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Abstract

Using data at 32 center-of-mass energies between
√
s = 3.7730 GeV and

√
s = 4.7008 GeV

with an integrated luminosity of 22.7 fb−1 collected in e+e− annihilations with the
BESIII detector, a precise determination of the Born cross sections σb(e+e− → φK+K−),
σb(e+e− → φK0

SK0
S) and σb(e+e− → pp̄η′) was performed for the first time in this energy

regime.
In the first part of this thesis, the final states φK+K− and φK0

SK0
S were investigated.

While the φ meson is reconstructed in its decay to K+K−, the K0
S meson is reconstructed

in its decay to π+π−. In both channels, the φmeson was observed as a significant resonant
structure on top of low background contributions. A partial wave analysis was carried out
in order to perform a global reconstruction and selection efficiency correction. Born cross
sections were determined, including statistical as well as systematic uncertainties. In the
search for couplings of (exotic) vector charmonia to the φKK̄ final state, a maximum
likelihood fit was applied. Since no significant resonant contribution was observed, upper
limits were calculated at 90% confidence level for various vector states.
In addition, the KK̄ system recoiling off the φ meson was investigated using the
data set at

√
s = mψ(2S). Here, a formalism based on unitarity and analytici-

ty was employed in order to properly describe the dynamical parts of the ampli-
tudes of the present resonances in the scalar isoscalar sector. Also, the branch-
ing ratios Br(ψ(2S)→ φK+K−) and Br(ψ(2S)→ φK0

SK0
S) were determined to be

(9.58+0.14
−0.14 ± 0.45) · 10−5 and (3.45+0.14

−0.13 ± 0.11) · 10−5, respectively.
In the second part of this thesis, the final state pp̄η′ was studied using the same data
as above. The η′ meson was reconstructed in its decays to ηπ+π− and γπ+π−, while
subsequent η mesons are reconstructed in γγ. In both channels, the η′ meson was
significantly observed in the integrated data sample. Combined Born cross sections
were determined for the first time in this energy regime, taking correlated systematic
uncertainties between the channels and the data sets into account. The significance of
a resonant contribution of the ψ(4230) to the pp̄η′ final state is 2.43σ. The data is in
agreement with a resonant production of the pp̄ pair via an intermediate J/ψ resonance,
if the final state pp̄η′ is produced via a resonant ψ(4230).
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Zusammenfassung

Unter Verwendung von Daten bei 32 Schwerpunktsenergien zwischen
√
s = 3.7730 GeV

und
√
s = 4.7008 GeV mit einer integrierten Luminosität von 22.7 fb−1, die in e+e−-

Annihilationen mit dem BESIII-Detektor gesammelt wurden, wurde eine präzise Bestim-
mung der Bornschen Wirkungsquerschnitte σb(e+e− → φK+K−), σb(e+e− → φK0

SK0
S)

und σb(e+e− → pp̄η′) zum ersten Mal in diesem Energiebereich durchgeführt.
Im ersten Teil dieser Arbeit wurden die Endzustände φK+K− und φK0

SK0
S untersucht.

Während das φ-Meson im Zerfall nach K+K− rekonstruiert wurde, wurde das K0
S-

Meson im Zerfall nach π+π− rekonstruiert. In beiden Kanälen wurde das φ-Meson
als signifikante Resonanz mit geringen Untergrundbeiträgen beobachtet. Es wurde eine
Partialwellenanalyse durchgeführt, um eine mehrdimensionale Rekonstruktions- und
Selektionseffizienz vorzunehmen. Es wurden Bornsche Wirkungsquerschnitte bestimmt,
die sowohl statistische als auch systematische Unsicherheiten enthalten. Bei der Suche
nach Kopplungen von (exotischen) Vektor-Charmonia an den φKK̄-Endzustand wurde ein
Maximum-Likelihood-Fit angewendet. Da kein signifikanter Resonanzbeitrag beobachtet
wurde, wurden für verschiedene Vektorzustände obere Grenzwerte mit einem Konfidenz-
niveau von 90% errechnet.
Darüber hinaus wurde das KK̄-System, das vom φ-Meson rückstreut, anhand des Daten-
satzes bei

√
s = mψ(2S) untersucht. Dabei wurde ein auf Unitarität und Analytizität

basierender Formalismus verwendet, um die dynamischen Anteile der Amplituden der
vorhandenen Resonanzen im skalaren isoskalaren Sektor korrekt zu beschreiben. Die
Verzweigungsverhältnisse Br(ψ(2S)→ φK+K−) und Br(ψ(2S)→ φK0

SK0
S) wurden zu

(9.58+0.14
−0.14 ± 0.45) · 10−5 bzw. (3.45+0.14

−0.13 ± 0.11) · 10−5 bestimmt.
Im zweiten Teil dieser Arbeit wurde der Endzustand pp̄η′ mit den gleichen Daten wie
oben untersucht. Das η′-Meson wurde in seinen Zerfällen nach ηπ+π− und γπ+π−

rekonstruiert, während die nachfolgenden η-Mesonen in γγ rekonstruiert wurden. In
beiden Kanälen wurde das η′-Meson im integrierten Datensatz signifikant beobachtet.
Kombinierte Bornsche Wirkungsquerschnitte wurden zum ersten Mal in diesem En-
ergiebereich bestimmt, wobei korrelierte systematische Unsicherheiten zwischen den
Kanälen und den Datensätzen berücksichtigt wurden. Die Signifikanz eines resonanten
Beitrags des ψ(4230) zum pp̄η′-Endzustand beträgt 2.43σ. Die Daten stimmen mit einer
resonanten Erzeugung des pp̄-Paares über eine J/ψ-Zwischenresonanz überein, wenn der
Endzustand pp̄η′ über ein resonantes ψ(4230) erzeugt wird.
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1. Introduction

