by the fits. But there still existmulti-
ple entries of possible final state combinations per event. For the following analysis, for each
event, only the entry with the lowest 𝜒2NC was accepted, with 𝜒2NC being the goodness-of-fit
resulting from the kinematic fit with a certain number of constraints (NC). A detailed expla-
nation of the 𝜒2 value can be found in Appendix A.1.7. For the 𝜋+𝜋− final state the number
of constraints is N = 4, while the 𝜋0𝜋0 final state has six constraints.

𝑉𝑟

𝑉𝑧 primary
vertex

interaction point

𝑟 = 1 cm

ℎ = 20 cm

𝑑

Figure 5.1: Schematic representation of the primary vertex resulting from two tracks, and the cylindri-
cal volume around the interaction point, in which vertices are accepted.
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In this chapter, themethods used to analyze the𝐾+𝐾−𝜋𝜋 final stateswill be presented, and the
obtained results will be discussed. The first section focuses on the selection of signal events,
containing the reactions 𝜓(2𝑆) → 𝜙𝜋𝜋 and 𝜓(2𝑆) → 𝜙(𝑋 → 𝜋𝜋), with an arbitrary interme-
diate resonance 𝑋. A method will be shown to maximize the signal yield from the data sam-
ple, using the fit quality of the kinematic fit. Then, a model will be introduced to separately
determine the signal and background contributions in the 𝐾+𝐾− invariant mass spectrum
around the 𝜙 resonance. Using the results of the model, the branching ratios for the reactions
𝜓(2𝑆) → 𝜙𝜋𝜋will be determined, and a signal region around the 𝜙 resonance will be selected.
This signal region will be optimized using a similar method, as for the fit quality of the kine-
matic fit, and only events inside this region will be used for the subsequent analysis. Finally,
background studies using the inclusive Monte-Carlo samples will be performed, leading to
the implementation of a veto region around the 𝐾∗(892) resonance in the 𝐾𝜋 invariant mass
spectra. Events inside this veto region will be rejected, concluding the signal selection.
In the second section, a so-called partial wave analysis will be performed, primarily to ex-
tract information from the 𝜋𝜋 invariant mass spectra. First, the partial wave model will be
introduced, which fulfills the conditions of analyticity and unitarity. Then the method will be
presented, which was used to fit the model to both data samples simultaneously, by optimiz-
ing a select number of model parameters. And in the end of this section, the results of the fit
will be discussed.
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6.1 Signal Selection

After the initial event selection, which focuses on the extraction of the desired final states,
further selection criteria were applied to extract the following signal reactions:

𝜓(2𝑆) → (𝜙 → 𝐾+𝐾−)(𝑋 → 𝜋𝜋),

𝜓(2𝑆) → (𝜙 → 𝐾+𝐾−)𝜋𝜋.

Both reactions contain the 𝜙 meson decaying into the final state particles 𝐾+𝐾−, while the
𝜓(2𝑆) is supposed to either decay directly, or via an intermediate resonance 𝑋, into two final
state pions, which can either be 𝜋+𝜋−, or 𝜋0𝜋0.
The chosen approach uses the conservation of the 𝐽𝑃𝐶 quantum numbers, and isospin 𝐼 in the
strong interaction, to restrict the possible quantum numbers for the 𝑋 resonance. For both
the 𝜙, and the 𝜓(2𝑆) meson the quantum numbers are well known, leading to the following
quantum numbers for 𝑋:

𝐽𝑃𝐶 1−− 1−− 0++, 2++, ...
𝐼 0 0 0

𝜓(2𝑆) → 𝜙 + 𝑋.

If this reaction is governed by the strong interaction, then the 𝑋 resonance has an isospin of
zero, positive charge conjugation and parity, and an even total angular momentum. In gen-
eral, excitations of resonances with higher angular momenta require higher energies, leading
to a smaller phase space, and consequently to lower probabilities for the reaction to occur.
Therefore, this analysis focuses on isoscalar 𝑋 resonances with angular momenta equal to
zero, or two, assuming that contributions of 𝑋 resonances with higher angular momenta are
negligible. This approach leads to the aforementioned combinations of quantum numbers for
possible 𝑋 states, and was intentionally chosen to study the 𝑓0 and 𝑓2 resonances. Why these
resonances are of special interest is motivated in Section 2.4.
Another advantage of this approach is that it leads to a preference of strange quark content
in the 𝑋 state, due to the almost 100% 𝑠 ̄𝑠 content of the 𝜙meson (cf. Section 2.3). The reason
why the quark content of the 𝜙meson influences the content of the 𝑋 state can be seen, when
looking at the two lowest orders of Feynman diagrams, for which two examples can be seen in
Fig. 6.1. If one assumes that the 𝜙meson only has 𝑠 ̄𝑠 content, then three gluons participate in
the lowest order signal reaction. These gluons can either create the 𝜙meson, plus twomesons
containing strangeness (cf. Fig. 6.1a), or the 𝜙 meson plus a pure 𝑠 ̄𝑠 state (cf. Fig. 6.1b). At
the next order, one more gluon participates in the process, enabling the creation of all light
quarks, for the two (cf. Fig. 6.1d), as well as the three-body process (cf. Fig. 6.1c). Each gluon
vertex in the Feynman diagram corresponds to a factor of √𝛼𝑠 in the reaction amplitude, and
consequently to a factor of 𝛼𝑠 in the cross section [72]. Here, 𝛼𝑠(𝑄2) is the QCD coupling
parameter, which is dependent on the momentum transfer 𝑄. An exact determination of 𝛼𝑠
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would go beyond the scope of this work, but for the sake of the argument, the coupling con-
stant can be roughly estimated as 𝛼𝑠 ∼ 0.5 for a momentum transfers of 𝑄2 ∼ 1GeV [73].
This means, when considering the Feynman diagrams, 𝑋 states with 𝑢 ̄𝑢 and 𝑑 ̄𝑑 content are
suppressed by a factor of 𝛼2𝑠 ∼ 0.25. It also follows that reactions, which directly produce
two pions, are only possible in second order. The suppression of the two pion state can be di-
rectly verified, when comparing the branching fractions BR(𝐽/𝜓 → 𝜙𝜋𝜋) = (1.4 ± 0.1) × 10−3

and BR(𝐽/𝜓 → 𝜙𝐾𝐾) = (1.7 ± 0.1) × 10−3 given by the particle data group (PDG) [31,
Summary Tables]. One can see that the branching fraction of the two-kaon decay is larger,
even though the process has a smaller phase space. This argument can be further supported
by exchanging the 𝜙 meson for a 𝜔 meson, and again looking at the branching fractions
BR(𝐽/𝜓 → 𝜔𝜋𝜋) = (1.0±0.1)×10−2 and BR(𝐽/𝜓 → 𝜔𝐾𝐾) = (1.9±0.4)×10−3 [31, Summary
Tables]. In this case the branching fraction for the two-pion process is one order of magnitude
larger than that of the two-kaon process. Analogous to the processes involving 𝜙mesons, this
behavior can be explained when looking at the Feynman diagrams. Due to the large 𝑢 ̄𝑢 and
𝑑 ̄𝑑 content of the 𝜔 meson, one would expect a suppression of 𝑠 ̄𝑠 states in such processes.
This selection of the flavor quantum numbers of the quarks making up the 𝑋 resonance, in
combination with the restrictions on the other quantum numbers mentioned above, provides
an opportunity to obtain information about the flavor content of the 𝑓0 and 𝑓2 resonances.
Combining the results of this work with the results of similar analyses, which substitute the
𝜙meson with an 𝜔meson, or the 𝜋𝜋 system with a 𝐾𝐾 system, could be an important step to
finally understand the nature of the 𝑓𝐽 resonances.
Now that the definition of the signal process has been presented andmotivated, the next steps
will show the methods used to select signal events from the data sets of the 𝐾+𝐾−𝜋𝜋 final
states.
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Figure 6.1: A selection of first and second order Feynman diagrams for possible signal processes.
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6.1.1 Kinematic Fit Quality

For the first selection criterion, the quality of the kinematic fit, which was introduced in Sec-
tion 5.4, was investigated. The goodness-of-fit resulting from the minimization of Eq. (A.12),
is given by the 𝜒2NC value, with the NC standing for the number of constraints used for the
kinematic fit. It is expected that the 𝜒2NC distribution of signal events is different, and in aver-
age at lower 𝜒2NC values, than the distribution of background events containing an incorrectly
reconstructed final state. To maximize the yield of signal events in respect to the number of
data events, while still ending up with a statistically significant amount of events, a figure of
merit (FOM) was used. The FOM was defined in dependence of a maximal 𝜒2NC value 𝜒2max:

FOM(𝜒2max) = 𝑟 ⋅ 𝑠 = 𝑆2/𝑁3/2, (6.1)

with 𝑟 = 𝑆/𝑁 being the ratio between signal events 𝑆 and data events 𝑁 , and 𝑠 = 𝑆/√𝑁
being the statistical significance. The number of data events is given by the integration over
the 𝜒2NC distribution of the data sample, while the number of signal events was calculated by
integrating over the 𝜒2NC distribution of the signal Monte-Carlo sample:

N(𝜒2max) = ∫
𝜒2
max

0
data(𝜒2NC)d𝜒2NC (6.2)

S(𝜒2max) = ∫
𝜒2
max

0
MCsig(𝜒2NC)d𝜒2NC. (6.3)

The rounded 𝜒2max value, at which the FOM reaches its maximum, was chosen as the maxi-
mum 𝜒2NC value, for which events get accepted. For the 𝜋+𝜋− final state the function reached
its maximum at 𝜒2max = 25, while the maximum for the 𝜋0𝜋0 final state was found at 𝜒2max =
12. The distributions corresponding to this method can be seen in Fig. 6.2.

(a)𝐾+𝐾−𝜋+𝜋− (b)𝐾+𝐾−𝜋0𝜋0

Figure 6.2: 𝜒2NC distributions of the kinematic fit of the data sample (black) and the signalMonte-Carlo
sample (green) for both final states. The NC, with N= 4, 6, stands for the number of constraints applied
in the kinematic fit. The numeric results of the FOM (cf. Eq. (6.1)) are drawn in red, and their maxima
are marked by gray dashed lines. All histograms shown are scaled for clarity.
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6.1.2 Signal Region

As the next step of the signal selection, signal regionswere determined around the𝜙 resonance
in the 𝐾+𝐾− invariant mass spectra for both final states.

(a)𝐾+𝐾−𝜋+𝜋− (b)𝐾+𝐾−𝜋0𝜋0

Figure 6.3: 𝐾+𝐾− invariant mass spectra of both final states. The dashed line indicates the mass of the
𝜙 resonance according to the PDG [31, Summary Tables].

Before discussing the methods used to determine the signal region, it is important to men-
tion that, chronologically, the signal regions were determined first, and then the remaining
background reactions were investigated, leading to the veto of events in the vicinity of the
𝐾∗(892) resonance. After the veto region was chosen, the determination of the signal region
was repeated, benefiting from the lower background level. There is no advantage in presenting
the signal selection before and after the veto, but themotivation for implementing the veto be-
comes clearer after the selection of the signal region. Therefore, the spectra and results shown
in the next sections will already use the 𝐾∗(892) veto, while the veto itself will be discussed in
Section 6.1.3.
In Fig. 6.3, the 𝐾+𝐾− invariant mass spectra can be seen, showing a clear peak at the mass of
the 𝜙 resonance. Multiple steps were needed to determine an optimized signal region. These
steps, as well as the physical properties that could be extracted in the process, will be discussed
in the following subsections.

Fit Model

The first step was to define a model with a separate signal and background part, to describe
the 𝜙 resonance in data. Breit-Wigner distributions are suitable for the description of narrow
and isolated resonances, whichmakes them an appropriate choice for the description of the 𝜙
resonance. Due to the small width of the 𝜙 resonance of about 4MeV, the energy resolution
of the detector could have an influence on the line shape of the peak, thus the Breit-Wigner
was convolved with a Gaussian to account for possible resolution effects.
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The signal probability density function (PDF) in dependency of the invariant mass 𝑚 of the
𝐾+𝐾− system is defined as:

𝒫sig(𝑚) = 𝐴 ⋅ 𝑁 ⋅ ∫
+∞

−∞
|𝒜BW(𝑀)|2 ⋅ 𝑔(𝑚 −𝑀) d𝑀, (6.4)

with the signal amplitude 𝐴, 𝑁 being a normalization factor, 𝒜BW(𝑚) being the Breit-Wigner
amplitude and 𝑔(𝑚) being the Gaussian PDF with 𝜇 = 0 (cf. Eq. (A.5)). When the 𝜙 meson,
with a total angular momentum quantum number of 𝐽 = 1, decays into two pseudoscalar
kaons, with 𝐽 = 0, its angular momentum is transferred to a relative orbital angular momen-
tum of 𝑙 = 1 between the two kaons. To account for this angular momentum excitation, the
parameterization presented in Eq. (3.86) was chosen with 𝑙 = 1:

𝒜BW(𝑚) =
𝛼 ⋅ 𝑔 ⋅ (𝑝/𝑝0) ⋅ 𝐵1(𝑝/𝑝0)
𝑀2

𝜙 −𝑚2 − 𝑖 ⋅ 𝑀𝜙 ⋅ Γ
, (6.5)

with the mass dependent width

Γ = Γ𝜙 ⋅
𝑀𝜙

𝑚 ⋅ (
𝑝 ⋅ 𝐵1(𝑝/𝑝0)
𝑝𝜙 ⋅ 𝐵1(𝑝𝜙/𝑝0)

)
2
, (6.6)

and the momentum
𝑝 = 1

2√𝑚2 − 4𝑚2
𝐾, (6.7)

containing the mass of a charged kaon 𝑚𝐾 = 493.677MeV [31, Summary Tables]. 𝑝𝜙 is the
momentum at 𝑚 = 𝑀𝜙, while the momentum scale 𝑝0 is arbitrarily chosen to be 0.33GeV,
as this value was already successfully used in Ref. [74]. The Blatt-Weisskopf factor 𝐵1 can be
found in Eq. (A.2), and 𝑀𝜙 and Γ𝜙 are the Breit-Wigner mass and width of the 𝜙 resonance.
To be able to directly extract the number of 𝜙 events from the signal PDF, the normalization
was chosen as:

𝑁 = 1
∬+∞
−∞ |𝒜BW(𝑀)|2 ⋅ 𝑔(𝑚 −𝑀) d𝑀d𝑚

. (6.8)

The expression in the denominator can be simplified by using Fubini’s theorem [75]:

∫
+∞

−∞
𝒫sig(𝑚) 𝑑𝑚 = ∫

∞

−∞
(|𝒜BW|2 ∗ 𝑔)(𝑚) 𝑑𝑚 (6.9)

= (∫
∞

−∞
|𝒜BW(𝑚)|2 𝑑𝑚) ⋅ (∫

∞

−∞
𝑔(𝑚) 𝑑𝑚) (6.10)

= ∫
∞

−∞
|𝒜BW(𝑚)|2 𝑑𝑚. (6.11)

The Gaussian PDF is already normalized, so the integration over it becomes one, leaving only
the integration of the Breit-Wigner distribution. Using this result, Eq. (6.8) can be written as:

𝑁 = 1
∫+∞
−∞ |𝒜BW(𝑚)|2 d𝑚

. (6.12)
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Because no analytical solution exists for this integration, a numeric integration was per-
formed. The limits of the integration were chosen in such a way that increasing the inte-
gration interval did not change the significant digits of the resulting value. Since the mass
spectrum is binned with a constant bin width ℎ, it is necessary to divide the amplitude 𝐴 by
said width, to obtain the number of observed events:

𝑁𝜙,obs =
𝐴
ℎ . (6.13)

Due to the position of the 𝜙 resonance close to the two-kaon production threshold, the back-
ground sharply rises on the left flank of the resonance and only slightly changes, when reach-
ing higher masses. To describe this special shape, the ARGUS distribution was chosen, as it
was specifically defined for the description of continuum background at thresholds for the
analyses of data from the ARGUS experiment [76]. The PDF of the ARGUS distribution is
defined as follows:

ARGUS(𝑥) = 𝜒3

√2𝜋Ψ(𝜒)
⋅ 𝑥𝑐2√1− 𝑥2

𝑐2 ⋅ exp [−
1
2𝜒

2 (1 − 𝑥2

𝑐2 )] , (6.14)

containing the function
Ψ(𝜒) = 𝐺(𝜒) − 𝜒 ⋅ 𝑔(𝜒) − 1

2, (6.15)

with𝐺(𝜒) being the cumulative distribution function (CDF) of the Gaussian distribution, and
𝑔(𝜒) being the PDF of the Gaussian distribution with 𝜇 = 0, and 𝜎 = 1 (cf. Eqs. (A.5)
and (A.6)). The ARGUS distribution is only defined for values of 𝑥 between zero and the
positive cut-off parameter 𝑐, while the positive parameter 𝜒 is connected to the curvature of
the distribution. In this form, the function is not suitable to describe the background at the
𝜙 resonance, so the distribution was mirrored, shifted, and a background amplitude 𝐵 was
multiplied. To facilitate the mirroring and shifting, the variable 𝑥 was redefined as:

𝑥 → 𝑥′(𝑚) = 𝑐 − (𝑚 − 2𝑚𝐾𝐾), (6.16)

resulting in the invariant mass dependent PDF for the background:

𝒫bkg(𝑚) = 𝐵 ⋅ 𝜒3

√2𝜋Ψ(𝜒)
⋅ 𝑥

′(𝑚)
𝑐2 √1− 𝑥′(𝑚)2

𝑐2 ⋅ exp [−12𝜒
2 (1 − 𝑥′(𝑚)2

𝑐2 )] , (6.17)

which is defined for invariant masses between the two-kaon production threshold 2𝑚𝐾𝐾 and
𝑐 + 2𝑚𝐾𝐾.
The full model can now be constructed as the sum of Eqs. (6.4) and (6.17):

𝑓(𝑚; ⃗𝜃) = 𝒫sig(𝑚; ⃗𝜃sig) + 𝒫bkg(𝑚; ⃗𝜃bkg), (6.18)

where ⃗𝜃 = ⃗𝜃sig + ⃗𝜃bkg is a vector containing all parameters of the model, with ⃗𝜃sig =
(𝐴,𝑀𝜙, Γ𝜙, 𝜎) being the signal parameters, and ⃗𝜃bkg = (𝐵, 𝜒, 𝑐) being the background pa-
rameters. Now that the model is defined, in the next step, a fit function will be derived to
optimize the aforementioned parameters.
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Fit Method

To fit the parameters ⃗𝜃 to the data, it is necessary to define a fit function, which can be numer-
ically optimized. For the fit on the 𝐾+𝐾− invariant mass histogram, the negative logarithmic
likelihood − lnℒ was minimized. The likelihood function gives the probability that a model,
with a given set of parameters ⃗𝜃, describes a data sample. For a data set with 𝑁 bins of equal
width ℎ, where the contents of each bin are distributed by a probability function 𝑃, the likeli-
hood is defined as:

ℒ( ⃗𝑛, ⃗𝑓( ⃗𝜃)) =
𝑁
∏
𝑖=1

𝑃(𝑛𝑖, 𝑓𝑖( ⃗𝜃)). (6.19)

This function has two variables, the vector ⃗𝑛with the number of data events for each bin, and
the vector ⃗𝑓 with the number of events per bin, predicted by the model. For a given bin 𝑖,
the number of data events is directly given by the histogram. To get the predicted number of
events in a bin 𝑖, one has to integrate the model function (Eq. (6.18)) over the interval of the
bin:

𝑓𝑖( ⃗𝜃) = ∫
𝑚0+ℎ⋅𝑖

𝑚0+ℎ(𝑖−1)
𝑓(𝑚; ⃗𝜃) d𝑚, (6.20)

with 𝑚0 being the invariant mass at the lower edge of the first bin (𝑖 = 1). The bin content,
being a discrete result of a counting experiment, is expected to follow a Poisson distribution.
As such, Eq. (A.10)was used as the probability function 𝑃 resulting in the following likelihood:

ℒ( ⃗𝑛, ⃗𝑓) =
𝑁
∏
𝑖=1

𝑓𝑛𝑖𝑖
𝑛𝑖!

⋅ 𝑒−𝑓𝑖. (6.21)

As previously stated, the likelihood was not maximized, but the negative logarithmic likeli-
hood minimized to avoid the numerical problem of reaching the float limit. Both methods
yield the same results, due to the continuous and monotonic nature of the logarithmic func-
tion. Neglecting all constant terms, the negative logarithmic likelihood can be written as:

ℱ( ⃗𝜃) = − lnℒ = −
𝑁
∑
𝑖=1

[𝑛𝑖 ln(𝑓𝑖) − 𝑓𝑖] (6.22)

This function ℱ is the fit function, containing the data, and the parameter dependent model.

The next step was to minimize the fit function to get the optimal parameters for the model,
from which the distribution of signal and background events could be determined. Bins
within an invariant mass interval, starting at two times the charged kaon mass and ending at
1.2GeV, were used for the fit. For both final states the parameters ⃗𝜃 = (𝐴,𝑀𝜙, Γ𝜙, 𝜎, 𝐵, 𝜒, 𝑐)𝑇

were included in the fit. Due to the low background levels in the 𝐾+𝐾− invariant mass spec-
trum of the 𝜋0𝜋0 final state, the fit had trouble converging when using all background param-
eters for the fit. Thus, the cut-off value 𝑐 was fixed to the size of the 𝐾+𝐾− phase space using
the masses of the 𝜓(2𝑆), 𝜋0, and 𝐾±mesons from the PDG [31, Summary Tables], resulting in
a value of 𝑐 ≈ 2.43GeV. Both the width of the Breit-Wigner, and the standard deviation of the
Gaussian contribute to the total width of the peak, leading to a strong correlation between the
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two parameters. To improve the performance of the fit for both final states, the Breit-Wigner
width of the 𝜙 resonance was fixed to the well determined PDG value Γ𝜙 = (4.24 ± 0.01)MeV
[31, SummaryTables], while the unknowndetector resolution𝜎was left as a free fit parameter.

Fit Results

Now the results of the fit on the𝐾+𝐾− invariantmass spectra shall be presented and discussed.
Plots containing the solutions of the fits for both final states can be seen in Fig. 6.4, while the
optimized fit parameters with their corresponding uncertainties can be found in Table 6.1.

(a)𝐾+𝐾−𝜋+𝜋− (b)𝐾+𝐾−𝜋0𝜋0

Figure 6.4: Fits of Eq. (6.18) onto the 𝐾+𝐾− invariant mass spectra for both final states. The signal and
background part of the fit function are drawn separately, and the goodness-of-fit (−2 ln (ℒ)/NDF) is
given for both fits.

In the legends of the plots, the−2 ln(ℒ)/NDFvalue can be seen, which is related to the𝜒2/NDF
value describing the goodness-of-fit for a least-squares fit. For large mean values 𝜆, the Pois-
son distribution can be approximated by the Gaussian distribution, leading to the likelihood
function:

ℒ( ⃗𝑛, ⃗𝑓) =
𝑁
∏
𝑖=1

𝑒−
(𝑛𝑖−𝑓𝑖)

2

2𝜍2 = exp (−
𝑁
∑
𝑖=1

(𝑛𝑖 − 𝑓𝑖)2

2𝜎2 )
𝐸𝑞. (A.12)

= exp (−𝜒2/2) . (6.23)

Taking −2 lnℒ of this function results in the 𝜒2 function, making the two definitions equiva-
lent for high statistic data samples.

In the following, the fit results shall be discussed. In comparison to the PDG value for the
mass of the 𝜙 meson 𝑚𝜙,PDG = (1.019461 ± 0.000016)GeV [31, Summary Tables], the Breit-
Wigner masses resulting from the fits are both shifted towards higher masses not within the
uncertainty of the PDG value. This deviation could be caused by the detector calibration.
Another possibility is, that the deviation results from the distortion of the resonances line
shape, due to its position at the 𝐾+𝐾− production threshold, and the influence of the angular
momentum transfer in the decay. As mentioned in Section 3.2.4, these circumstances lead to
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differences between the Breit-Wigner mass, and the physical mass of the particle. Both fits
agree with an energy resolution of about 1MeV, resulting in a relative energy resolution of
∼ 0.1% for two charged kaons at the energy of the 𝜙 resonance.

Table 6.1: Parameter values and uncertainties resulting from the fit of Eq. (6.18) onto the 𝐾+𝐾− invari-
ant mass histogram for both final states.

Parameter 𝐾+𝐾−𝜋+𝜋− 𝐾+𝐾−𝜋0𝜋0

𝐴 32.3 ± 0.2 6.97 ± 0.08
𝑀𝜙 (1.01981 ± 0.00002)GeV (1.01979 ± 0.00004)GeV
𝜎 (1.10 ± 0.03)MeV (0.91 ± 0.08)MeV
𝐵 36 ± 5 16.1 ± 0.4
𝜒 2.0 ± 0.7 0 ± 1
𝑐 (1.1 ± 0.6)GeV -

When looking at the results for the background parameters, one notices that all of them have
high relative uncertainties, especially𝜒 for the fit to the𝜋0𝜋0 final state. The parameterization
of the background was primarily chosen because it describes the behavior at the production
threshold and was already proven to be reliable in previous works (cf. Ref. [74, 77]). For the
description of the background in this work however, the combination of the highly correlated
parameters, and the generally low background level led to very unstable fits, resulting in large
uncertainties for the fit parameters. But, assuming that the general shape of the background is
well described, these high uncertainties are not expected to impair the results of the following
analysis. For subsequent analyses however, other background parameterizations should be
tried, e.g. those used in Refs. [78, 79].

With the resulting amplitudes 𝐴 it is now possible to determine the branching ratios for the
processes 𝜓(2𝑆) → 𝜙𝜋+𝜋− and 𝜓(2𝑆) → 𝜙𝜋0𝜋0 by using the following equations:

BR(𝜓(2𝑆) → 𝜙𝜋+𝜋−) =
𝑁(𝜋+𝜋−)
𝜙,obs

𝜖(𝜋+𝜋−) ⋅ BR(𝜙 → 𝐾+𝐾−) ⋅ 𝑁𝜓(2𝑆)
, (6.24)

BR(𝜓(2𝑆) → 𝜙𝜋0𝜋0) =
𝑁(𝜋0𝜋0)
𝜙,obs

𝜖(𝜋0𝜋0) ⋅ BR(𝜙 → 𝐾+𝐾−) ⋅ BR(𝜋0 → 𝛾𝛾)2 ⋅ 𝑁𝜓(2𝑆)
. (6.25)

These equations contain the number of observed 𝜙 events 𝑁(𝜋𝜋)
𝜙,obs and the efficiency 𝜖(𝜋𝜋) of

the respective channels, as well as the branching ratios BR(𝜙 → 𝐾+𝐾−) and BR(𝜋0 → 𝛾𝛾),
and the number of 𝜓(2𝑆) events 𝑁𝜓(2𝑆) in the data sample. Using Eq. (6.13), the number of
observed 𝜙 events can directly be calculated with the fit results for the amplitude 𝐴.
Due to correlations between fit parameters, it is possible that the likelihood distribution
around the fit result is asymmetric, leading to asymmetric uncertainties. These uncertainties
are not directly given by the fitting tool; thus, they were determined separately for the 𝜋+𝜋−

final state. To determine the asymmetric uncertainties, the fit was repeated for 160 different
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amplitude values. These amplitude values were chosen equidistant from each other, in an
interval of (𝐴± 4 ⋅ 𝑢(𝐴)), where 𝑢(𝐴) is the symmetric uncertainty resulting from the fit. Rel-
ative likelihoods were determined by dividing the likelihoods of the 160 fits by the likelihood
of the original fit, where the amplitude was optimized. Then an asymmetric Gaussian (cf.
Appendix A.1.5) was used to fit the resulting relative likelihood values, using the least-square
minimization method (cf. Appendix A.1.7). The mean 𝜇 of the Gaussian was fixed to the
number of observed events calculated from the optimized amplitude. Due to the instability
of the fit for the 𝜋0𝜋0 final state, this method did not yield reliable results, and thus the
symmetric uncertainties from the fit were used for the determination of the branching ratio.
The results for the 𝜋+𝜋− final state can be seen in Fig. 6.5. The resulting asymmetry does not
influence the significant digit of the uncertainty, and thus the uncertainty of the number of
observed events was also assumed to be symmetrical.

Figure 6.5: Plotted as black points are the relative likelihoods determined by fits on the𝐾+𝐾− invariant
mass spectrum of the 𝐾+𝐾−𝜋+𝜋− final state, for different fixed amplitudes. The number of observed
events𝑁obs corresponding to the amplitudes are given on the abscissa. The fitted asymmetric Gaussian
is shown as a red line, and the fit results for the left and right standard deviations can be seen in the
legend. The number of observed events resulting from the optimized amplitude can also be seen in the
legend.
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The efficiency was calculated by dividing the number of accepted signal Monte-Carlo events
𝑁MC,acc after the selection criteria, by the number of generated signal Monte-Carlo events
𝑁MC,gen:

𝜖 =
𝑁MC,acc

𝑁MC,gen
. (6.26)

The resulting efficiencies are:

𝜖(𝜋+𝜋−) = (23.19 ± 0.02) %,

𝜖(𝜋0𝜋0) = (13.02 ± 0.01) %.