What do Paul Tergat and the Belle collaboration have in common? Both caused ground-
breaking events in September 2003. While Mr. Tergat set a new world record at the
annual Berlin Marathon with the best time of 2 hours, 4 minutes and 55 seconds [1], the
Belle collaboration published the discovery of the first exotic meson X(3872), now called
χc1(3872) [2]. Since the present work is thematically located more in particle physics and
less in elite sports, we focus on the latter event in the following.
Before we can understand why the discovery of the χc1(3872) has opened Pandora’s box
and why this state is called exotic, we must return to the beginnings of the inward bound
path of discovery unraveling the mysteries of matter and the forces that hold it together.
This path culminated at the end of the twentieth century in a theory of fundamental
forces of nature based on non-Abelian gauge fields, called the Standard Model of Particle
Physics [3–6].
The journey began in 1897, when J. J. Thomson discovered the electron [7]. Since then, the
understanding of particle physics has evolved rapidly. In 1911, E.Rutherford’s scattering
experiments showed [8], that an atom consists of a positively charged nucleus surrounded
by a cloud of negatively charged electrons. One might ask why Rutherford has needed α-
particles to make these insights into the atomic nucleus. The answer to that question
comes from the basic principles of quantum mechanics: the resolution power of the
observation depends on the wavelength λ of the spectator particle. Using visible light,
only objects with diameters down to 0.2 − 0.3µm can be resolved. Based on work
from A.Einstein [9], who theorized that photons have both particle and wave properties
simultaneously, L. deBroglie hypothesized that not only light, but also matter particles
possess both such properties [10–12]. In fact, the wavelength λ of the α-particles used by
Rutherford were in the order of 10−13 m, compared to λ = O(10−16 m) for high energy
electrons and protons in today’s particle accelerators.
After the discovery of the neutron by J.Chadwick in 1932 [13], the atomic nucleus
with atomic number Z and mass number A was interpreted as a bound system of Z
protons and A−Z neutrons. It was Yukawa who argued in 1937 that the strong nuclear
force that binds neutrons and protons in atomic nuclei is carried by a particle with a
mass about 200 times that of an electron [14]. Shortly after Yukawa’s prediction, such
a particle was discovered in cosmic rays in 1947, called the π meson [15]. From this
day on, a whole zoo of new particles with heavier masses and in general very short
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1. Introduction

lifetimes has been discovered, collectively called hadrons. The first structuring of these
observations has been made within the static quark model by M.Gell-Mann and G. Zweig
in 1964 [16, 17], classifying hadrons into spin-integer mesons (qq̄) and spin-half-integer
baryons (qqq) built up of spin 1

2 building blocks called quarks q (or antiquarks q̄). The
following experimental milestones, including the first dynamic evidence for quarks at
the Stanford Linear Accelerator Center (SLAC) from 1967 to 1973 [18], the discovery
of the J/ψ meson at the Brookhaven National Laboratory [19] and at SLAC [20] in
1974, and first evidences for charmed baryons [21] as well as mesons [22, 23] in 1975
and 1976, respectively, have been accompanied by the development of modern theory of
strong interactions, named Quantum Chromodynamics (QCD) [24–26]. It describes the
interaction between quarks based on color symmetry, and particles with color interact
strongly through the exchange of spin one particles named gluons. Observed hadrons
are colorless combinations of colored quarks and gluons, described as confinement. As
color neutrality of such states is the main constraint, the existence of other possible
configurations beyond these conventional mesons and baryons was already discussed in
the initial works on the quark model. These hypothetical exotic states include tetraquarks
(qqq̄q̄), pentaquarks (qqqqq̄), hybrids (qq̄g) and glueballs (gg, ggg).
In past years, many exotic candidates have been discovered in the charmonium and
charmonium-like spectrum, and their study is one of the most intensively studied topics in
modern particle physics. Below the DD̄ thresholds, the observed spectrum is in agreement
with theoretical predictions from the Non-Relativistic Quark Model (NRQM) [27].
However, above this so-called open charm threshold, the description fails unexpectedly
since a clear overpopulation of states is observed. The first exotic candidate in the
charmonium and charmonium-like spectrum, the χc1(3872) as mentioned above, has been
discovered in 2003 by the Belle collaboration in B± → K±J/ψπ+π− as a very narrow
resonance coupling to J/ψπ+π− [2]. Another exotic candidate that is examined in more
detail in this work is the ψ(4230), originally discovered by the BaBar experiment in 2005
as a strong resonant signal decaying to J/ψπ+π− [28]. BESIII reported this state in the
process e+e− → J/ψπ+π− [29] with a slightly lower mass, and also stated the need of a
second heavier resonance ψ(4360). Since the e+e− pair annihilates into a virtual photon
γ∗, (exotic) vector charmonia can be produced directly at the BESIII experiment due to
equal quantum numbers of the γ∗ and, e.g. the ψ(4230). This makes electron-positron
colliders a very important tool for the study of exotic states in the charmonium region.
In the analysis of e+e− → J/ψπ+π−, the discovery of the first charged charmonium-like
state Zc(3900) coupling to J/ψπ± has been additionally made by both the BESIII [30]
collaboration and the Belle [31] collaboration. Since it couples to cc̄ and carries electrical
charge, its minimal quark content is assumed to be cc̄ud̄.
As clear as the experimental observations regarding new exotic states are, as unclear
are their theoretical interpretations. In recent years, a great deal of effort has been put
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into the elaboration of theoretical models that attempt to classify exotic states, e.g.
as tetraquarks (qqq̄q̄) [32–34], hadronic molecules (qq̄qq̄) [35–37] or hybrid charmonia
(cc̄g) [38,39]. Unfortunately, there is still no consensus on the inner structure of, e.g. the
ψ(4230) that would explain the observed properties. While only small couplings of the
ψ(4230) to the DD̄ final state has been observed [38,40,41], it is prominently observed in
charmonium transitions to J/ψπ+π− [29], hcπ+π− [42] and ψ(2S)π+π− [43]. However,
decays to light mesons or baryons have not been observed so far, e.g. to final states
containing φ and K mesons [44–47] or a pp̄ pair [48] with an additional light, unflavored
meson π0,η or ω [49, 50].
In order to search for possible decay patterns of exotic vector charmonia to gain further
understanding of these states, precise analyses using high luminosity data sets are needed.
In the main part of this work, such data sets at center-of-mass energies between

√
s =

3.7730 GeV and
√
s = 4.7008 GeV accumulated at the BESIII experiment are used in order

to perform a lineshape study of the energy-dependent Born cross section of the processes
e+e− → φK+K−, e+e− → φK0

SK0
S and e+e− → pp̄η′ in the search for couplings of exotic

vector charmonia to these light hadron states. Although the ψ(4230) was only reported
in final states containing a cc̄ pair, either built into charmonium states or into pairs
of charmed mesons, the cross section lineshapes of σb(e+e− → light hadrons) do suggest
contributions from amplitudes beyond simple continuum production. In [33], the ψ(4230)
is interpreted as a diquark antidiquark state csc̄s̄, which implies the decay into final states
containing s̄s. This was observed in an amplitude analysis of e+e− → J/ψπ+π−, with
one of the dominant contributions coming from ψ(4230)→ f0(980)J/ψ [51]. The f0(980)
meson is known to have large s̄s contributions [52,53]. In case the cc̄ annihilates while the
s̄s survives as a hidden strangeness meson, e.g. the φ meson, the decay ψ(4230)→ φKK̄
is expected to occur. Such so-called charmless decays are also predicted by hybrid models
[38]. Possible resonant contributions of various (exotic) vector charmonia including the
ψ(4230) to the Born cross section of e+e− → φKK̄ were investigated using maximum
likelihood fits, and upper limits on their partial widths were determined.
Of special interest are final states involving a pp̄ pair, since the partial width Γψ→pp̄h
with h being a light, unflavored meson, can be related to the production cross section
of σpp̄→ψh [54]. pp̄ annihilation processes will be studied at the upcoming PANDA
(Antiproton Annihilation at Darmstadt) experiment at the Facility for Antiproton
and Ion Research (FAIR) [55]. So it is evidently crucial to obtain partial widths and,
thus, production cross sections of potentially exotic vector charmonia with high accuracy
for the PANDA physics program, both to formulate detection strategies and to evaluate
luminosity requirements, as well as for detailed detector simulations with theoretically
preferred final states. While pp̄η′ decay widths for charmonium states below the open
charm threshold, e.g. the J/ψ and ψ(2S) have been already reported [56], information
on the partial decay widths of higher lying charmonium and charmonium-like states,
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1. Introduction

e.g. the ψ(4160) and ψ(4230) is still lacking. In this work, the partial widths and their
respective upper limits in case of no significant coupling of the ψ(4160) and the ψ(4230)
to pp̄η′ were extracted using maximum likelihood fits to the energy-dependent Born cross
section. Since the J/ψ meson is significantly observed in the pp̄ invariant mass spectrum,
a cross check was performed in addition with results from a previous BESIII analysis of
the reaction e+e− → J/ψη′ wit J/ψ→ l+l− [57].
Not only in the heavy charmonium sector, but also in the light scalar isoscalar sector,
many interesting observations were made from experimental side. In the last decades,
multiple states were discovered and discussed. At present time, five scalar isoscalar
resonances, namely the f0(500), f0(980), f0(1370), f0(1500) and the f0(1710) are well-
established and listed by theParticleDataGroup (PDG) [56]. However, the identification
of scalar isoscalar mesons is a long-standing puzzle, since present resonances show large
decay widths and, thus, a strong overlap between their decay amplitudes. To study such
states, data has been obtained from ππ, KK̄,ηη, 4π and ηη′ systems produced in S-
wave. Both theoretical [58] and experimental [56] results are consistent with two nonets,
one below and another one above

√
s = 1 GeV, with evidence for gluonic degrees of

freedom. The observed phenomenon of multiplet doubling requires an effective chiral
quark model, e.g. a coupled linear sigma model [59, 60] to provide an understanding of
the light scalar spectrum. While both the f0(500) and the f0(980) are assigned to the
lower nonet within the quark model, two of the three states f0(1370), f0(1500) and the
f0(1710) must be assigned to the higher nonet. Simultaneously to this experimentally
observed overpopulation, lattice QCD calculations predict the lightest glueball to have
equal quantum numbers and to occur in the mass range between 1.6−1.7 GeV/c2 [61–64].
By studying the process e+e− → φKK̄ at BESIII, the scalar isoscalar sector can be
investigated since a possible quantum number the KK̄ system recoiling off the φ meson
can carry is JPC = 0++. In addition, the associated production of scalar mesons with a
φ meson would indicate a sizeable s̄s contribution of these. Sophisticated analyses need
to be performed using theoretical models based on principles of scattering theory such
as unitarity and analyticity in order to properly describe the dynamical parts of the
amplitudes. In this work, such a formalism [65] having these features built in is employed
within a partial wave analysis in order to study S-wave contributions to the KK̄ spectrum
in the process e+e− → φKK̄ at

√
s = mψ(2S). D-wave contributions are described using

a K-matrix approach. As an outlook, the π+π− invariant mass spectrum for the process
e+e− → φπ+π− is also shown in order to be able to perform a coupled-channel analysis
of both φKK̄ and φπ+π− in the future.
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2. Theoretical Framework

This chapter is intended to provide an introduction to the subject of hadron spectroscopy,
within which the present work is situated. After the discussion of the Standard Model of
Particle Physics, the underlying theory of the strong force, Quantum Chromodynamics
(QCD), is presented. Bound states of QCD, e.g. mesons and baryons, are the subject of
spectroscopy. They appear as resonances in measured variables such as invariant mass
spectra or Born cross sections. The description of resonances as well as the extraction of
resonance parameters requires a proper theoretical treatment of their amplitudes, based
on elements of scattering theory such as analyticity and unitarity. A formalism which
uses the principles of dispersion and S-matrix theory and therefore has these features
built in by construction, concludes the chapter.

2.1. The Standard Model of Particle Physics

The Standard Model of Particle Physics is a Quantum Field Theory (QFT) of modern
particle physics [3–6], describing the electromagnetic, weak, and strong interaction. The
tremendous efforts to include gravitation [66] into the scheme were so far unsuccessful.
Moreover, gravitation does not play a significant role in particle physics due to its small
relative strength at such scales compared to the other fundamental forces and, therefore,
can be neglected.
The elementary particles that make up matter are a set of fermions, interacting primarily
through the exchange of vector bosons. These interactions are described by the Standard
Model. Quarks, whose bound states, mesons and baryons (collectively called hadrons),
form the particles with nuclear interactions, and leptons are the fundamental fermionic
particles. While the latter only take part in the electromagnetic and weak interaction,
quarks are also subject to the strong one. Figure 2.1 shows a schematic illustration of
the Standard Model of Particle Physics and all elementary particles incorporated. Quarks
and leptons come in three families, consisting of a doublet under the weak interaction: for
leptons the electron and electron-neutrino (e−,νe), the muon and muon-neutrino (µ,νµ)
as well as the tauon and tauon-neutrino (τ,ντ), and for quarks the up- and down-quark
(u, d), the charm- and strange-quark (c, s) as well as the top- and bottom-quark (t, b).
For both quarks and leptons also antiparticles exist, carrying exactly the same mass and
spin but oppositely charged quantum numbers.
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Figure 2.1.: Schematic illustration of the Standard Model of Particle Physics, including the
elementary fermions (six quarks and six leptons), the force-mediating vector bosons of the strong,
weak, and electromagnetic interaction as well as the recently discovered Higgs boson. The color
charge, the electrical charge and the weak charge are represented by colored circles. The values
of both the electrical charge Q and the intrinsic spin s are given on the right of each box. The
masses m of the particles are given on the top of each box. In case of the neutrinos, which have a
non-vanishing mass as indicated by, e.g. neutrino oscillations [67–69], no mechanism to produce
their masses is established yet. Values are taken from [56].