Their uncertainties were determined using uncertainty propagation of the statistical uncer-
tainties of the numbers of accepted Monte-Carlo events. As expected, the efficiency of the
𝜋0𝜋0 final state is lower than that of the 𝜋+𝜋− final state, due to the reconstruction of every
𝜋0 meson from two photons.
The branching ratios for 𝜙 → 𝐾+𝐾−, and 𝜋0 → 𝛾𝛾, with their corresponding uncertainties,
were taken from the PDG [31, Summary Tables], and the number of 𝜓(2𝑆) events, and its un-
certainty, was taken from Ref. [63]. By inserting all aforementioned values into Eqs. (6.24)
and (6.25), and using uncertainty propagation to calculate the statistical uncertainty, shown
first, and systematic uncertainty, shown second, the following branching ratios were deter-
mined:

BR(𝜓(2𝑆) → 𝜙𝜋+𝜋−) = (1.252 ± 0.007 ± 0.012) × 10−4

BR(𝜓(2𝑆) → 𝜙𝜋0𝜋0) = (0.492 ± 0.006 ± 0.005) × 10−4

All values used, as well as their uncertainties are listed in Table A.5. The branching ratio
for 𝜓(2𝑆) → 𝜙𝜋+𝜋− lies within the uncertainties of the PDG value of (1.18 ± 0.26) × 10−4

[31, Summary Tables], whereas no branching ratio is listed yet in the PDG for the reaction
𝜓(2𝑆) → 𝜙𝜋0𝜋0.
From perturbative QCD follows the so called ”12% rule”, which predicts [80]:

BR(𝜓(2𝑆) → 𝑔𝑔𝑔)
BR(𝐽/𝜓 → 𝑔𝑔𝑔)

= (12.2 ± 2.4)%. (6.27)

This hypothesis was tested by using the presented results, and the branching ratios for the 𝐽/𝜓
decays, with their corresponding uncertainties from the PDG [31, Summary Tables]. Using
Eq. (6.27) and uncertainty propagation, the following values could be determined:

BR(𝜓(2𝑆) → 𝜙𝜋+𝜋−)
BR(𝐽/𝜓 → 𝜙𝜋+𝜋−)

= (1.25 ± 0.01) × 10−4

(9.4 ± 1.5) × 10−4
= (13 ± 2)%

BR(𝜓(2𝑆) → 𝜙𝜋0𝜋0)
BR(𝐽/𝜓 → 𝜙𝜋0𝜋0)

= (0.492 ± 0.007) × 10−4

(5 ± 1) × 10−4
= (10 ± 2)%.

Both values agree within their uncertainties with the theoretical value, providing further ex-
perimental confirmation of the 12% rule.
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Due to isospin symmetry, one would expect that the decay into 𝜋+𝜋− is two times more likely
than that into 𝜋0𝜋0. This factor can be derived from the Clebsch-Gordan coefficients for the
transition of a |𝐼 = 0, 𝐼3 = 0⟩ isospin state to the two pion states. The Clebsch-Gordan coeffi-
cient for the transition to 𝜋+𝜋− reads:

⟨0, 0|1, 1/2; 1, −1/2⟩ + ⟨0, 0|1, −1/2; 1, 1/2⟩ = 2/√3,

while the coefficient for the transition to 𝜋0𝜋0 is

⟨0, 0|1, 0; 1, 0⟩ = −1/√3.

These coefficients appear in the transition matrix element for the processes, leading to the
aforementioned factor of two, if the isospin is conserved (cf. Eq. (6.36)). Between the branch-
ing ratios, which were experimentally determined in this work, lies a factor of 2.54 ± 0.04,
which does not agree with the previous considerations. The disparity between the experi-
mental result and the theoretical expectation can have multiple reasons, three of which will
now be discussed.
One of the reasons could be that part of the detected signal events result from electromag-
netic transitions, which do not conserve isospin. For example, electromagnetic processes of
the kind 𝜓(2𝑆) → 𝛾∗ → hadrons, containing a virtual photon 𝛾∗ make up (1.73 ± 0.14) %[31,
Summary Tables] of all 𝜓(2𝑆) decays, while the decay into hadrons over three gluons makes
up (10.6 ± 1.6) % of all 𝜓(2𝑆) decays.
Another reason for the discrepancy could be the method used for the determination of the
efficiency. The efficiency was determined using Monte-Carlo samples, which are evenly dis-
tributed in phase space, and do not contain intermediate resonances. These approximations
can lead to a difference between the efficiency determined with the signal Monte-Carlo sam-
ple, and the ”real” efficiency. This deviation can also differ between the final states, which
would influence the ratio between the branching ratios.
The third possible reason is, that the uncertainties of the branching ratios are underestimated
because they do not incorporate the systematic uncertainties, e.g., resulting from the choice
of selection criteria.
Now that the results of the fit were presented, the next sectionwill showhow the signal regions
were determined.

63



Chapter 6. Analysis

Determination of the Signal Region

The results of the fit give information about the signal and background distribution in the
invariant mass region of the 𝜙 resonance. With this information it is possible to determine an
optimized signal region, using amethod analogously to the one presented in Section 6.1.1. Due
to the asymmetric line shape of the resonance, the left and right limit of the signal region,𝑚L

and 𝑚R, were optimized separately using the following definitions for the number of signal,
and data events:

𝑆L = ∫
𝑀𝜙

𝑚L

𝒫sig(𝑚; ⃗𝜃fit) d𝑚 (6.28)

𝑁L = ∫
𝑀𝜙

𝑚L

𝑓(𝑚; ⃗𝜃fit) d𝑚 (6.29)

𝑆R = ∫
𝑚R

𝑀𝜙

𝒫sig(𝑚; ⃗𝜃fit) d𝑚 (6.30)

𝑁R = ∫
𝑚R

𝑀𝜙

𝑓(𝑚; ⃗𝜃fit) d𝑚, (6.31)

(a)𝐾+𝐾−𝜋+𝜋− (b)𝐾+𝐾−𝜋0𝜋0

Figure 6.6: Results of Eq. (6.1) in dependence of the left distance from the peak (red), and right distance
from the peak (blue), for both final states. The maxima of the curves are indicated by the dashed lines,
and the distances at which the maxima are located are given in the legend. Also included in the legend
are the positions of both limits in the respective 𝐾+𝐾− invariant mass spectra.

These quantities were determined by integrating over the signal and fit model functions (cf.
Eqs. (6.4) and (6.18)), with ⃗𝜃fit being the optimized parameters. These definitions were in-
serted into Eq. (6.1), and the invariant mass, at which the FOM reaches its maximum, was
determined. The plots showing the FOMs for the different lower and upper mass limits can
be seen in Fig. 6.6. The resulting signal regions in the 𝐾+𝐾− invariant mass spectra can be
seen in Fig. 6.7. For both final states the FOMs for the right limit runs into a plateau. This
behavior is caused by the kinematic limit in the 𝐾+𝐾− spectra but does not seem to influence
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6.1. Signal Selection

the results as the peak appears beforehand. Only events within this signal region were used
for further analysis.

(a)𝐾+𝐾−𝜋+𝜋− (b)𝐾+𝐾−𝜋0𝜋0

Figure 6.7: Shown are the same plots as in Fig. 6.4, but with the inclusion of the optimized signal
region. Also, the background percentage, being the number of background events divided by the total
number of events in the signal region is given for both final states.

6.1.3 K∗(892) Veto

After the selection of the signal region the inclusive Monte-Carlo sample was used to gain
insight into possible background reactions. First the reactions in the sample were split into
signal reactions, which contain a 𝜙 resonance and decay into the selected final states, and
background reactions, which are all other reactions. Then the background reactions were
sorted from the highest number of events to the lowest. The results of this background sepa-
ration are listed in Appendix A.2.6 and plotted in Fig. 6.8.
It can be seen, that according to the inclusive Monte-Carlo, processes containing the decay
𝐾∗(892) → 𝐾𝜋, contribute significantly to the background of both final states. Therefore, veto
regions around the 𝐾∗(892) resonance in the 𝐾𝜋 invariant mass spectra were implemented
to reduce the number of background events. All events containing a 𝐾𝜋 combination, with
an invariant mass within the interval (𝑚𝐾∗,PDG − 2 ⋅ Γ𝐾∗,PDG) < 𝑚(𝐾𝜋) < (𝑚𝐾∗,PDG + 2 ⋅
Γ𝐾∗,PDG), were rejected. For the 𝜋+𝜋− final state𝑚𝐾∗,PDG and Γ𝐾∗,PDG are the mass and width
of the 𝐾∗0(892)/ ̄𝐾∗0(892)mesons, being𝑀𝐾∗0 = (895.5 ± 0.2)MeV and Γ𝐾∗0 = (47 ± 1)MeV
[31, Summary Tables], while the mass and width for the 𝜋0𝜋0 final state corresponds to the
𝐾∗±(892)mesons, being𝑀𝐾∗± = (891.6±0.2)MeV and Γ𝐾∗± = (51.4±0.8)MeV [31, Summary
Tables]. The 𝐾𝜋 invariant mass spectra, with a red area indicating the veto interval, can be
seen in Fig. 6.9.
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Figure 6.8: 𝜋𝜋 (top), and𝐾𝜋 (bottom) invariantmass spectra of the data samples (black), and the scaled
inclusiveMonte-Carlo samples (colored) before the𝐾∗(892) veto. Spectra belonging to the𝐾+𝐾−𝜋+𝜋−

final state are shown on the left, and the ones belonging to the 𝐾+𝐾−𝜋0𝜋0 final state are shown on
the right. The events of the inclusive Monte-Carlo are separated into signal events, the four biggest
background reactions, and other background.

(a)𝐾+𝐾−𝜋+𝜋− (b)𝐾+𝐾−𝜋0𝜋0

Figure 6.9: 𝐾𝜋 invariant mass spectra of both final states. Events with 𝐾𝜋 combinations with invariant
masses within the red interval get rejected.

66



6.1. Signal Selection

The same spectra shown in Fig. 6.8 can be seen after the veto in Fig. 6.10, while all correspond-
ing signal and background reactions according to the inclusive Monte-Carlo sample are listed
inAppendixA.2.6. For the𝜋+𝜋− final state themost significant background reactions remain-
ing are the direct decay into the final state particles, and the reaction 𝜓(2𝑆) → 𝐾+𝐾−(𝜌0 →
𝜋+𝜋−). The direct decay 𝜓(2𝑆) → 𝐾+𝐾−𝜋+𝜋− was integrated into the partial wave analy-
sis, which will be discussed in Section 6.2. No reasonable approach was found to remove the
background containing the 𝜌0 resonance, as implementing a veto region would remove a sig-
nificant amount of signal events in the 𝜋+𝜋− spectrum, which will be of the focus for the
following analysis. An implementation into the partial wave approach was also not possible
because the used partial wave model only describes two-body decays. Thus, no further steps
were taken regarding the 𝜌0 background and possible effects on the results of the partial wave
analysis will be discussed at the end of Section 6.2.

Figure 6.10: 𝜋𝜋 (top), and 𝐾𝜋 (bottom) invariant mass spectra from the data samples (black), and
the scaled inclusive Monte-Carlo sample (colored) after the 𝐾∗(892) veto. Spectra belonging to the
𝐾+𝐾−𝜋+𝜋− final state are shown on the left, and the ones belonging to the 𝐾+𝐾−𝜋0𝜋0 final state are
shown on the right. The events of the inclusive Monte-Carlo are shown separated into signal events,
the events of the four biggest background reactions, and other background events.

The largest contribution to the background in the 𝜋0𝜋0 final state, according to the inclusive
Monte-Carlo, are reactions containing excited kaons, other than the 𝐾∗±(892) decaying into
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𝐾𝜋. Due to the disproportionate amount of signal events that would be rejected by imple-
menting other vetoes at the masses of heavier excited kaons, no further selection criteria were
used.
This concludes the signal selections. The selected events will be used to perform a partial wave
analysis, which will be discussed in detail in the next section.

6.2 Partial Wave Analysis

After the signal selection, the next step of the analysis was to extract information about possi-
ble intermediate resonances in the𝜋𝜋 invariantmass spectra. Asmentioned in themotivation
for the choice of the signal reaction, one would predominantly expect 𝑓0 and 𝑓2 resonances in
the 𝜋𝜋 spectra. A lot of these resonances are already listed in the Summary Tables of the
PDG [31], but their physical properties, like their masses, widths, and branching ratios, are
either given with high uncertainties, or not at all. The main reasons for this are their large
widths, leading to overlapping line shapes, and their positions at production the thresholds
of their decay channels. These properties distort the line shapes of the resonances, making
Breit-Wigner fits to the spectra of their daughter particles unreliable. For reference, the pro-
duction thresholds, and the 𝑓0 and 𝑓2 resonances of interest, are shown in Fig. 6.11. Thus, to
extract the properties of these resonances, a fully analytical approach had to be found, which
incorporates interference effects, while conserving probability. The next sections will present
a model which fulfills these requirements, then introduce the method used to fit the model to
the data samples, and finally discuss the results of the fit. As the model relies strongly on the
decomposition of the reaction into its partial waves, the kind of method is often called partial
wave analysis, or PWA for short.

6.2.1 Model

As the first part of the partial wave analysis, a model had to be defined, describing the data af-
ter the signal selection, while fulfilling the requirementsmentioned in the introduction of this
section. After looking at the list of the remaining reactions according to the inclusive Monte-
Carlos samples, and looking for other possible resonances in the spectra, it was concluded,
that the vast majority of initial state 𝜓(2𝑆) transitions into the 𝐾+𝐾−𝜋𝜋 final states happen
over subsequent two-body decays. For the description of such processes the isobar model is
used [81]. Two seen processes, which deviate from the isobarmodel, and appear often enough
to justify treatment would be the three-body decay 𝜓(2𝑆) → (𝜙 → 𝐾+𝐾−)𝜋𝜋, and four body
decay𝜓(2𝑆) → 𝐾+𝐾−𝜋𝜋. To effectively include the three-body decay into themodel, a param-
eterization was chosen that treats the two pions as single two-pion states, which transition by
non-resonant scattering into the two final state pions.
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This parameterization will be shown in detail when the dynamics of the decay will be dis-
cussed. The four-body decay itself is not parameterized, but is considered by the model
through the inclusion of phase space Monte-Carlo samples. How Monte-Carlo samples can
be incorporated will be shown in Section 6.2.2.

Figure 6.11: In the upper part of the figure, the different 𝑓0 and 𝑓2 resonances, whichwere considered in
the analysis, are plotted as Breit-Wigner resonances (cf. Eq. (A.1)), with their masses and widths taken
from the PDG [31, Summary Tables]. In the lower part of the figure, the 𝜋𝜋 invariant mass spectra
after the signal selection are shown, with lines indicating different production thresholds for possible
decay channels of the 𝑓𝐽 resonances.