Theoretically, the strong, weak, and electromagnetic interactions are combined within
the Standard Model into a SU(3)c×SU(2)L×U(1)Y gauge theory, with SU(3)c denoting
the gauge color group of the strong interaction and SU(2)L ×U(1)Y denoting the gauge
group of the electroweak interaction [4,70,71]. Assuming local gauge symmetries, so-called
gauge bosons need to be introduced as shown in Figure 2.1, mediating the fundamental
forces between the elementary quarks and leptons.
The exchange boson of the electromagnetic interaction is the massless photon γ. The
underlying QFT is Quantum Electrodynamics (QED) and its Lagrangian is given by [72]

LQED = ψ̄(iγµDµ −m)ψ − 1
4FµνF

µν , (2.1)
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2.2. Quantum Chromodynamics

with γµ being the Dirac matrices, Dµ = ∂µ + iqAµ being the gauge covariant derivative
with electromagnetic vector potential Aµ, Fµν = ∂µAν − ∂νAµ being the electromagnetic
field tensor, q being the electric charge and ψ being the bispinor field of a fermion.
In the fifties and sixties, renormalization procedures in QFT have been established for
singularities of QED by Dyson, Feynman, Schwinger and others [73–81].
Correspondingly, the massive exchange bosons of the weak interaction are the charged
W±, with mW± = (80.379± 0.012) GeV/c2 [56], and the neutral Z0, with mZ0 =
(91.1876± 0.0021) GeV/c2 [56], coupling to the weak isospin T of a particle. However,
a mass term of the W± and Z0 would break the SU(2)L-symmetry. This is why masses
need to be introduced dynamically via the Higgs mechanism [82, 83]. The Higgs boson
was experimentally confirmed in 2012 [84, 85]. The corresponding complex scalar Higgs
field transforms as a doublet under SU(2)L and is coupled via a Yukawa term to the
quark and lepton fields. Since its potential has a non-trivial degenerate vacuum, the
gauge symmetry is broken spontaneously. By this, the quarks and leptons as well as W±

and Z0 gain an effective mass.
The theory of strong interaction is governed by a QFT namedQuantumChromodynamics
(QCD) [6, 24]. Its gauge bosons are the 3 × 3 − 1 = 8 gluons which couple to the color
charge. A detailed discussion about QCD is given in the next section.

2.2. Quantum Chromodynamics

This section is intended to give a basic introduction to QCD [6, 24] before describing
the e+e− annihilation into hadrons in more detail. At the very end, the asymptotic
states of the theory, bound states of gluons and quarks, called either mesons or baryons,
are highlighted. The color hypothesis mentioned in Chapter 1 was phenomenologically
successful, but raised the question of what mechanism could ensure that all hadron wave
functions are color singlets. The answer to that is a non-Abelian gauge theory with color
symmetry as its corresponding gauge group, with the colors being the gauge quantum
numbers of the quarks. Hence, the model of strong interaction can be considered as a
system of quarks of the various flavors (u, d, s, c, b, t) each assigned to the fundamental
representation of the local gauge group SU(3)c. Gluons are the gauge bosons of this
group. As a SU(3)c gauge theory, QCD considers quarks qi, antiquarks q̄i and gluons ACµ
as degrees of freedom. Its Lagrangian is given by [56]

LQCD =
∑

f=u,d,s,c,b,t
q̄af

(
iDab

µ γ
µ −mfδ

ab
)
qbf −

1
4 (Ga)µν (Ga)µν , (2.2)

with qaf being the quark-field spinor for a quark of flavor f , mass mf and color a,

Dab
µ = ∂µδ

ab − igλabc Acµ and (Ga)µν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν (2.3)
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2. Theoretical Framework

being the covariant derivative and the gluonic field strength tensor with gluonic field
Aaµ, respectively, and λabc being the adjoint representation of the SU(3)c generators with
structure constants fabc defined through

[λa,λb] = ifabcλc . (2.4)

Note that the last term in Equation (2.3) allows for gluon self-interaction, resulting in an
effective range of very short distances for the strong force since gluons carry color charge
themselves.
In the left part of Equation (2.3), g denotes the coupling constant of QCD. It becomes
very small in the high-energy regime (high transferred momentum Q), which is called
asymptotic freedom, and perturbation theory converges for Q > 4 GeV, while the
perturbative expansion breaks down for smaller energy scales. In case of strong couplings,
QCD exhibits confinement of colors, which means that the asymptotic states of the
theory are those that are singlets of the SU(3)c group. Qualitatively speaking, separating
a color-singlet state into colored components produces a flux tube of gauge fields (or
gluons) between color charged objects carrying energy. Since this tube has fixed radius
and energy density, the increase of the distance (or decrease of the momentum transfer)
between the two sources grows the energy costs proportionally to the separation. The
energy density will increase to a point such that it is energetically more favorable to
break the flux tube and generate a color-anticolor pair from the vacuum and therefore
two color neutral objects. This effect is known as hadronization.
Before a more detailed discussion about the coupling constant and its properties is given,
the simplest example of elementary interactions among quarks and gluons that can be
observed in high-energy experiments such as BESIII, namely the e+e− annihilation into
hadrons e+e− → qq̄, is presented. The lowest order total cross section of this process is
given by [72]

σ(e+e− → hadrons)(s) = σ0(s) · 3
∑
f

Q2
f , (2.5)

with σ0(s) being the QED cross section for e+e− → µ+µ− with coupling constant αQED ≈
1

137 at energy s

σ0(s) =
4πα2

QED
3s . (2.6)

The factor 3 denotes the number of colors and Qf is the electric charge of a quark with
flavor f . The value of this cross section is affected by leading order corrections such
as gluon exchange and emission. Taking these corrections into account, the total cross
section becomes

σ(e+e− → hadrons)(s) = σ0(s) · 3
∑
f

Q2
f ·
[
1 + αs

π
+O(α2

s)
]

, (2.7)
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2.2. Quantum Chromodynamics

with αs = g2

4π being the strong coupling constant. This coupling constant must be defined
at some renormalization pointM , which may be chosen at a large momentum scale where
the coupling is small. By this, αs can be used to predict results of various scattering
processes with any large momentum transfer. After renormalization, the strong coupling
constant reads [72]

αs(Q) = 2π
b0 log(Q/ΛQCD) , (2.8)

with b0 = 11− 2
3nf and nf being the number of quark flavors, and ΛQCD being the QCD

Landau pole experimentally measured to be ΛQCD ≈ 200−400 MeV [56]. Equation (2.8),
also known as the running of the coupling constant, easily shows that αs(Q) becomes
small for large Q. Note that QCD perturbation theory is valid for momentum transfers
larger than ΛQCD, e.g. Q = 1 GeV or αs(Q) ≈ 0.4. Figure 2.2 shows the coupling constant
for different values of Q.

Figure 2.2.: Summary of measurements of αs as a function of the energy scale Q. The respective
degree of QCD perturbation theory used in the extraction of αs is indicated in brackets (NLO:
next-to-leading order; NNLO: next-to-next-to-leading order; NNLO+res.: NNLO matched to a
resummed calculation; N3LO: next-to-NNLO). Figure taken from [56].