For one of the possible decay chains for the transition between the initial and final states, the
reaction amplitude can be written as the product of the production amplitudes of each decay.
In the case of the process 𝜓(2𝑆) → (𝜙 → 𝐾+𝐾−)(𝑓0(500) → 𝜋𝜋) the reaction amplitude is
defined as:

𝒜(reac)
𝜓(2𝑆)→(𝜙→𝐾+𝐾−)(𝑓0(500)→𝜋𝜋) = 𝒜(prod)

𝜓(2𝑆)→𝜙𝑓0(500) ⋅ 𝒜
(prod)
𝜙→𝐾+𝐾− ⋅ 𝒜(prod)

𝑓0(500)→𝜋𝜋. (6.32)

Then, the total reaction amplitude can be written as the sum over all considered reaction
amplitudes.
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When only considering different intermediate resonances 𝑋, while assuming that the two
kaons always result from the decay of a 𝜙 resonance, the total reaction amplitude can be ex-
pressed as follows:

𝒜(tot)
𝜓(2𝑆)→𝐾+𝐾−𝜋𝜋 = ∑

𝑋
𝒜(reac)
𝜓(2𝑆)→(𝜙→𝐾+𝐾−)(𝑋→𝜋𝜋). (6.33)

As the next step, the production amplitudes will be parameterized. Generally, the Lorentz
invariant production amplitude is dependent on the Mandelstam variables 𝑠, and 𝑡 (cf. Sec-
tion 3.2.1). In this work, the angular dependent part of the amplitude was parameterized
using the helicity framework, which was introduced in Section 3.2.5. Using Eq. (3.106), the
production amplitude for an arbitrary two-body decay can be written as:

𝒜(prod)
𝑆1,𝑆2,𝜆1,𝜆2,𝐽, ̃𝜆

(𝜃, 𝜑, 𝑠) =𝒜(ang)
𝑆1,𝑆2,𝜆1,𝜆2,𝐽, ̃𝜆

(𝜃, 𝜑) ⋅ 𝒜(dyn)(𝑠) (6.34)

=∑
𝐿,𝑆

√
2𝐿 + 1
4𝜋 ⋅ 𝐷𝐽∗

̃𝜆,𝜆(𝜑, 𝜃, −𝜑) ⋅ ⟨𝐿, 0; 𝑆, 𝜆|𝐽, 𝜆⟩

⋅ ⟨𝑆1, 𝜆1; 𝑆2, −𝜆2|𝑆, 𝜆⟩ ⋅ 𝐴𝐿,𝑆 ⋅ 𝒜(dyn)(𝑠),

(6.35)

with 𝒜(ang)
𝑆1,𝑆2,𝜆1,𝜆2,𝐽,𝑀(𝜃, 𝜑) being the angular part, which is dependent on the helicity angles

𝜃 and 𝜑 (cf. Fig. 3.4), and 𝒜(dyn)(𝑠) being the dynamical part of the amplitude. 𝐽 and ̃𝜆 are
the total angular momentum and corresponding helicity quantum numbers of the mother
particle, while 𝑆1, 𝑆2, and 𝜆1, 𝜆2 are the spin and helicity quantum numbers of its daughter
particles, with 𝜆 = 𝜆2 − 𝜆1. The sum in the amplitude runs over all possible combinations of
orbital momentum 𝐿 and spin 𝑆 quantum numbers for the decay process. For a specific pair of
𝐿 and 𝑆 quantum numbers, the strength and phase of a decay is given by the constant complex
canonical amplitude 𝐴𝐿,𝑆.
Equation (6.35) can now be inserted into Eq. (6.33), using the known quantum numbers of
the different initial and final states, and summing over all unknown quantum numbers of the
entire process. Thus, the total reaction amplitude for the reactions 𝜓(2𝑆) → 𝐾+𝐾−𝜋𝜋 can be
written as:

𝒜(tot) =∑
𝑋
∑
𝐼3

∑
𝜆𝜓(2𝑆)

∑
𝜆𝜙
∑
𝜆𝑋
∑
𝐿
∑
𝑆
√

2𝐿 + 1
4𝜋 ⋅ 𝐷1∗

𝜆𝜓(2𝑆),𝜆𝑋−𝜆𝜙
(𝜑𝑋, 𝜃𝑋, −𝜑𝑋)

⋅ ⟨𝐿, 0; 𝑆, 𝜆𝑋 − 𝜆𝜙|1, 𝜆𝑋 − 𝜆𝜙⟩ ⋅ ⟨𝐽𝑋, 𝜆𝑋; 1, −𝜆𝜙|𝑆, 𝜆𝑋 − 𝜆𝜙⟩

⋅𝐴(𝜓(2𝑆)→𝑋𝜙)
𝐿,𝑆 ⋅ 𝒜(dyn)

𝜓(2𝑆)→𝑋𝜙(𝑠)⋅ ⟨1, 𝐼
(𝜋1)
3 ; 1, 𝐼(𝜋2)3 |0, 0⟩ ⋅√

2𝐽𝑋 + 1
4𝜋

⋅𝐷𝐽𝑋∗
𝜆𝑋,0(𝜑𝜋, 𝜃𝜋, −𝜑𝜋) ⋅ ⟨𝐽𝑋, 0; 0, 0|𝐽𝑋, 0⟩ ⋅ 𝐴

(𝑋→𝜋𝜋)
𝐽𝑋,0,𝐿,𝑆 ⋅ 𝒜

(dyn)
𝑋→𝜋𝜋(𝑚2

𝜋𝜋)

⋅√
3
4𝜋 ⋅ 𝐷1∗

𝜆𝜙,0(𝜑𝐾, 𝜃𝐾, −𝜑𝐾) ⋅ 𝐴
(𝜙→𝐾+𝐾−)
1,0 ⋅ 𝒜(dyn)

𝜙→𝐾+𝐾−(𝑚2
𝐾+𝐾−)

(6.36)

The indices of each quantum number and angle indicate the particle they belong to. In gen-
eral, the dynamical parts can also depend on the given quantum numbers, but the dependen-
cies will only be shown in the concrete definitions. All possible quantum numbers, for each
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part of the reaction can be seen in Fig. 6.12, and the angles corresponding to different helicity
frames are depicted in Fig. 6.13. Depending on the final state, the sum over the third isospin
components of the𝜋1𝜋2 state can either include the two possible combinations 𝐼

(𝜋1)
3 = ±1 and

𝐼(𝜋2)3 = ∓1 for the 𝜋+𝜋− final state, or the single combination 𝐼(𝜋1)3 = 0 and 𝐼(𝜋2)3 = 0 for the
𝜋0𝜋0 final state.

𝜓 2𝑆
𝐽 = 1

𝜆 = −1,1

𝐿 = 0,𝑆 = 1
𝐿 = 2,𝑆 = 1

S-Wave

𝐽 = 0
𝜆 = 0

𝜙 1020
𝐽 = 1

𝜆 = −1,0,1

𝐿 = 0,𝑆 = 0

𝐿 = 1,𝑆 = 0

𝜋

𝜋

𝐾+

𝐾−

𝜋±,𝜋0

𝐽 = 0
𝜆 = 0

𝐾 ±

𝐽 = 0
𝜆 = 0

(a)

𝜓 2𝑆
𝐽 = 1

𝜆 = −1,1

D-Wave

𝐽 = 2
𝜆 = −2,−1,0,1,2

𝜙 1020
𝐽 = 1

𝜆 = −1,0,1

𝐿 = 2,𝑆 = 0

𝐿 = 1,𝑆 = 0

𝜋

𝜋

𝐾+

𝐾−

𝜋±,𝜋0

𝐽 = 0
𝜆 = 0

𝐾 ±

𝐽 = 0
𝜆 = 0

𝐿 = 0,𝑆 = 1
𝐿 = 2,𝑆 = 1

𝐿 = 2,𝑆 = 2
𝐿 = 2,𝑆 = 3
𝐿 = 4,𝑆 = 3

(b)

Figure 6.12: All quantum numbers needed for the construction of the total reaction amplitude (cf.
Eq. (6.36)). The transition between the 𝜓(2𝑆) meson and the 𝜋𝜋 final state was either described by a
state with a total orbital momentum of 𝐽 = 0 (S-wave) (a), or with a total angular momentum of 𝐽 = 2
(D-wave) (b).

The last thingmissing for the full parameterization of the total decay amplitude are the defini-
tions of the dynamical amplitudes. For the description of the dynamical part of the 𝜓(2𝑆) →
𝜙𝑋 decay, Blatt-Weisskopf factors were used:

𝒜(dyn)
𝜓(2𝑆)→𝑋𝜙(𝑠) = 𝐵𝐿(𝑝𝜓(2𝑆)/𝑝0), (6.37)

with 𝐿 being the orbital angular momentum quantum number of the decay 𝜓(2𝑆) → 𝜙𝑋 and
𝑝𝜓(2𝑆) being the absolute momentum of the 𝜓(2𝑆) meson, which results from the 22mrad
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angle between the electron and positron beams. The momentum of the 𝜓(2𝑆) meson in the
laboratory frame is included in the data sample provided by the BESIII collaboration.

𝜃𝑋

𝑋𝜙

𝑒+

𝑒−

𝑧𝑋

𝑦

𝜑𝜙𝜓 2𝑆

𝑧

(a) Helicity frame of the decay 𝜓(2𝑆) → 𝜙𝑋.

𝜑𝐾+

𝜃𝐾+

𝑧𝜙

𝑦𝜙

𝑥𝜙

𝑋

𝑒+

𝑒−

𝐾 +

𝐾 −

𝜙

(b) Helicity from of the decay 𝜙 → 𝐾+𝐾−.

𝜑𝜋1

𝜃𝜋1 𝑧𝑋

𝑦𝑋

𝑥𝑋

𝜙

𝑒+

𝑒−

𝜋2

𝜋1

𝑋

(c) Helicity frame of the decay 𝑋 → 𝜋1𝜋2.

Figure 6.13: Helicity frames, with the correspondinghelicity angles 𝜃 and𝜑 of the three decays included
in Eq. (6.36). The basis vectors for the helicity frame of the decay 𝜓(2𝑆) → 𝑋𝜙 in (a) are chosen as
follows: 𝑥 is in horizontal direction in the laboratory frame; 𝑦 is in vertical direction in the laboratory
frame; 𝑧 is in direction of the symmetry axis of the detector. The light blue border indicates the decay
plain spanned by the momentum vectors of 𝑒+ and 𝑋 and can be seen in all three pictures. In (b) the
helicity frame of 𝜙 → 𝐾+𝐾− is shown, where the 𝑧 axis is defined to be in the direction of the 𝜙meson
in the helicity frame shown in (a). Analogously the 𝑧 axis of the helicity frame of 𝑋 → 𝜋1𝜋2 illustrated
in (c), is defined in the direction of the 𝑋 state in the helicity frame of (a). 𝜋1𝜋2 can either be 𝜋+𝜋−, or
𝜋0𝜋0 dependent on the current final state. The 𝑦 axis of both helicity frames in (b) and (c) is chosen to
be perpendicular to the light blue decay plane.

For the parameterization of the dynamics of 𝜙 → 𝐾+𝐾−, a Breit-Wigner distribution was
chosen:

𝒜(dyn)
𝜙→𝐾+𝐾−(𝑚2

𝐾+𝐾−) =
𝑚𝜙 ⋅ Γ𝜙

𝑚2
𝜙 −𝑚2

𝐾+𝐾− − 𝑖 ⋅ 𝑚𝜙 ⋅ Γ(𝑚𝐾+𝐾−)
⋅
𝐵1(𝑝/𝑝0)
𝐵1(𝑝𝜙/𝑝0)

, (6.38)

with Γ(𝑚𝐾+𝐾−) being defined in Eq. (6.6). In contrast to the approach taken in Section 6.1.2,
the detector resolutionwas not considered in this definition, due to restrictions of the PAWIAN
software. Possible consequences will be discussed in Section 6.2.3
. The main challenge was to parameterize the dynamics of 𝑋 → 𝜋𝜋. As the first step, the state
𝑋 is split into its S-wave contributions, with a total angular momentum of 𝐽 = 0, and its D-
Wave contributions, with 𝐽 = 2. Contributions of higher total angular momentum excitations
are neglected, as they are expected to be small. Thus, following from the quantum numbers,
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resonances in the S-wave can only be 𝑓0 states, while resonances in the D-wave are 𝑓2 states.
For the parameterization of the S- and D-wave, Eq. (3.95) was used.
Therefore, the dynamical part of the amplitude for the S-wave is defined as:

𝒜(dyn)
S-wave→𝜋𝜋(𝑚2

𝜋𝜋) = ∑
𝑐
[𝟙 + Σ(S-wave) ⋅ 𝐾(S-wave)]−1𝜋𝜋,𝑐 ⋅ 𝑃

(S-wave)
𝑐 , (6.39)

with the sum going over the two-body decay channels 𝜋𝜋, 𝐾 ̄𝐾, 𝜂𝜂, and 𝜂𝜂′, as well as the 4𝜋
channel, which is treated as an effective two-body channel of two particles with two-times the
pion mass. By incorporating these five channels, both the Chew-Mandelstammatrix, and the
𝐾-matrix become 5×5matrices. For the different channels, the PDGmasses were used for the
calculation of the Chew-Mandelstam functions [31, Summary Tables]. For the 𝜋𝜋 system, the
mass of the charged pionwas used, and for𝐾 ̄𝐾 system, themass of the charged kaonwas used.
Equation (3.90), multiplied by the so-called Adler zero termwas used for the parameterization
of the 𝐾-matrix:

𝐾(S-wave)
𝑏𝑎 (𝑚2

𝜋𝜋) = 𝑓A0(𝑚2
𝜋𝜋) ⋅ (∑

𝑓0

𝑔(𝑓0)𝑏 𝑔(𝑓0)𝑎

𝑚2
𝑓0 −𝑚2

𝜋𝜋
+ 𝑏𝑏𝑎) , (6.40)

𝑓A0(𝑚2
𝜋𝜋) =

𝑚2
𝜋𝜋 − 𝑠0
𝑠norm

. (6.41)

In the unphysical region of the amplitude describing the S-wave, theAdler zero term is needed
to describe chiral symmetry breaking [82, 83]. Using results fromchiral perturbation theory, 𝑠0
was set to𝑚2

𝜋0/2 [84], with𝑚𝜋0 being the mass of the 𝜋0 meson from the PDG [31, Summary
Tables]. The sum in the resonant part of the amplitude runs over the resonances 𝑓0(500),
𝑓0(980), 𝑓0(1370), 𝑓0(1500) and 𝑓0(1710), while the non-resonant part is parameterized by the
non-resonant coupling constants 𝑏𝑏𝑎.
Equation (3.92) was chosen for the parameterization of the five elements of the 𝑃-vector:

𝑃(S-wave)𝑐 (𝑚2
𝜋𝜋) = ∑

𝑓0

𝛼(𝑓0)𝐿,𝑆 𝑔
(𝑓0)
𝑐

𝑚2
𝑓0 −𝑚2

𝜋𝜋
+ ̃𝑏(0)𝑐 + ̃𝑏(1)𝑐 𝑚2

𝜋𝜋 + ̃𝑏(2)𝑐 𝑚4
𝜋𝜋. (6.42)

Analogously to the 𝐾-matrix, the sum over the resonant part runs over the aforementioned
𝑓0 resonances, but the non-resonant part now includes terms up to second order in 𝑚2

𝜋𝜋.
The parameters 𝛼(𝑓0)𝐿,𝑆 give the coupling strengths to the production process, and are there-
fore dependent on the quantum numbers 𝐿 and 𝑆 of the production process.
The parameterization for the dynamical part of the D-wave was chosen very similar to the
one for the S-wave, but due to excitation of the orbital angular momentum in the process, the
diagonal 𝑛-matrix must be considered in the equation:

𝒜(dyn)
D-wave→𝜋𝜋(𝑚2

𝜋𝜋) = ∑
𝑐,𝑐′

𝑛𝜋𝜋,𝑐′ [𝟙 + Σ(D-wave) ⋅ 𝐾(D-wave) ⋅ 𝑛2]−1𝑐′,𝑐 ⋅ 𝑃
(D-wave)
𝑐 . (6.43)

The diagonal elements of the 𝑛-matrix are defined as Eq. (3.89) with 𝑙 = 2. Both sums with
the indices 𝑐 and 𝑐′ run over the decay channels 𝜋𝜋, 4𝜋, 𝐾 ̄𝐾, and 𝜂𝜂, following the assumption
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made in Ref. [85], that the contributions of the 𝜂𝜂′ channel are negligible. The 𝐾-matrix and
𝑃-vector are defined as follows:

𝐾(D-wave)
𝑏𝑎 (𝑚2

𝜋𝜋) = ∑
𝑓2

𝑔(𝑓2)𝑏 𝑔(𝑓2)𝑎

𝑚2
𝑓2 −𝑚2

𝜋𝜋
+ 𝑏′𝑏𝑎, (6.44)

𝑃(D-wave)𝑐 (𝑚2
𝜋𝜋) = ∑

𝑓2

𝛼(𝑓2)𝐿,𝑆 𝑔
(𝑓2)
𝑐

𝑚2
𝑓2 −𝑚2

𝜋𝜋
+ ̃𝑏′𝑐. (6.45)

In both the 𝐾-matrix, and the 𝑃-vector the sum in the resonant part runs over the resonances
𝑓2(1270), 𝑓′2 (1525), 𝑓2(1810), and 𝑓2(1950), while the non-resonant parts are described by a
constant term, respectively.
With this the model is fully parameterized and can be optimized for the given data sets. The
method used for the optimization will be discussed in the following section.

6.2.2 Fitting Method

An extended likelihood fit was performed to optimize the parameters of the total reaction
amplitude (cf. Eq. (6.36)). The not-extended version of the likelihoodwas defined inEq. (6.19).
If the number of events 𝑁 is a random variable distributed by a probability density function
𝑓(𝑁, ⃗𝜃), then the extended likelihood, is defined as:

ℒext( ⃗𝜃) = 𝑓(𝑁, ⃗𝜃)
𝑁
∏
𝑖=1

𝑃( ⃗𝑥𝑖, ⃗𝜃), (6.46)

with ⃗𝑥𝑖 being a vector of random variables corresponding to the 𝑖’th event in the data sample,
and ⃗𝜃 being a vector of parameters. For thiswork, the number of data events can be assumed to
be large enough, that a Gaussian distribution can be used for 𝑓(𝑁, ⃗𝜃). The resulting extended
likelihood is defined as:

ℒext( ⃗𝜃) =
𝑁dat!

√2𝜋𝑁dat
exp (−

(𝑁mod( ⃗𝜃) − 𝑁dat)2

2𝑁data
)
𝑁dat

∏
𝑖=1

𝑃( ⃗𝑥𝑖, ⃗𝜃). (6.47)

The model does not describe an ordered set of data events, thus a factor of 𝑁dat! had to be
added, to account for all possible permutations. For the variance and mean of the Gaussian,
the number of data events 𝑁dat was taken, while 𝑁mod( ⃗𝜃) is the number of events predicted
by the model, which depends on the model parameters ⃗𝜃. To get this number, the intensity
𝐼( ⃗𝑥, ⃗𝜃) of the model has to be corrected by the efficiency 𝜖( ⃗𝑥), and the resulting function must
be integrated over the whole phase space of ⃗𝑥:

𝑁mod( ⃗𝜃) = ∫𝐼( ⃗𝑥, ⃗𝜃) ⋅ 𝜖( ⃗𝑥) d𝑥 = ∫ |𝒜(tot)( ⃗𝑥, ⃗𝜃)|2 ⋅ 𝜖( ⃗𝑥) d𝑥. (6.48)

For the partial wave analysis, the intensity of the model is the absolute square of the total
reaction amplitude. It depends on the four four-momenta of the final state particles, contained
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in ⃗𝑥, and all model parameters ⃗𝜃, like the bare masses, coupling strengths. For a given set of
data four-momenta ⃗𝑥𝑖 the probability density function is defined as:

𝑃( ⃗𝑥𝑖, ⃗𝜃) =
𝐼( ⃗𝑥𝑖, ⃗𝜃) ⋅ 𝜖( ⃗𝑥𝑖)

∫ 𝐼( ⃗𝑥, ⃗𝜃) ⋅ 𝜖( ⃗𝑥) d𝑥
. (6.49)

Generally, the efficiency function 𝜖( ⃗𝑥) is unknown. To avoid this problem, one approximates
the integral in Eq. (6.48) by using Monte-Carlo simulations, which include all efficiency ef-
fects:

∫𝐼( ⃗𝑥, ⃗𝜃) ⋅ 𝜖( ⃗𝑥) d𝑥 ≈ 1
𝑁MC

⋅
𝑁MC

∑
𝑗=1

𝐼( ⃗𝑦𝑗, ⃗𝜃), (6.50)

with 𝑁MC being the number of Monte-Carlo events, after the same selection criteria were
applied, as for the data sample, and ⃗𝑦𝑗 being the 𝑗’th set of four-momenta of the Monte-Carlo
sample. Hence, by inserting Eqs. (6.48) to (6.50) into Eq. (6.47), one gets:

ℒext( ⃗𝜃) =
𝑁dat!

√2𝜋𝑁dat
exp [− 1

2𝑁dat
⋅ ( 1
𝑁MC

𝑁MC

∑
𝑗=1

𝐼( ⃗𝑦𝑗, ⃗𝜃) − 𝑁dat)
2

]

⋅
𝑁dat

∏
𝑖=1

𝐼( ⃗𝑥𝑖, ⃗𝜃) ⋅ 𝜖( ⃗𝑥𝑖)
1

𝑁MC
⋅ ∑𝑁MC

𝑗=1 𝐼( ⃗𝑦𝑗, ⃗𝜃)
.

(6.51)

The values resulting from this equation are often very small, which can lead to numerical
problems during the optimization. To circumvent such problems, it is common to minimize
the negative logarithmic likelihood, instead of maximizing the likelihood itself. The function
that was minimized to optimize the parameters can be written as follows:

− lnℒext( ⃗𝜃) = 1
2𝑁dat

⋅ ( 1
𝑁MC

𝑁MC

∑
𝑗=1

𝐼( ⃗𝑦𝑖, ⃗𝜃) − 𝑁dat)
2

−
𝑁dat

∑
𝑖=1

ln [𝐼( ⃗𝑥𝑖, ⃗𝜃)]

+ ln [
𝑁MC

∑
𝑗=1

𝐼( ⃗𝑦𝑖, ⃗𝜃)] + const.

(6.52)

All parts of the sum that do not depend on the parameters ⃗𝜃 are included in the ”const.” term
because they are irrelevant for the minimization.

Now the choice of the fit parameters will be discussed. Generally, in all parts of the total reac-
tion amplitude, which depend on a non-zero orbital angular momentum between the daugh-
ter particles, the momentum scale factor 𝑝0 is present. There exist no precise theoretical pre-
dictions for this factor, but according to [31, review chap. 50], it should lie in a range between
0.2GeV and 1GeV. Changing this parameter has a negligible impact on the fit, consequen-
tially destabilizing it, if left as a free fit parameter. Thus, it was set to 0.33GeV, which has
already been proven to be a functioning value in Ref. [74].
The description of the 𝑋 → 𝜋𝜋 dynamics was done using the 𝐾-matrix formalism, which
includes multiple channels. All parameters used in the 𝐾-matrix impact the behavior of the
reaction amplitude for all other channels, consequently, the optimization of these parameters
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is not reasonable, when only regarding one channel. Therefore, the parameters 𝑠norm, 𝑔
(𝑓0)
𝑐 ,

𝑔(𝑓2)𝑐 , 𝑚𝑓0, 𝑚𝑓2, 𝑏𝑏𝑎, and 𝑏
′
𝑏𝑎 were taken from the analysis performed in Refs. [85, 86]. The

authors of these papers used a similar model, but did a combined fit on the channels 𝜋0𝜋0, 𝜂𝜂,
and 𝐾+𝐾− using 𝑝 ̄𝑝 annihilation data, and 𝜋𝜋 scattering data. The parameters resulting from
their analysis, and which were used in this work can be found in the supplementary material
of Ref. [85].
Only themass and width of the Breit-Wigner distribution are needed for the parameterization
of the 𝜙 resonance. Given that the description of the 𝜙 resonance was not the focus of the
analysis, both parameters were fixed to the values given by the PDG [31, Summary Tables] to
reduce the number of free fit parameters.
This only leaves the complex canonical amplitudes 𝐴(𝜓(2𝑆)→𝑋𝜙)

𝐿,𝑆 , 𝐴(𝑋→𝜋𝜋)
𝐽𝑋,0,𝐿,𝑆 , and 𝐴

(𝜙→𝐾+𝐾−)
1,0 , as

well as the production coupling strengths 𝛼(𝑓0)𝐿,𝑆 , and 𝛼
(𝑓2)
𝐿,𝑆 , and non-resonant coupling con-

stants ̃𝑏(𝑖)𝑐 , and ̃𝑏′𝑐 of the 𝑃-vectors, as possible fit parameters. In every element of the sum,
which amounts to the total reaction amplitude, is a product of all three canonical amplitudes
multiplied by either one of the production coupling strengths, or one of the non-resonant
coupling constants. Thus, each element of the sum is depending solely on the product of the
parameters, rather than the parameters themselves, leading to a very unstable fit, if all of them
are used for the optimization. Therefore, only the coupling constants of the 𝑃-vectors, and the
phases of the complex canonical amplitudes 𝐴(𝑋→𝜋𝜋)

𝐽𝑋,0,𝐿,𝑆 are left to be optimized by the fit. The
magnitudes of 𝐴(𝑋→𝜋𝜋))

𝐽𝑋,0,𝐿,𝑆 , as well as all other canonical amplitudes are set to one. Not the ab-
solute phases, but only the relative phases between the different partial waves influence the
model. In order to obtain the relative phase information directly and to simplify the fit, the
arbitrarily chosen phase of 𝐴(D-wave→𝜋0𝜋0)

2,0,0,1 was set to zero, meaning that every other phase is
relative to this one. Also, only the non-resonant couplings for the channel 𝜋𝜋 were used, for
every other channel they were set to zero.
Until now, all discussion was done for a general 𝐾+𝐾−𝜋𝜋 final state, but for this work, a cou-
pled channel fit was performed, using the data sets and phase space Monte-Carlo samples
for the 𝐾+𝐾−𝜋+𝜋− and 𝐾+𝐾−𝜋0𝜋0 final states. For the coupled channel fit, the sum of the
negative logarithmic likelihoods for both final states were minimized:

− lnℒtot( ⃗𝜃𝜋+𝜋−, ⃗𝜃𝜋0𝜋0) = − lnℒext( ⃗𝜃𝜋+𝜋−) − lnℒext( ⃗𝜃𝜋0𝜋0), (6.53)

with ⃗𝜃𝜋+𝜋− being the model parameters for the 𝜋+𝜋− final state, and ⃗𝜃𝜋0𝜋0 being the parame-
ters for the 𝜋0𝜋0 final state. Most parameters, like the production coupling strength 𝛼(𝑓0)𝐿,𝑆 , are
shared between the two models, the only final state exclusive parameters are the canonical
amplitudes 𝐴𝑋→𝜋+𝜋−

𝐿,𝑆 and 𝐴𝑋→𝜋0𝜋0
𝐿,𝑆 . Also, a factor𝑊 was multiplied to the amplitude for the

𝜋+𝜋− final state, to account for scaling effects, which are independent from both the angles
and the energies. Such scaling effects can for example result from the fact that the branching
ratio of 𝜋0 → 𝛾𝛾. After this discussion, the 246 possible parameters of themodel were reduced
to a total of 48 free fit parameters. The results of the fit will be presented and discussed in the
next section.
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6.2.3 Results

In this section, the results of the coupled channel fit to the two final states 𝐾+𝐾−𝜋+𝜋− and
𝐾+𝐾−𝜋0𝜋0, will be presented and discussed. To visualize the fit result, multiple histograms
containing angular and invariant mass distributions of the data, and the projection of the
optimized model, will be shown. To get a projection of the total reaction amplitude onto dif-
ferent spectra, each event of the accepted phase space Monte-Carlo samples was weighted by
the intensity of the total reaction amplitude for the four-momenta of the event. With these
weighted events, the different histograms were first filled, and then scaled by the ratio be-
tween data and Monte-Carlo events. The results of this projection method are drawn as red
histograms. Additionally, this projection method was repeated using only the intensity of the
S-wave contributions in the total reaction amplitude, and again only using the D-wave contri-
butions. S-wave contributions are drawn in blue, while the D-wave contributions are drawn
in green.

The results for the angular distributions of the helicity angles can be seen in Fig. 6.14 for
the 𝐾+𝐾−𝜋+𝜋− final state particles, and in Fig. 6.15 for the 𝐾+𝐾−𝜋0𝜋0 final state particles.
Overall, the model describes the general shapes of the angular distributions remarkably well.
It correctly incorporates efficiency effects resulting from the geometry of the multilayer drift
chamber, leading to the decrease of events for higher | cos 𝜃𝑋|. This reduction in efficiency
is more drastic in the 𝜋0𝜋0 final state because the photons, from which the 𝜋0 mesons are
reconstructed, have to be detected in the electromagnetic calorimeter. Photons resulting from
the decay of a 𝜋0meson are boosted in the direction of its momentum, leading to a correlation
between their angular distributions and the angular distribution of the 𝜋0 meson. Thus, due
to the lower detection efficiency of the EMC at its end-caps, it is expected, that the detection
efficiency of 𝜋0 states is also reduced for higher | cos 𝜃𝑋|. Additionally, the probability that one
of the 𝜋0 meson’s daughter photons has an angle outside the detection range, increases for
higher | cos 𝜃𝑋|, leading to a further reduction in efficiency. Another effect, which can be seen
in data, andwas successfully described by themodel, is the efficiency reduction resulting from
the signal selection. This is especially apparent in the cos 𝜃𝜋 spectra, where the dip around
±0.85 results from the veto of the𝐾∗(892)mesons. Pions resulting from the decay of a𝐾∗(892)
resonance seem to have a strong preference for polar angles of about 27° in the 𝜋𝜋 helicity
frame, leading to the sharp dip in the spectra. The reason for this behavior is unknown, but
was empirical validated by looking at the spectra before and after the cut (cf. Fig. A.2).
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Figure 6.14: Angular distribution histograms of the azimuthal helicity angle 𝜑 (right) and cosine of the
polar helicity angle 𝜃 (left), for the 𝐾+𝐾−𝜋+𝜋− final state particles. A depiction of the different helicity
frames can be seen in Fig. 6.13. The distribution of data events is shown in black, while the projection
of the fit result is shown in red. The projection was split into the contribution of the S-wave (blue), and
the contribution of the D-wave (green). Below the graphs the residuals between the data and the fit
projection are shown, with error bars in 𝑦 direction, which are the size of the standard deviation 𝜎. At
the top right of each histogram, the 𝜒2 value of the projection, divided by the number of non-empty
bins in the histogram can be seen.
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Figure 6.15: Angular distribution histograms of the azimuthal helicity angle 𝜑 (right) and cosine of the
polar helicity angle 𝜃 (left), for the 𝐾+𝐾−𝜋0𝜋0 final state particles. A depiction of the different helicity
frames can be seen in Fig. 6.13. The distribution of data events is shown in black, while the projection
of the fit result is shown in red. The projection was split into the contribution of the S-wave (blue), and
the contribution of the D-wave (green). Below the graphs the residuals between the data and the fit
projection are shown, with error bars in 𝑦 direction, which are the size of the standard deviation 𝜎. At
the top right of each histogram, the 𝜒2 value of the projection, divided by the number of non-empty
bins in the histogram can be seen.
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Next, the invariant mass spectra shown in Fig. 6.17 for the 𝐾+𝐾−𝜋+𝜋− final state particles,
and in Fig. 6.18 for the𝐾+𝐾−𝜋0𝜋0 final state particles, will be discussed. Generally, themodel
seems to describe the invariant mass distributions of the 𝐾𝜋, 𝜋𝜋𝐾, and 𝐾𝐾𝜋 systems well,
without the incorporation of resonances decaying into these subsystems. In all 𝐾𝜋 and 𝐾𝐾𝜋
spectra a dip can be observed, which results from the 𝐾∗(892) veto. This efficiency effect re-
sulting from the signal selection is also incorporated by the fit. The only notable deviation
between the model and the data can be seen around 1.25GeV in the 𝐾±𝜋0 mass spectrum.
No resonance is expected for the 𝐾±𝜋0 system in this mass region, and it does not seem like a
reflection from other spectra, thus it is unclear what causes this deviation.
One shortcoming of the currentmodel is the description of the 𝜙 resonance. Unlike themodel
used for the one-dimensional fit of the 𝜙 resonance in Section 6.1.2, the description in this
model does not include effects resulting from the energy resolution of the detector. This re-
sults in an underestimation of the data at the flanks and an overestimation around the maxi-
mum. The lacking description is especially evident in the 𝐾+𝐾− spectrum of the 𝐾+𝐾−𝜋+𝜋−