9



2. Theoretical Framework

After having introduced the basic concepts of QCD, it is necessary to get better
insights into the theory by measuring the interaction between quarks and gluons with
experiments. Since neither of them can be observed in isolation in experiments due to
confinement phenomena, but only within hadrons, the strong interaction is examined by
studying hadronic spectra. This approach is similar to QED, where information about
the underlying theory can be inferred from atomic spectra. Hence, hadronic states will
be discussed in the following.

2.3. Hadron Spectroscopy

Hadronic states X appear either in production processes

I1 + I2 → X + (S)→ F1 + F2 + · · ·+ Fn + (S)

with an eventual spectator particle S or in decays

I → X + (S)→ F1 + F2 + · · ·+ Fn + (S) .

They show up as resonant structures, e.g. in the corresponding cross sections or invariant
mass spectra of their daughter particles. Note that also other kinematic phenomena
such as threshold cusps and triangle singularities may produce similar structures [86].
However, partial wave amplitude analyses have to be carried out in order to get a
proper understanding of the underlying processes. Constructed amplitudes need to rely
on the basic principles of scattering theory, such as unitarity and analyticity. A detailed
presentation of the basics of scattering theory is given in Sections 2.4 and 2.5. In the
following, QCD bound states, so-called hadrons, will be discussed.
In principle, a hadron consists of an indefinite number of quarks and gluons such that
together they form a color singlet. Their quarkonic component can be distinguished into
so-called valence quarks and sea quarks. While the latter are present as quark-antiquark
pairs producing small vacuum fluctuations, valence quarks are usually responsible for the
quantum numbers of a hadron (there are exceptions, such as the proton spin crisis [87]).
These contain the electric charge Q, total angular momentum J , parity P, charge
conjugation C, baryon number B (Bq = 1

3 , Bq̄ = −1
3), as well as the flavor quantum

numbers, which are the isospin I (and its third component I3), strangeness S, charmness
C, bottomness B and topness T . The additive flavor and electric charge quantum numbers
of the six quarks are summarized in Table 2.1. Multiplicative quantum numbers are the
parity, whose operator P̂ reverses spatial coordinates x so that P̂ψ(t, x) = ψ(t,−x), and
the charge conjugation, whose operator Ĉ transforms all particles into their antiparticles
Ĉψ = ψ̄.
Within the conventional quark model [16,17], hadrons are classified into those which are

10



2.3. Hadron Spectroscopy

Table 2.1.: Additive quantum numbers of the quarks: electrical charge Q, isospin I and its third
component I3, strangeness S, charmness C, bottomness B and topness T [56].

d u s c b t
Q −1

3 +2
3 −1

3 +2
3 −1

3 +2
3

I 1
2

1
2 0 0 0 0

I3 −1
2 +1

2 0 0 0 0
S 0 0 −1 0 0 0
C 0 0 0 +1 0 0
B 0 0 0 0 −1 0
T 0 0 0 0 0 +1

made up of a quark-antiquark pair (mesons, qq̄), and those consisting of three quarks
(baryons, qqq), representing the most simple quark configurations of color singlet states.
As color-neutrality of such states is the main constraint of QCD, the existence of other
possible configurations beyond these conventional mesons and baryons were also predicted
back then [16]. States like tetraquarks (qqq̄q̄), hybrids (qq̄g) or glueballs (gg, ggg) are
called exotic states. The next sections give a detailed insight into conventional and exotic
states, as well as the current status of experimental observations.

2.3.1. Mesons

Conventional mesons are the simplest configurations allowed by the quark model. They
consist of a quark-antiquark pair qq̄. In fact, the role of mesons in QCD shows many
parallels to that of the hydrogen atom in QED. For example, their spin and orbital
angular momentum structure is very similar. Being made up of two fermions, an orbital
angular momentum of L = 0, 1 in combination with either parallel or antiparallel spin
configurations S yield total angular momenta of J = 0, 1, 2 of the qq̄ system. Note that
in general J is given by |L− S| ≤ J ≤ |L+ S| [88].
Within hadron spectroscopy, hadronic states are commonly classified using the notation
JPC . Since the strong interaction is symmetric under parity, its eigenvalues P are ±1.
In case of a qq̄ system P = (−1)L+1, where the factors (−1)L and (−1)1 arises from the
action of P̂ on the spatial wave function and the opposite intrinsic parities of fermions
and antifermions, respectively. The C-parity is given by C = (−1)L+S due to the Pauli
principle which states that the wave function needs to be antisymmetric with respect
to interchange of the two fermions [56]. Consequently, the lightest mesonic states (L =
0, 1) carry the JPC quantum numbers 0−+ (pseudoscalar), 1−− (vector), 0++ (scalar),
1++,+− (axial) and 2++ (tensor). By this, mesons can be constructed based on their
spatial quantum numbers. However, any observed mesonic state that does not carry the
aforementioned quantum numbers allowed by the quark model can safely be considered
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2. Theoretical Framework

exotic, e.g. JPC = 0−− or the π1(1400) and the π1(1600) with JPC = 1−+ [89–91].
Considering the flavor quantum numbers of the lightest quarks (u, d, s), mesonic states will
show up as an octet and a singlet in SU(3) flavor symmetry according to 3⊗3̄ = 8⊕1. The
corresponding nonets of the pseudoscalar as well as vector mesons are shown in Figure 2.3
with respect to their strangeness S and their third component of the isospin I3. While
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Figure 2.3.: Schematic representation of the nonet of pseudoscalar mesons (left), qq̄ pairs
with JPC = 0−+, and vector mesons (right), qq̄ pairs with JPC = 1−−, depending on the third
component of their isospin I3 (abscissa) and their strangeness S (ordinate). Colors indicate
different quark flavors of the three lightest quarks, u (blue), d (red) and s (green). The three
mesons in the center (I3 = 0) are mixtures of uū, dd̄ and s̄s, while the other six mesons are
quark-antiquark combinations with different flavors.

states at the corners of the hexagon (kaons K+, K−, K0, K̄0 and pions π+,π− for JPC =
0−+ as well as exited kaons K+∗, K−∗, K0∗, K̄0∗ and rho mesons ρ+, ρ− for JPC = 1−−) are
rather easily distinguishable in terms of S and I3, the wave functions of the centered states
with S = I3 = 0 (π0,η,η′ for JPC = 0−+ and ρ0,φ,ω for JPC = 1−−) are superpositions
of the combinations (uū, dd̄, s̄s), as listed in Table 2.2. A brief explanation about the
signs and weights contained in these superpositions follows. QCD approximately does
not distinguish between u and d due to the fact that the strong interaction couples to
the color charge and their similar masses. Thus, they are considered as two states of
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2.3. Hadron Spectroscopy