final state. The reason for this could be the higher background content in said channel, which
is not included in the model, e.g. background containing a 𝜌0 resonance, which will be dis-
cussed in the next paragraph. Incorporating a convolution with a Gaussian is unfortunately
not possible within the PAWIAN framework. Possible solutions and alternatives will be pre-
sented in Chapter 7.
Now the 𝜋𝜋 invariant mass spectra will be discussed. The main feature of the spectra is the
peaking 𝑓0(980) resonance. Its asymmetry and general shape is well described, but larger
deviations can be seen at the left flank of the peak. One reason for the systematic under-
estimation of the data by the optimized model would be the missing description of possi-
ble 𝜌0 resonances in the 𝜋+𝜋− spectrum. The corresponding background reaction would be
𝜓(2𝑆) → 𝐾+𝐾−(𝜌0 → 𝜋+𝜋−), which is listed as the second highest background contribution
in the inclusive Monte-Carlo sample (cf. Table A.9). The inclusion of the 𝜌0 resonance in the
model is not possible without extending the isobar approach, as it requires the description of
the three-body decay 𝜓(2𝑆) → 𝐾+𝐾−𝜌0.
Between 1GeV and 2GeV themodel is able to describe the rough shape of the data, but fails at
the description of the finer substructures. However, considering that most of the parameteri-
zation of the 𝜋𝜋 dynamics was not optimized by the fit, but comes from an analysis, which in-
vestigated completely different production channels, the model works remarkably well. This
also highlights the model independent character of the parameterization. There are multiple
reasons for the deviations of themodel from the data. It is possible, that there are contributions
of other resonances in the spectra, like the 𝜌0 in the 𝜋+𝜋− spectrum, which are not included
in the model. No resonances above 2GeV are currently included in the model, which could
also affect the rest of the spectra when the fit tries to compensate for the lacking description.
Candidates for the inclusion of heavier states would be for example other 𝑓2 resonances, like
the 𝑓2(2300), or the 𝐽𝑃𝐶 = 4++ resonance 𝑓4(2050). To compare models including different
resonances, or other non-resonant contributions, hypothesis tests need to be performed, like
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in Ref. [86]. Another possible source for the deviations comes fromusing the parameters from
Ref. [85]. The analysis ismuchmore extensive than thiswork, testing different hypothesis and
including three decay channels, but the analyzed data has a much smaller phase space and
excluded two channels of the S-wave model, and one channel of the D-wave model. To use
the full potential of the parameterization, all channels have to be considered, and the decay
channel couplings, 𝑔𝑓0𝑏 and 𝑔𝑓2𝑏 , as well as the bare resonance’s masses, 𝑚𝑓0 and𝑚𝑓2, should
be used as free fit parameters.
The results for the fit parameters are listed in Tables A.14 and A.15. It is difficult to interpret
these values for the same reasons mentioned before. Their correlations to the decay chan-
nel couplings 𝑔(𝑅)𝑎 leads to high variance for resonances with small couplings to the 𝜋𝜋 decay
channel. In a fit incorporating all channels this effect would be compensated by the contribu-
tions of other decay channels.
Independent from the fit, the production preference for resonances with high 𝑠 ̄𝑠 content due
to the chosen signal condition containing a 𝜙 meson can be seen very well in the 𝜋𝜋 invari-
ant mass spectra. The effect becomes especially apparent when comparing the invariant mass
distributions of the 𝜋𝜋 system to 𝜋𝜋 spectra from an analysis, using 𝐽/𝜓 → 𝜔𝜋𝜋 as the signal
hypotheses. The 𝜋𝜋 invariant mass spectra of said reaction where e.g. extracted in Refs. [79,
87], and both the 𝜋+𝜋− spectrum resulting from this work, as well as the 𝜋𝜋 spectra from
Ref. [87] are depicted in Fig. 6.16 for comparison. An advantage of comparing these spectra is
that the coupling to the decay channel is the same for both reactions, but the coupling to the
production is different. Assuming that exchanging the 𝜓(2𝑆)meson with an 𝐽/𝜓meson only
effects the size of the phase space, all differences between the spectra can be accounted to the
choice of either the 𝜙meson, or the 𝜔meson in the signal hypothesis. No contributions of the
𝑓0(980) resonance can be seen in the 𝜋𝜋 spectra using the 𝜔meson hypothesis, but significant
contributions likely coming from the 𝑓0(500) and 𝑓2(1270). This observation is in strong con-
trast to the spectra presented in this work, where the 𝑓0(980) resonance is dominant, while
no 𝑓0(500) contributions are visible, and the 𝑓2(1270) seems to be strongly suppressed, even
though its branching ratio to 𝜋𝜋 is (84.2+2.9−0.9)%, according to the PDG [31, Summary Tables].
The 𝑓0(500) is assumed to be a state, which only contains 𝑢 ̄𝑢 and 𝑑 ̄𝑑 content (cf. Sections 2.3
and 2.4), while also high 𝑢 ̄𝑢 and 𝑑 ̄𝑑 content is predicted for the 𝑓2(1270) [88, 89]. This supports
the hypothesis that the spectra presented in this work predominantly show resonances with
a high 𝑠 ̄𝑠 content, and which have a reasonable coupling to two pions. The second part of this
statement is especially important when searching for the 𝑓′2 (1525), which is assumed to have
a high 𝑠 ̄𝑠 content [88, 89], but has, according to the PDG [31, Summary Tables], a branching
ratio of (8.3±1.6)×10−3 for the decay into two pions, which explains its lacking contribution
in the spectra. From this argument follows, that the 𝑓0(980) should have large 𝑠 ̄𝑠 contribu-
tions, due to its dominance in the spectra of this work, which was already proposed, e.g., in
Ref. [90].
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This assumption is further reinforced when comparing the spectra to the results of the scalar
pion form factor, resulting from dispersion theory [91], which can be seen in Fig. 6.19. The
non-strange form factor incorporates a broad 𝑓0(500) resonance, while the strange form factor
clearly shows a peak corresponding to the 𝑓0(980).
This concludes the discussion of the analysis performed in this work. The next chapter will
summarize the results and give an outlook of possible next steps, for improving and continuing
the analysis.

Figure 6.16: Left: 𝜋+𝜋− invariant mass spectrum with projections of the partial wave analysis, result-
ing from the analysis of the reaction 𝜓(2𝑆) → 𝜙𝜋+𝜋− in this work. Right: 𝜋𝜋 invariant mass spectra
with plotted fit results from the analysis of the reactions 𝐽/𝜓 → 𝜔𝜋𝜋 performed in Ref. [87].
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Figure 6.17: Invariant mass histograms for the 𝐾+𝐾−𝜋+𝜋− final state particles. The distribution of
data events is shown in black, while the projection of the fit result is shown in red. The projection was
split into the contribution of the S-wave (blue), and the contribution of the D-wave (green). Below the
graphs, the residuals between the data and the fit projection are shown, with error bars in 𝑦 direction,
which are the size of the standard deviation 𝜎. At the top right of each histogram, the 𝜒2 value of the
projection, divided by the number of non-empty bins in the histogram can be seen.
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Figure 6.18: Invariant mass histograms for the 𝐾+𝐾−𝜋0𝜋0 final state particles. The distribution of
data events is shown in black, while the projection of the fit result is shown in red. The projection was
split into the contribution of the S-wave (blue), and the contribution of the D-wave (green). Below the
graphs, the residuals between the data and the fit projection are shown, with error bars in 𝑦 direction,
which are the size of the standard deviation 𝜎. At the top right of each histogram, the 𝜒2 value of the
projection, divided by the number of non-empty bins in the histogram can be seen.
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Figure 6.19: Absolute values of the scalar pion form factors plotted against the center-of-mass energies
√𝑠 of two scattered pions. On the left, the form factor corresponding to the scattering of non-strange
quark content is plotted, while the form factor, which is plotted on the right, corresponds to the scat-
tering of strange quark content. For both form factors the results for three different normalizations are
plotted. The green uncertainty band indicates the allowed range for different normalizations. Figures
taken from Ref. [91].
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7. Conclusion and Outlook

In this chapter the results of this work will be summarized, and an outlook will be given for
further analysis.
As the first part of the analysis, the information provided by the detector systems of BESIII
and the results of kinematic and vertex fits were successfully used to select events containing
the two final states 𝐾+𝐾−𝜋+𝜋− and 𝐾+𝐾−𝜋0𝜋0 from the 2021 𝜓(2𝑆) data set provided by the
BESIII collaboration. From the resulting data samples, events containing the signal reactions
𝜓(2𝑆) → 𝜙𝜋𝜋 and 𝜓(2𝑆) → 𝜙(𝑋 → 𝜋𝜋) were extracted by setting various restrictions on
the properties of the events. Selection criteria were applied to the 𝜒2NC value of the kinematic
fit, only events were accepted within a signal region around the invariant mass of the 𝜙 reso-
nance, and all events were rejected in a veto region around the invariant mass of the 𝐾∗(892)
resonance. After all selection criteria were applied, a background to data ratios of 4.67% for
the 𝜋+𝜋− and 2.20% for the 𝜋0𝜋0 channel were archived.
For the optimization of the signal region, a fit to the 𝜙 resonance in the 𝐾+𝐾− invariant
mass spectra was performed. These fits provided information about the distributions of signal
and background events and enabled the extraction of the number of observed signal events.
With the number of observed signal events, the branching ratios BR(𝜓(2𝑆) → 𝜙𝜋+𝜋−) =
(1.25 ± 0.01) × 10−4 and BR(𝜓(2𝑆) → 𝜙𝜋0𝜋0) = (0.492 ± 0.007) × 10−4 were successfully de-
termined. The branching ratio of the process 𝜓(2𝑆) → 𝜙𝜋+𝜋− agrees with the value given by
the PDG [31, summary tables], but up to this point in the analysis, the result has an uncertainty
that is more than one order of magnitude lower. For 𝜓(2𝑆) → 𝜙𝜋0𝜋0 no branching ratio was
listed thus far. Both branching ratios were compared to their 𝐽/𝜓 counter parts, 𝐽/𝜓 → 𝜙𝜋+𝜋−

and 𝐽/𝜓 → 𝜙𝜋0𝜋0, and it was found that both decays are in agreement, within their uncertain-
ties, with the ”12% rule” derived from perturbative QCD. Due to isospin symmetry, a factor of
two was expected between the branching ratios determined in this work, but the results yield
a factor of 2.54 ± 0.04. Contributions from electromagnetic decays, which do not conserve
isospin, could be responsible for the deviation. Another source contributing to the deviation
could result from themethod used to determine the efficiency. It did not account for the effects
of different angular momentum transitions, and intermediate resonances in the 𝜋𝜋 channel,
onto the distribution of events in the phase space. To improve the accuracy of the efficiency
calculation, the results of the partial wave analysis can be used, to determine weights for the
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events of the generated, and accepted Monte-Carlo sample. Generally, comprehensive stud-
ies of the systematic uncertainties resulting from the selection criteria and choice of fit model
have to be performed to be fully able to discuss the resulting branching ratios.
For subsequent analyses, the approx. 447 million 𝜓(2𝑆) events provided by the 2009 and 2012
BESIII data sets should be added to the analysis, to reduce the statistical uncertainty. Also,
instead of the 500 million inclusive Monte-Carlo events, which were available at the time of
the analysis, the recently published full 2.3 billion inclusiveMonte-Carlo events from 2021, as
well as the newly reconstructed 447 million inclusive events from 2009 and 2012, should be
used to gain further inside into the background reactions. Generally, all data and simulations
should be reconstructed again, using the recently released BOSS version 7.0.9, to improve the
data quality and ensure consistency between the samples.

In the second part of the analysis a partial wave analysis was performed, with the objec-
tive to model the complex 𝜋𝜋 invariant mass spectra. A fully analytical and unitary model
was successfully implemented, which describes the distribution of the four-momenta of the
𝐾+𝐾−𝜋+𝜋− and 𝐾+𝐾−𝜋0𝜋0 final states. Then themodel was fit to said four-momenta of both
final states simultaneously using the extended negative logarithmic likelihood method. This
method also allowed for the proper incorporation of efficiency effects, by using phase space
distributed Monte-Carlo samples.
The helicity angle distributions in the three different helicity frameswere described exception-
ally well by the model. Generally, the description of the invariant mass distributions was also
satisfactory. A systematic deviation of the data from themodelwas found in the invariantmass
spectrum of the 𝐾±𝜋0 system around 1.25GeV, whose origin is unknown. Additionally, the
model could not fully describe the line shape of the comparatively narrow 𝜙 resonance due to
its increased width resulting from the energy resolution of the detector. Therefore, the model
should be improved by convoluting the used Breit-Wigner distribution with a Gaussian. The
general shape of the 𝜋𝜋 spectra was reproduced by the model, providing a good description
of the 𝑓0(980) resonance, but it was unable to describe the finer substructures between 1GeV
and 2GeV. The performance of the model is still impressive, respecting that most of the pa-
rameters were taken from a previous work, which used different data samples, with smaller
phase space, additional resonances, and other production mechanisms. This highlights the
versatility of the approach, and the model independent character of the parameters.
For future analysis, the aim should be to perform amulti-channel fit to all channels considered
by the model, namely the 4𝜋, 𝐾 ̄𝐾, 𝜂𝜂, and 𝜂𝜂′ channels, to be able to optimize all model pa-
rameters. Being independent from the results of previous works also has the advantage that
the model itself can be chosen more freely. Different parts of the model could be changed,
like the number of resonances, or adding another decay channel. A starting point could be
to add another 𝑓2 resonance, like the 𝑓2(2300), and the 𝜂𝜂′ decay channel to the description
of the D-wave. It is also feasible to change the order of the non-resonant terms or add en-
tirely new decay processes. Another approach would be to test different scattering models.
A good contender would be a model using dispersion theory to derive the scalar pion form
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factor, presented in Refs. [91, 92]. A comparison between the amplitudes resulting from this
approach and the results of this analysis, as well as the analysis of 𝜓(2𝑆) → 𝜙𝐾 ̄𝐾 performed
in the thesis of Johannes Bloms [74], can be seen in Fig. 7.1. Although the moduli of the form
factors were determined using a different production process, they appear to be similar to the
spectra resulting from this and J. Bloms’s analyses, providing motivation to implement this
parameterization for future analyses. A different way to improve the model is to change the
description of the 4𝜋 system, which was incorporated into the isobar model, by treating it as a
state consisting out of two particles which have themass and quantumnumbers of a pion pair.
An improvement to this approximation can be done by describing the channel as an effective
two 𝜌 or two 𝜎 channel, as it was done in Ref. [92].
All different models should then be compared, by using for example the Bayesian information
criterion [93], or Akaike information criterion [94], which use the likelihood value resulting
from the fit, but are expected to be less dependent on the number of degrees of freedom. After
a goodmodel has been found, the next step should be to determine the poles of the dynamical
part of the amplitude on the complex √𝑠 plane. The physical mass and width of a resonance
is defined by the position of the pole, and it is possible to get information like the partial width
by calculating the residue of a pole (cf. Section 3.2.3). This information can then be used to
gain further inside into the constituents making up the different scalar and tensor particles.
Independent from the physical model, it is advised to compare the used PAWIAN software
package to other available packages. PAWIAN allows for an easy and fast way to optimize
an amplitude model, even allowing for coupled channel analyses, and providing methods to
plot the results. But the options to customize the model, or include new parameterizations
are very limited, and when looking at the computation performance, the optimization itself
appears to be rather slow, even when using a high level of parallelization and adjusting the
resource management. For an analysis using advanced models and more channels, leading to
higher statistics, benchmark test should be performed, comparing PAWIAN to other packages,
as slow optimization could strongly impair the progress of the analysis. Possible alternative
software for the implementation and optimization of amplitude and partial wave models are
listed in Ref. [95].
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Figure 7.1: On the left, the 𝜋𝜋 invariant mass spectrum with the results of the partial wave analysis
performed in this work (top), and the 𝐾 ̄𝐾 invariant mass spectrum with the results from the analysis
performed in the thesis of J. Bloms [74] (bottom) can be seen. As a comparison, the absolute form
factors determined by fits on ̄𝐵0𝑠 → 𝐽/𝜓𝜋+𝜋− (top) and ̄𝐵0𝑠 → 𝐽/𝜓𝐾+𝐾− (bottom) data, taken from Ref.
[92], are shown on the right. The dashed black lines in the figures on the right indicate the kinematic
limit of the ̄𝐵0𝑠 decay, and the results of the three different fits are drawn in three different colors.
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A. Appendix