Table 2.2.: Quark content of the lightest pseudoscalar (left) and vector (right) mesons m, where
ψf is the flavor wave function [56]. For states with S = I3 = 0 the case of ideal SU(2) and SU(3)
is shown on the left, whereas the case where the two isosinglet states are ideally mixed (pure s̄s
and uū + dd̄) is shown on the right.

m ψf m ψf

π+ ud̄ ρ+ ud̄
π− dū ρ− dū
K+ us̄ K+∗ us̄
K− sū K−∗ sū
K0 ds̄ K0∗ ds̄
K̄0 sd̄ K̄0∗ sd̄
π0 1√

2(uū− dd̄) ρ0 1√
2(uū− dd̄)

η8
1√
6(uū + dd̄− 2s̄s) φ ≈ s̄s

η1
1√
3(uū + dd̄ + s̄s) ω ≈ 1√

2(uū + dd̄)

an isospin doublet (u, d) = (+1
2 ,−1

2) and correspondingly (+1
2 ,−1

2) = (d̄,−ū) [92]. The
combination of the isodoublet with the one of its antiparticles yields

|I = 0, I3 = 0〉 = 1√
2
|uū + dd̄〉 (2.9)

|I = 1, I3 = 0〉 = 1√
2
|uū− dd̄〉 , (2.10)

with the first state being the isosinglet, behaving like a scalar under flavor SU(2), and
the second state being the neutral partner of the three isovectors, which are in case
of the pseudoscalar mesons the pions π+, π− and π0. If the s-quark is introduced, the
combination |η1〉 of the aforementioned singlet and octet can be build, which behaves
like a scalar under flavor SU(3). Additionally, by requiring orthogonality to these first
two states, the third one |η8〉 in the center can be found:

|η1〉 = 1√
3 |uū + dd̄ + s̄s〉 (2.11)

|η8〉 = 1√
6 |uū + dd̄− 2s̄s〉 . (2.12)

It can easily be seen that hidden strangeness S is mixed with uū + dd̄ in a certain ratio.
This mixture of |η1〉 and |η8〉 yields to the physically observed η and η′ mesons, described
by (

|η〉
|η′〉

)
=
(

cos θP − sin θP
sin θP cos θP

)
·
(
|η8〉
|η1〉

)
, (2.13)
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where the pseudoscalar mixing angle θP is measured to be between −10◦ and −20◦ [56].
In case of the vector mesons with JPC = 1−−, the φ and ω mesons are the mixtures of
the octet and singlet states with an approximately ideal mixing angle θV . Thus, the φ
meson can be considered as a pure s̄s state [56].
According to the reactions studied in this work, special remarks on the properties of
kaons as well as scalar mesons are presented below. After that, mesons containing heavier
charmed quarks are introduced, so-called charmonia, as well as their exotic neighbors.

Kaons

The parity P and charge conjugation C were introduced above. Thus, their combination,
CP parity, may transform a left-handed electron e−L into a right-handed positron e+

R. In
electromagnetic and strong interactions, observed phenomena are C- and P -symmetric,
and therefore also CP -symmetric. Weak interaction processes violate C and P separately,
but still preserve CP parity in most cases. However, indirect CP violating processes
were discovered in neutral K decays [93] (or more precisely, in K0− K̄0 mixing) and later
established in, e.g. B meson decays [94, 95]. Direct CP violating processes have been
observed in [96]. For an overview of CP violation in the quark sector we refer to [56].
Neutral kaons are produced in two different quark compositions K0(ds̄) and K̄0(sd̄) and
thus carry strangeness SK0 = +1 and SK̄0 = −1. When propagating, they can transform
between each other. This mixing leads to experimentally observable kaons K0

S ≡ KS
(short) and K0

L ≡ KL (long) with similar masses [56] but different lifetimes, in fact
τKS = 8.954(4) · 10−11 s and τKL = 5.116(21) · 10−8 s [56]. As pseudoscalar mesons with
JPC = 0−+, the following P , C and CP relations hold:

P |K0〉 = −|K0〉, P |K̄0〉 = −|K̄0〉 (2.14)

C|K0〉 = −|K̄0〉, C|K̄0〉 = −|K0〉 (2.15)

CP |K0〉 = |K̄0〉, CP |K̄0〉 = |K0〉 . (2.16)

Consequently, the states K0 and K̄0 of the strong interaction are no CP eigenstates.
However, such eigenstates can easily be constructed as

|K1〉 = 1√
2

(
|K0〉+ |K̄0〉

)
, CP |K1〉 = +|K1〉 (2.17)

|K2〉 = 1√
2

(
|K0〉 − |K̄0〉

)
, CP |K2〉 = −|K2〉 . (2.18)
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2.3. Hadron Spectroscopy

Experimentally, the decays KS → ππ and KL → πππ are mainly observed, which also
determines their aforementioned life times. In case of a decay into ππ, the pions must be
in an L = 0 state to conserve angular momentum. Hence, P , C and CP are given by

P (ππ) = (−1)LP (π)P (π) = 1 · (−1) · (−1) = 1, C(ππ) = 1, CP (ππ) = 1 . (2.19)

This implies that the KS could be identified with the K1 from Equation (2.17). In case
of a decay into πππ, one may define the angular momentum ~L1 of two pions and the
angular momentum ~L2 of the third pion with respect to the center-of-mass of the pair,
yielding ~L = ~L1 + ~L2 with |L1| = |L2| due to the conservation of angular momentum.
Hence, P , C and CP are given here as

P (πππ) = (−1)L1(−1)L2P (π)3 = −1, C(πππ) = 1, CP (πππ) = −1 . (2.20)

Analogously, the KL can be identified with K2 from Equation (2.17). Contrary to
expectations, the decay KL → ππ was observed in [93], indicating CP violation in weak
interactions. This effect can be described by two possible sources: first, the Hamiltonian
can introduce indirect CP violation in the K0 − K̄0 mixing, meaning that the physical
KL were not purely CP eigenstates but the result of a mixing between both CP odd K2
and CP even K1. Second, the decay KL → ππ directly violates CP since an odd state
decayed into an even state.
To introduce K0− K̄0 mixing, one may write the Hamiltonian equation of motion for the
K0K̄0 system as [97]

i
d

dt

(
K0

K̄0

)
=
(
M11 − i

2Γ11 M12 − i
2Γ12

M21 − i
2Γ21 M22 − i

2Γ22

)(
K0

K̄0

)
, (2.21)

with Mij denoting mass terms containing the quark masses and the potential energy of
the interactions between quarks and Γij being decay rates determined by, e.g., the Fermi
golden rule. CPT 1 invariance requires M11 = M22 = M , Γ11 = Γ22 = Γ, M12 = M∗21 and
Γ12 = Γ∗21 [98]. By diagonalizing the mixing matrix, the physical propagating eigenstates
of the Hamiltonian can be obtained as [98]

|KS〉 = 1√
1 + |ε̄|2 (|K1〉+ ε̄|K2〉) (2.22)

|KL〉 = 1√
1 + |ε̄|2 (|K2〉+ ε̄|K1〉) , (2.23)

1The operator of the T -parity transforms the time t according to T̂ : t 7→ −t.
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with the parameter ε̄ defined by

1− ε̄
1 + ε̄

=
(
M∗12 − i

2Γ∗12
M12 − i

2Γ12

)
. (2.24)

Equation (2.24) shows that the physical states KS(KL) would correspond to the CP
eigenstates K1(K2) for real M12 and Γ12. Indirect CP violation can be measured in, e.g.,
semi-leptonic decays via the asymmetry parameter δ given by [97]

δ ≡ Γ[KL → π−l+νL]− Γ[KL → π+l−νL]
Γ[KL → π−l+νL] + Γ[KL → π+l−νL]

= 2Re(ε̄)
(1 + |ε̄|2) , (2.25)

with l and ν being a lepton and its related neutrino, respectively. Experimentally, this
value was measured to be δ = (3.322 ± 0.058stat ± 0.047sys) · 10−3 [99], showing a clear
evidence for CP violation due to K0 − K̄0 mixing.
Additionally, any observed difference between a decay rate Γ(i→ f) and its CP conjugate
Γ(̄i→ f̄) indicates a direct violation of CP in the decay amplitude. The decay amplitudes
can be written as

A(i→ f) = M1e
iφ1eiα1 +M2e

iφ2eiα2

A(̄i→ f̄) = M1e
−iφ1eiα1 +M2e

−iφ2eiα2 , (2.26)

with φi being the weak phases (and thus switches sign under CP conjugation), αi being
the strong final-state phases and Mi being real moduli of the matrix elements [97].
Consequently, their asymmetry reads

Γ(i→ f)− Γ(̄i→ f̄)
Γ(i→ f) + Γ(̄i→ f̄)

= −2M1M2 sin(φ1 − φ2) sin(α1 − α2)
|M1|2 + |M2|2 + 2M1M2 cos(φ1 − φ2) cos(α1 − α2)) . (2.27)

According to Equation (2.27), a non-zero asymmetry is achieved if there are at least
two interfering amplitudes Mi with both different weak and strong phases φi and αi,
respectively. In order to experimentally investigate CP violation in the decay of neutral
kaons, where also K0 − K̄0 mixing occurs, the following observables can be defined [56]

η+− ≡
A[KL → π+π−]
A[KS → π+π−] , (2.28)

η00 ≡
A[KL → π0π0]
A[KS → π0π0] , (2.29)

ε ≡ A[KL → (ππ)I=0]
A[KS → (ππ)I=0] , (2.30)

√
2ε′
ε

= A[KL → (ππ)I=2]
A[KL → (ππ)I=0] −

A[KS → (ππ)I=2]
A[KS → (ππ)I=0] . (2.31)
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Note that in Equation (2.31) the parameter ε′ is related to direct CP violation only,
whereas ε is related to indirect CP violation. The observables are related via η+− = ε+ε′

and η00 = ε− 2ε′. By this, the measured ratio ε′

ε is

Re
(
ε′

ε

)
= 1

6

{
1− Γ[KL → π+π−]/Γ[KS → π+π−]

Γ[KL → π0π0]/Γ[KS → π0π0]

}
. (2.32)

Its value was measured to be Re
(
ε′

ε

)
= (1.66 ± 0.16) · 10−3 [100], which cannot be

reliably predicted by the Standard Model [101–103]. Comparing the experimental values
from direct and indirect CP violation, it can easily be seen that the contribution from
K0 − K̄0 mixing is approximately twice as large as the contribution from the decay of
neutral kaons.

Scalar Isoscalar Sector

Figure 2.3 has already introduced the pseudoscalar as well as the vector mesons. However,
scalar mesons with JPC = 0++ also play an important role in this work. Hence, they
are discussed in the following. Although the I = 1

2 and I = 1 states would have to be
assigned a separate chapter, this work restricts to the scalar isoscalar sector (I = 0). For
a detailed discussion on light exotics see [104].
Contrary to pseudoscalar and vector mesons, the identification of scalar isoscalar mesons
is a long-standing puzzle. Present resonances show large decay widths [56] and, thus, a
strong overlap between their decay amplitudes. Additionally, several inelasticities like the
opening of decay channels (e.g. at the KK̄,ηη mass thresholds) producing cusps in the
lineshapes of neighbored resonances have to be taken into account. A detailed overview
about the dynamical parts of such amplitudes is given in Section 2.5.
In the last decades, multiple states with scalar quantum numbers were discovered and
discussed. At present time, five scalar isoscalar resonances, namely the broad f0(500) (or
σ), the f0(980), the broad f0(1370), the comparatively narrow f0(1500) and the f0(1710)
are well-established and listed by the Particle Data Group (PDG) [56]. To study the
scalar isoscalar sector, data has been obtained from ππ, KK̄,ηη, 4π and ηη′ systems
produced in S-wave. Both theoretical [58] and experimental [56] results are consistent
with two nonets, one below and another one above

√
s = 1 GeV, with evidence for gluonic

degrees of freedom. The observed phenomenon of multiplet doubling requires an effective
chiral quark model, e.g. a coupled linear sigma model [59,60] to provide an understanding
of the light scalar spectrum. Within this model, the lightest scalars may be interpreted
as Higgs-like bosons for the non-perturbative low-energy strong interaction.
Simultaneously to the experimentally observed overpopulation of states, lattice QCD
calculations predict the lightest glueball to have quantum numbers JPC = 0++ and
a mass around 1.6 − 1.7 GeV/c2 [61–64]. There are several signatures expected for
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glueballs, for example isoscalar states that do not fit into ordinary qq̄ nonets, an enhanced
production in gluon-rich channels such as radiative J/ψ decays [105], decay branching
fractions incompatible with SU(N) predictions for qq̄ states or reduced γγ coupling. Due
to the possible mixing of glueballs with nearby isoscalar qq̄ states of the same quantum
numbers, these signatures may be affected, e.g., leading to a supernumerary isoscalar
state in the heavier nonet above