A.1 Equations and Relations

A.1.1 Normalized Breit-Wigner Distribution

The normalized relativistic Breit-Wigner probability density function, derived from Ref. [96]:

𝒜BW = 𝑀 ⋅ Γ
𝑠2 −𝑀2 − 𝑖 ⋅ 𝑀 ⋅ Γ (A.1)

with the Breit-Wigner mass𝑀, Breit-Wigner width Γ, and 𝑠 being the Mandelstam variable.

A.1.2 Blatt-Weisskopf Factors

The Blatt-Weisskopf factors for angularmomentum quantumnumbers up to 𝑙 = 4, taken from
[97]:

𝐵0(𝑧) = 1,

𝐵1(𝑧) = √
2𝑧2
1 + 𝑧2 ,

𝐵2(𝑧) = √
13𝑧4

(𝑧2 − 3)2 + 9𝑧2

𝐵3(𝑧) = √
277𝑧6

𝑧2(𝑧2 − 15)2 + 9(2𝑧2 − 5)2

𝐵4(𝑧) = √
1274𝑧8

(𝑧4 − 45𝑧2 + 105)2 + 25𝑧2(2𝑧2 − 21)2
.

(A.2)
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A.1.3 Wigner D-Matrix Identities

Identities of the Wigner D-Matrix taken from [48, 49].

𝐷𝑗
𝑚𝑘(𝛼, 𝛽, 𝛾)𝐷

𝑗′
𝑚′𝑘′(𝛼, 𝛽, 𝛾) =

𝑗+𝑗′

∑
𝐽=|𝑗−𝑗′|

⟨𝑗𝑚𝑗′𝑚′ ∣ 𝐽 (𝑚 +𝑚′)⟩

⋅ ⟨𝑗𝑘𝑗′𝑘′ ∣ 𝐽 (𝑘 + 𝑘′)⟩ 𝐷𝐽
(𝑚+𝑚′)(𝑘+𝑘′)(𝛼, 𝛽, 𝛾)

(A.3)

⟨𝐽,𝑀, 𝜆′1, 𝜆′2|𝜃, 𝜑, 𝜆1, 𝜆2⟩ = 𝛿𝜆1,𝜆′1𝛿𝜆2,𝜆′2√
2𝐽 + 1
4𝜋 𝐷𝐽

𝑀,𝜆1−𝜆2(𝜑, 𝜃, −𝜑) (A.4)

A.1.4 Gaussian Distribution

The probability density function of the Gaussian distribution is defined as:

𝑔(𝑥) = 1
𝜎√2𝜋

𝑒−
1
2 (

𝑥−𝜇
𝜍 )

2

, (A.5)

where 𝜎2 is the variance and 𝜇 is the mean value of the distribution.
The cumulative distribution function of the Gaussian distribution is defined as:

𝐺(𝑥) = 1
2 [1 + erf (

𝑥 − 𝜇

𝜎√2
)] , (A.6)

with erf(𝑥) being the Gauss error function, which is defined as:

erf(𝑥) = 2
√𝜋

∫
𝑥

0
𝑒−𝑡2𝑑𝑡. (A.7)

A.1.5 Asymmetric Gaussian

The asymmetric Gaussian is defined as:

𝑔asym(𝑥) =
𝐴G

√2𝜋𝜎asym
𝑒
− (𝑥−𝜇)2

2𝜍2asym , (A.8)

with an asymmetric standard deviation 𝜎asym:

𝜎asym = {
𝜎L, for 𝑥 ≤ 𝜇

𝜎R, for 𝑥 > 𝜇,
(A.9)

𝜇 being the mean, and 𝐴G the amplitude of the distribution.

A.1.6 Poisson Distribution

The discrete Poisson distribution gives the probability, that a discrete number of events 𝑘 oc-
curs, if the variance/mean 𝜆 of the distribution is known. The events themselves have to be
independent of each other. If this is fulfilled, then the probability mass function (PMF) is
defined as:

𝑃(𝑘; 𝜆) = 𝜆𝑘
𝑘! ⋅ 𝑒

−𝜆. (A.10)
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A.1.7 Least-squares Fit Method

Least-squares fitting is a method used for finding the set of parameters ⃗𝜃 for which a given
model 𝑓(𝑥, ⃗𝜃) best describes a given data sample, with 𝑁 data points. Each data point ⃗𝑑𝑖 con-
tains a 𝑦𝑖 value for each independent 𝑥𝑖 value. To fit the model function to these data points,
the vertical deviation 𝑅2 is minimized:

𝑅2 =
𝑁
∑
𝑖=1

[𝑦𝑖 − 𝑓(𝑥𝑖, ⃗𝜃)]
2
. (A.11)

For 𝑦𝑖 values with uncertainties 𝜎𝑖, that can be assumed to be Gaussian distributed, Eq. (A.11)
can be redefined as the 𝜒2 function

𝜒2 =
𝑁
∑
𝑖=1

[𝑦𝑖 − 𝑓(𝑥𝑖, ⃗𝜃)]
2

𝜎2𝑖
, (A.12)

which still uses the vertical deviation, but also incorporates the uncertainty of the data, allow-
ing for an estimation of the parameter uncertainty. Theminimized 𝜒2 value can be divided by
the degrees of freedom of the fit, which is the number of data points minus the number of free
fit parameters, to get the reduced 𝜒2r . For Gaussian distributed 𝑦𝑖 values, the 𝜒2r value gives the
goodness-of-fit, which, for a model fully describing the data within its uncertainties, would be
equal to 1. If 𝜒2r is significantly larger than 1, then the model does not describe every aspect of
data, which means it lacks parameters, or uses the wrong parameterization. In this case, it is
also possible that the uncertainty of the data was underestimated. For 𝜒2r values significantly
below 1, the model is over-determined, which means, that either the model incorporates to
many parameters, or the uncertainty of the data is overestimated.
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A.2 Tables

A.2.1 BESIII Experiment Design Parameters

Table A.1: Design parameters of the BEPCII according to [51].

Parameter Value

Center of mass energy [GeV] 2 − 4.6
Circumference [m] 237.5
Number of rings 2
RF frequency 𝑓rf [MHz] 499.8
Peak luminosity [cm−2s−1] 1 ⋅ 1033

Number of bunches 2 × 93
Beam current [A] 2 × 0.91
Bunch spacing [m], [ns] 2.4, 8
Bunch length [cm] 1.5
Bunch width [µm] ∼ 380
Bunch height [µm] ∼ 5.7
Relative energy spread 5 × 10−4

Crossing angle [mrad] ±11

A.2.2 Monte-Carlo Simulations

Table A.2: Number of generatedMonte-Carlo events, as well as the BesEvtGen [60] generation models
used for the corresponding reactions.

Reaction Model Generated Events (×106)

𝜓(2𝑆) → (𝜙 → 𝐾+𝐾−)𝜋+𝜋− PHSP 5
𝜓(2𝑆) → (𝜙 → 𝐾+𝐾−)𝜋0𝜋0 PHSP 5
𝜓(2𝑆) → 𝐾+𝐾−𝜋+𝜋− PhspStepf 10.055
𝜓(2𝑆) → 𝐾+𝐾−𝜋+𝜋− PHSP 41
𝜓(2𝑆) → 𝐾+𝐾−𝜋0𝜋0 PhspStepf 9.855
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A.2.3 Charged Track Selection Criteria

Table A.3: Selection criteria for charged tracks. Tracks have to fulfill the following conditions to get
accepted.

Parameter Condition

radial distance 𝑉𝑟 between the interaction 𝑉𝑟 < 1 cm
point and the primary vertex
axial distance 𝑉𝑧 between the interaction 𝑉𝑧 < 10 cm
point and the primary vertex
polar angle 𝜃 in the detector frame | cos 𝜃| < 0.93
probability 𝑝 for the particle hypothesis 𝑝 > 10−5

A.2.4 Neutral Particle Selection Criteria

Table A.4: Selection criteria for neutral particle. Tracks have to fulfill the following conditions to get
accepted.

Parameter Condition

shower time 𝜏 𝜏 < 700ns
shower energy 𝐸𝛾 in the barrel of the EMC 𝐸𝛾 > 25MeV
shower energy 𝐸𝛾 in the end-caps of the EMC 𝐸𝛾 > 50MeV
angle 𝛼 to the next charged track 𝛼 > 10°
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A.2.5 Calculation of the Branching Ratio

Table A.5: Parameters and their uncertainties used for the calculation of the branching ratios of
𝜓(2𝑆) → 𝜙𝜋+𝜋− and 𝜓(2𝑆) → 𝜙𝜋0𝜋0. The branching ratios for 𝜙 → 𝐾+𝐾− and 𝜋0 → 𝛾𝛾 were
taken from the PDG [31, summary tables]

Parameter 𝐾+𝐾−𝜋+𝜋− 𝐾+𝐾−𝜋0𝜋0

𝐴 32.3 ± 0.2 6.97 ± 0.08
ℎ 1MeV 1MeV
𝑁𝜙,obs 32353±201 6971±86
𝑁MC,gen 5 × 106 5 × 106

𝑁MC,acc 1159929 ± 1077 651270 ± 807
𝜖 (23.19 ± 0.02) % (13.02 ± 0.01) %
BR(𝜙 → 𝐾+𝐾−) (49.1 ± 0.5) %
BR(𝜋0 → 𝛾𝛾) (98.820 ± 0.034) %
𝑁𝜓(2𝑆) (2264 ± 9) × 106

BR (1.25 ± 0.01) × 10−4 (0.492 ± 0.007) × 10−4

A.2.6 Inclusive Reactions

𝐾+𝐾−𝜋+𝜋− Final State

Table A.6: Signal reactions, according to the inclusive MC sample for the 𝐾+𝐾−𝜋+𝜋− final state, with
their corresponding number of events after all selection criteria described in this work, except for the
𝐾∗(892) veto.

Reaction Number of Events

𝜓(2𝑆) → (𝜙 → 𝐾+𝐾−)𝜋+𝜋− 3010
𝜓(2𝑆) → (𝑓0 → 𝜋+𝜋−)(𝜙 → 𝐾+𝐾−) 2464
𝜓(2𝑆) → (𝑓0(1710) → 𝜋+𝜋−)(𝜙 → 𝐾+𝐾−) 86
𝜓(2𝑆) → (𝑓0 → 𝜋+𝜋−𝛾FSR)(𝜙 → 𝐾+𝐾−) 27
𝜓(2𝑆) → (𝑓′2 → 𝜋+𝜋−)(𝜙 → 𝐾+𝐾−) 13
𝜓(2𝑆) → (𝜙 → 𝐾+𝐾−)𝜋+𝜋−𝛾FSR 6
𝜓(2𝑆) → (𝑓0(1710) → 𝜋+𝜋−𝛾FSR)(𝜙 → 𝐾+𝐾−) 3
𝜓(2𝑆) → (𝑓′2 → 𝜋+𝜋−𝛾FSR)(𝜙 → 𝐾+𝐾−) 1
Total number of signal events 5610
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Table A.7: Signal reactions, according to the inclusive MC sample for the 𝐾+𝐾−𝜋+𝜋− final state, with
their corresponding number of events after all selection criteria described in this work.

Reaction Number of Events

𝜓(2𝑆) → (𝜙 → 𝐾+𝐾−)𝜋+𝜋− 2580
𝜓(2𝑆) → (𝑓0 → 𝜋+𝜋−)(𝜙 → 𝐾+𝐾−) 2229
𝜓(2𝑆) → (𝑓0(1710) → 𝜋+𝜋−)(𝜙 → 𝐾+𝐾−) 79
𝜓(2𝑆) → (𝑓0 → 𝜋+𝜋−𝛾FSR)(𝜙 → 𝐾+𝐾−) 25
𝜓(2𝑆) → (𝑓′2 → 𝜋+𝜋−)(𝜙 → 𝐾+𝐾−) 9
𝜓(2𝑆) → (𝜙 → 𝐾+𝐾−)𝜋+𝜋−𝛾FSR 5
𝜓(2𝑆) → (𝑓0(1710) → 𝜋+𝜋−𝛾FSR)(𝜙 → 𝐾+𝐾−) 3
𝜓(2𝑆) → (𝑓′2 → 𝜋+𝜋−𝛾FSR)(𝜙 → 𝐾+𝐾−) 1
Total number of signal events 4931

Table A.8: Background reactions, according to the inclusive MC sample for the 𝐾+𝐾−𝜋+𝜋− final state,
with their corresponding number of events after all selection criteria described in this work, except for
the 𝐾∗(892) veto.

Reaction Number of Events

𝜓(2𝑆) → 𝐾+𝐾−𝜋+𝜋− 345
𝜓(2𝑆) → 𝐾−(𝐾∗+ → 𝐾+𝜋−)𝜋+ 138
𝜓(2𝑆) → 𝐾+𝐾−(𝜌0 → 𝜋+𝜋−) 127
𝜓(2𝑆) → 𝐾+( ̄𝐾∗+ → 𝐾−𝜋+)𝜋− 123
𝜓(2𝑆) → 𝐾−(𝐾∗+

2 → 𝐾+𝜋−)𝜋+ 24
𝜓(2𝑆) → 𝐾+( ̄𝐾∗+

2 → 𝐾−𝜋+)𝜋− 19
𝜓(2𝑆) → ( ̄𝐾∗+

2 → 𝐾−𝜋+)(𝐾∗+ → 𝐾+𝜋−) 5
𝜓(2𝑆) → (𝐾−

1 → 𝐾−(𝜌0 → 𝜋+𝜋−))𝐾+ 5
𝜓(2𝑆) → (𝐾∗+

2 → 𝐾+𝜋−)( ̄𝐾∗+
2 → 𝐾−𝜋+) 4

𝜓(2𝑆) → (𝐾−
1 → ( ̄𝐾∗+

0 → 𝐾−𝜋+)𝜋−)𝐾+ 3
𝜓(2𝑆) → (𝑎00 → 𝐾+𝐾−)𝜋+𝜋− 2
𝜓(2𝑆) → 𝐾+𝐾−(𝜔 → 𝜋+𝜋−) 2
𝜓(2𝑆) → 𝐾+𝐾−(𝜌0 → 𝜋+𝜋−𝛾FSR) 2
𝜓(2𝑆) → ( ̄𝐾∗+

0 → 𝐾−𝜋+)(𝐾∗+
2 → 𝐾+𝜋−) 1

𝜓(2𝑆) → ( ̄𝐾∗+
0 → 𝐾−𝜋+)𝐾+𝜋− 1

𝜓(2𝑆) → (𝐾∗+ → 𝐾+𝜋−)( ̄𝐾∗+ → 𝐾−𝜋+) 1
𝜓(2𝑆) → (𝐾∗+

0 → 𝐾+𝜋−)𝐾−𝜋+ 1
𝜓(2𝑆) → (𝐾+

1 → (𝐾∗+
0 → 𝐾+𝜋−)𝜋+)𝐾− 1

𝜓(2𝑆) → (𝐾+
1 → 𝐾+(𝜌0 → 𝜋+𝜋−))𝐾− 1

𝜓(2𝑆) → 𝐾+( ̄𝐾∗+
2 → 𝐾−𝜋+𝛾FSR)𝜋− 1

Total number of background events 806
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Table A.9: Background reactions, according to the inclusive MC sample for the 𝐾+𝐾−𝜋+𝜋− final state,
with their corresponding number of events after all selection criteria described in this work.

Reaction Number of Events

𝜓(2𝑆) → 𝐾+𝐾−𝜋+𝜋− 291
𝜓(2𝑆) → 𝐾+𝐾−(𝜌0 → 𝜋+𝜋−) 116
𝜓(2𝑆) → 𝐾−(𝐾∗0

2 → 𝐾+𝜋−)𝜋+ 24
𝜓(2𝑆) → 𝐾+( ̄𝐾∗0

2 → 𝐾−𝜋+)𝜋− 19
𝜓(2𝑆) → 𝐾+( ̄𝐾∗0 → 𝐾−𝜋+)𝜋− 18
𝜓(2𝑆) → 𝐾−(𝐾∗0 → 𝐾+𝜋−)𝜋+ 16
𝜓(2𝑆) → (𝐾∗0

2 → 𝐾+𝜋−)( ̄𝐾∗0
2 → 𝐾−𝜋+) 4

𝜓(2𝑆) → (𝐾−
1 → 𝐾−(𝜌0 → 𝜋+𝜋−))𝐾+ 2

𝜓(2𝑆) → 𝐾+𝐾−(𝜔 → 𝜋+𝜋−) 2
𝜓(2𝑆) → 𝐾+𝐾−(𝜌0 → 𝜋+𝜋−𝛾FSR) 2
𝜓(2𝑆) → ( ̄𝐾∗0

0 → 𝐾−𝜋+)(𝐾∗0
2 → 𝐾+𝜋−) 1

𝜓(2𝑆) → ( ̄𝐾∗0
0 → 𝐾−𝜋+)𝐾+𝜋− 1

𝜓(2𝑆) → (𝐾∗0 → 𝐾+𝜋−)( ̄𝐾∗0 → 𝐾−𝜋+) 1
𝜓(2𝑆) → (𝐾∗0

0 → 𝐾+𝜋−)𝐾−𝜋+ 1
𝜓(2𝑆) → (𝐾+

1 → (𝐾∗0
0 → 𝐾+𝜋−)𝜋+)𝐾− 1

𝜓(2𝑆) → (𝐾−
1 → ( ̄𝐾∗0

0 → 𝐾−𝜋+)𝜋−)𝐾+ 1
𝜓(2𝑆) → (𝑎00 → 𝐾+𝐾−)𝜋+𝜋− 1
𝜓(2𝑆) → 𝐾+( ̄𝐾∗0

2 → 𝐾−𝜋+𝛾FSR)𝜋− 1
𝜓(2𝑆) → 𝐾−(𝐾∗0 → 𝐾+𝜋−𝛾FSR)𝜋+ 1
Total number of background events 503

𝐾+𝐾−𝜋0𝜋0 Final State

Table A.10: Signal reactions, according to the inclusive MC sample for the 𝐾+𝐾−𝜋0𝜋0 final state, with
their corresponding number of events after all selection criteria described in this work, except for the
𝐾∗(892) veto.

Reaction Number of Events

𝜓(2𝑆) → (𝑓0 → 𝜋0𝜋0)(𝜙 → 𝐾+𝐾−) 667
𝜓(2𝑆) → (𝑓0(1710) → 𝜋0𝜋0)(𝜙 → 𝐾+𝐾−) 39
𝜓(2𝑆) → (𝑓′2 → 𝜋0𝜋0)(𝜙 → 𝐾+𝐾−) 5
Total number of signal events 711
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Table A.11: Signal reactions, according to the inclusive MC sample for the 𝐾+𝐾−𝜋0𝜋0 final state, with
their corresponding number of events after all selection criteria described in this work.

Reaction Number of Events

𝜓(2𝑆) → (𝑓0 → 𝜋0𝜋0)(𝜙 → 𝐾+𝐾−) 561
𝜓(2𝑆) → (𝑓0(1710) → 𝜋0𝜋0)(𝜙 → 𝐾+𝐾−) 29
𝜓(2𝑆) → (𝑓′2 → 𝜋0𝜋0)(𝜙 → 𝐾+𝐾−) 5
Total number of signal events 595

Table A.12: Background reactions, according to the inclusiveMC sample for the𝐾+𝐾−𝜋0𝜋0 final state,
with their corresponding number of events after all selection criteria described in this work, except for
the 𝐾∗(892) veto.

Reaction Number of Events

𝜓(2𝑆) → (𝐾∗+ → 𝐾+𝜋0)𝐾−𝜋0 14
𝜓(2𝑆) → (𝐾∗+

2 → 𝐾−𝜋0)𝐾+𝜋0 6
𝜓(2𝑆) → (𝐾∗+ → 𝐾−𝜋0)𝐾+𝜋0 5
𝜓(2𝑆) → (𝐾∗+

2 → 𝐾+𝜋0)𝐾−𝜋0 3
𝜓(2𝑆) → (𝜒𝑐1 → (𝐽/𝜓 → 𝐾+𝐾−𝜋0)𝛾)𝛾 1
𝜓(2𝑆) → (𝜒𝑐1 → 𝐾+𝐾−𝜋0𝜋0)𝛾 1
𝜓(2𝑆) → (𝐽/𝜓 → 𝐾+𝐾−𝜋0)𝜋0 1
𝜓(2𝑆) → (𝐾+

1 → (𝐾∗+
0 → 𝐾+𝜋0)𝜋0)𝐾− 1

𝜓(2𝑆) → (𝐾∗+
2 → 𝐾+𝜋0)(𝐾∗+

2 → 𝐾−𝜋0) 1
Total number of background events 33
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Table A.13: Background reactions, according to the inclusiveMC sample for the𝐾+𝐾−𝜋0𝜋0 final state,
with their corresponding number of events after all selection criteria described in this work.

Reaction Number of Events

𝜓(2𝑆) → (𝐾∗+
2 → 𝐾−𝜋0)𝐾+𝜋0 6

𝜓(2𝑆) → (𝐾∗+
2 → 𝐾+𝜋0)𝐾−𝜋0 3

𝜓(2𝑆) → (𝐾∗+ → 𝐾+𝜋0)𝐾−𝜋0 2
𝜓(2𝑆) → (𝜒𝑐1 → (𝐽/𝜓 → 𝐾+𝐾−𝜋0)𝛾)𝛾 1
𝜓(2𝑆) → (𝜒𝑐1 → 𝐾+𝐾−𝜋0𝜋0)𝛾 1
𝜓(2𝑆) → (𝐽/𝜓 → 𝐾+𝐾−𝜋0)𝜋0 1
𝜓(2𝑆) → (𝐾∗+ → 𝐾−𝜋0)𝐾+𝜋0 1
𝜓(2𝑆) → (𝐾+

1 → (𝐾∗+
0 → 𝐾+𝜋0)𝜋0)𝐾− 1

𝜓(2𝑆) → (𝐾∗+
2 → 𝐾+𝜋0)(𝐾∗+

2 → 𝐾−𝜋0) 1
Total number of background events 17
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A.2.7 PWA Fit Results

Table A.14: Parameter values and uncertainties resulting from the fit presented in Section 6.2. 𝜗𝑋→𝜋𝜋
𝐿,𝑆

is the phase of the complex canonical amplitude 𝐴𝑋→𝜋𝜋
𝐽𝑋,0,𝐿,𝑆.

Partial Wave Parameter Fit Result

S-wave

𝐿 = 0 𝑆 = 1

𝜗S-wave→𝜋0𝜋0
0,1 4.190 ± 0.09

𝜗S-wave→𝜋+𝜋−
0,1 3.57 ± 0.04

𝛼𝑓0(500)0,1 (0 ± 1) × 10−4GeV

𝛼𝑓0(980)0,1 (4.79 ± 0.06)GeV

𝛼𝑓0(1370)0,1 (−2.8 ± 0.1)GeV

𝛼𝑓0(1500)0,1 (−0.2 ± 0.1)GeV

𝛼𝑓0(1710)0,1 (−1.8 ± 0.1)GeV

S-wave

𝐿 = 2 𝑆 = 1

𝜗S-wave→𝜋0𝜋0
2,1 1.58 ± 0.08

𝜗S-wave→𝜋+𝜋−
2,1 0.93 ± 0.04

𝛼𝑓0(500)2,1 (1.18 ± 0.01)GeV

𝛼𝑓0(980)2,1 (0 ± 2) × 10−4GeV

𝛼𝑓0(1370)2,1 (−6.5 ± 0.1)GeV

𝛼𝑓0(1500)2,1 (−2.1 ± 0.1)GeV

𝛼𝑓0(1710)2,1 (−2.0 ± 0.1)GeV

D-wave

𝐿 = 0 𝑆 = 1

𝜗D-wave→𝜋+𝜋−
0,1 5.7 ± 0.1

𝛼𝑓2(1270)0,1 (0.0 ± 0.4)GeV

𝛼𝑓
′
2(1525)

0,1 (0.00 ± 0.01)GeV

𝛼𝑓2(1810)0,1 (−12.6 ± 0.8)GeV

𝛼𝑓2(1950)0,1 (0 ± 1) × 10−3GeV

D-wave

𝐿 = 2 𝑆 = 1

𝜗D-wave→𝜋0𝜋0
2,1 7.2 ± 0.1

𝜗D-wave→𝜋+𝜋−
2,1 −24.65 ± 0.06

𝛼𝑓2(1270)2,1 (−1.06 ± 0.03)GeV

𝛼𝑓
′
2(1525)

2,1 (0 ± 2) × 10−3GeV

𝛼𝑓2(1810)2,1 (14.5 ± 0.5)GeV

𝛼𝑓2(1950)2,1 (0 ± 9) × 10−4GeV
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Table A.15: Parameter values and uncertainties resulting from the fit presented in Section 6.2. 𝜗𝑋→𝜋𝜋
𝐿,𝑆

is the phase of the complex canonical amplitude 𝐴𝑋→𝜋𝜋
𝐽𝑋,0,𝐿,𝑆.

Partial Wave Parameter Fit Result

D-wave

𝐿 = 2 𝑆 = 2

𝜗D-wave→𝜋0𝜋0
2,2 8.3 ± 0.1

𝜗D-wave→𝜋+𝜋−
2,2 0.95 ± 0.07

𝛼𝑓2(1270)2,2 (0.61 ± 0.04)GeV

𝛼𝑓
′
2(1525)

2,2 (5.3 ± 0.3)GeV

𝛼𝑓2(1810)2,2 (0.00 ± 0.01)GeV

𝛼𝑓2(1950)2,2 (0.99 ± 0.09)GeV

D-wave

𝐿 = 2 𝑆 = 3

𝜗D-wave→𝜋0𝜋0
2,3 4.0 ± 0.1

𝜗D-wave→𝜋+𝜋−
2,3 3.63 ± 0.09

𝛼𝑓2(1270)2,3 (0.53 ± 0.07)GeV

𝛼𝑓
′
2(1525)

2,3 (−0.9 ± 0.8)GeV

𝛼𝑓2(1810)2,3 (13 ± 1)GeV

𝛼𝑓2(1950)2,3 (0.0 ± 0.2)GeV

D-wave

𝐿 = 4 𝑆 = 3

𝜗D-wave→𝜋0𝜋0
4,3 5.2 ± 0.1

𝜗D-wave→𝜋+𝜋−
4,3 −7.98 ± 0.08

𝛼𝑓2(1270)4,3 (−3.04 ± 0.07)GeV

𝛼𝑓
′
2(1525)

4,3 (0 ± 1) × 10−3GeV

𝛼𝑓2(1810)4,3 (0.00 ± 0.02)GeV

𝛼𝑓2(1950)4,3 (2.7 ± 0.1)GeV

Non-resonant S-wave

̃𝑏(0)𝜋𝜋 −0.106 ± 0.006
̃𝑏(1)𝜋𝜋 (−0.017 ± 0.004)GeV−2

̃𝑏(2)𝜋𝜋 (−0.0184 ± 0.0007)GeV−4

Non-resonant D-wave ̃𝑏′𝜋𝜋 0.08 ± 0.04

Scaling factor 𝑊 0.621 ± 0.008

Negative logarithmic

likelihood

− lnℒ𝜋+𝜋− -38201

− lnℒ𝜋0𝜋0 -10245

− lnℒtot -48446

102



A.3. Figures

A.3 Figures

A.3.1 3D Complex Square Root

(a) 1st branch - real part (b) 1st branch - imaginary part

(c) 2nd branch - real part (d) 2nd branch - imaginary part

Figure A.1: 3d depiction of the real and imaginary part of the two branches 𝑓I(𝑧) and 𝑓II(𝑧) of the
square root functions for complex arguments. The 2d projection can be seen in Fig. 3.3.
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Appendix A. Appendix

A.3.2 Polar Angle of 𝜋+ in the 𝜋+𝜋− Helicity Frame

Figure A.2: Distribution of the cosine of the polar helicity angle 𝜃 in the 𝜋+𝜋− helicity frame, before
(left) and after (right) the implementation of the 𝐾∗(892) veto. Data is shown in black, while the pro-
jections of two partial wave analyses, which are redundant for this comparison, are shown in color.
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