√
s = 1 GeV [61, 106–110]. A brief overview about the

experimental status of the scalar isoscalar resonances as well as current interpretations
is given in the following, starting with the f0(980).
The nature of the f0(980) is still inconclusive as it can be described both in the tetraquark
picture [111–114] and as a KK̄ molecule [115] due to its large branching ratio into KK̄.
Data from radiative φmeson decays into f0(980) [116–119] seemed to favor the tetraquark
description [120, 121]. In contradiction to that, measurements of ratios of decay rates of
B(s) → J/ψππ [52,53] show an evident deviation from the tetraquark picture [122] as well
as stating substantial s̄s content of the f0(980). This result was later put into question by
a dispersive analysis [123].
The f0(1370) and the f0(1500) decay prominently into 4π [124, 125], while the heavier
f0(1710) favors to decay into the KK̄ final state [126]. According to the quark model, these
observed decay patterns suggest an uū + dd̄ structure for the f0(1370) and the f0(1500),
and s̄s for the f0(1710). The latter is further justified by the suppressed production rate
in pp̄ annihilation [127,128], as expected from the OZI suppression [129] for an s̄s state.
However, experimental results from γγ collisions, which are sensible to glue mixing with
qq̄ [130], have shown contradictions to this naive assumption. The f0(1500) is not observed
in γγ→ KK̄ [131–133] nor in γγ→ ππ [134,135]. The absence of the f0(1500) in the ππ
channel in γγ collisions as well as its small KK̄ decay branching ratio does not favor a
large uū + dd̄ nor s̄s structure, respectively, but mainly a gluonic one.
According to the mixing scheme in [130] based on recent hadronic J/ψ data from BESIII
[136, 137], glue is shared between the f0(1370), the f0(1500) and the f0(1710), indicating
almost pure uū + dd̄ content for the f0(1370), mainly glue content for the f0(1500) and
dominantly s̄s for the f0(1710). Using the same data, the f0(1500) is observed with a
much smaller contribution than the f0(1710) in J/ψ→ γππ [138] and J/ψ→ γηη [139],
in disagreement with a glueball interpretation of the f0(1500). However, clarification
about the inner structure of the resonances in the scalar isoscalar sector is still lacking.
Sophisticated analyses need to be redone using higher luminosity data sets as well as
theoretical models based on principles of scattering theory such as unitarity. An example
for a formalism having these features built in, allowing for an extraction of resonance
properties while mapping smoothly onto the well constrained low-energy amplitudes at
√
s < 1 GeV is presented in Section 2.6. For a broader discussion of the scalar isoscalar

states as well as their I = 1
2 and I = 1 partners we refer to the “Non-qq̄ Mesons” as well

as to the “Scalar Mesons below 2GeV” mini-review of the PDG [56].
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2.3. Hadron Spectroscopy

2.3.2. Baryons

Conventional baryons consist of three quarks qqq and thus carry baryon number B = 1.
Using group theory, the baryon wave function can be decomposed into the subspaces

|qqq〉 = |color〉 ⊗ |space〉 ⊗ |spin〉 ⊗ |flavor〉 . (2.33)

As half-odd-integer particles they obey the Fermi statistics, requiring a fully antisym-
metric wave function under the exchange of two quarks. Since the color wave function of
the lightest multiplet needs always to be in an antisymmetric color singlet, the remaining
wave functions need to be symmetric. Further, the spin wave function can be decomposed
into the subspaces [72]

2⊗ 2⊗ 2 = (2)M ⊕ (2)M ⊕ (4)S , (2.34)

with M and S denoting mixed and full symmetry, respectively. The flavor wave function
can be decomposed according to SU(3) flavor symmetry into

3⊗ 3⊗ 3 = (10)S ⊕ (8)M ⊕ (8)M ⊕ (1)A , (2.35)

with A denoting fully asymmetric. Finally, the space wave function can be identified as
a representation of SO(3) spacial symmetry using Jacobi coordinates [72], thus denoting
it by an angular momentum L. For L = 0 the baryon octet with JP = 1

2
+ and decuplet

with JP = 3
2

+ can be build, as shown in Figure 2.4. Furthermore, a rich spectrum of
excited baryon states for higher angular momentum L can be obtained accordingly, whose
resonances are experimentally well confirmed. However, knowledge on the fundamental
degrees of freedom present in the excited baryon spectrum is still lacking [140].

2.3.3. Charmonia

Mesons containing c, c̄ quarks are charmed D mesons (cd̄, cū), flavorless charmonia
(cc̄) or exotics, e.g. tetraquarks cc̄qq̄. The experimentally observed charmonium and
charmonium-like spectrum is shown in Figure 2.5, having the ηc with JPC = 0−+

as its ground state and covering a mass range approximately up to 5 GeV/c2. Hence,
charmonium spectroscopy is a powerful tool to investigate the transition region between
perturbative and non-perturbative QCD.
Among many, the most prominent representative is the vector charmonium J/ψ, which
was simultaneously observed by experiments led by Burton Richter [20] and SamuelC.C.
Ting [19] in 1974. Below the DD̄ thresholds, the observed spectrum can be well described
by the Non-Relativistic Quark Model (NRQM) [27]. Above these so-called open charm
thresholds, where conventional charmonia are dominantly expected to decay OZI-allowed
[129] into DD̄ pairs, the description fails unexpectedly. Instead, a clear overpopulation
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𝐒
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Ξ− Ξ+

Figure 2.4.: Schematic representation of the octet of baryons, build up of three quarks qqq with
JP = 1

2
+. The third component of the isospin I3 is shown on the abscissa and the strangeness S

on the ordinate. Colors indicate different quark flavors of the three lightest quarks, u (blue),
d (red) and s (green).

of states is observed in recent years which do not fit into the NRQM. These states are
called exotic and will be discussed in the next section.

2.3.4. Exotics

The rich spectrum observed by experiments involving heavy quarks such as the charm
quark contains interesting new exotic states, especially above the various DD̄ thresholds.
In contrast to the scalar isoscalar sector, these states are mostly well separated from
each other. However, they are typically measured in three-particle decays, leading to
many crossed-channel resonances due to the large phase space which needs to be taken
into account. Their interference necessarily has to be described by proper theoretical
frameworks, from which many interpretations about the inner structure of exotic states
have been arisen. They are mainly based on the assumption, that more complex
configurations of quarks and gluons, despite the conventional mesons and baryons, are
allowed to exist. As already predicted by Gell-Mann [16], group theory allows for color
singlets consisting of more than a quark-antiquark pair or three quarks. Mesons and
baryons may be easily extended to tetraquarks and molecules (qqq̄q̄) or pentaquarks
(qqqqq̄), respectively. Due to the self coupling of gluons in QCD, also hybrids (qq̄g) or
glueballs (gg, ggg) may exist. Experimental evidences for states beyond the conventional
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2.3. Hadron Spectroscopy

Figure 2.5.: Schematic representation of the charmonium spectrum in the mass region available
at BESIII with quantum numbers in spin-parity notation JPC . Charged charmonium-like states Z
are shown in a separate column, since they are not conventional charmonium states (cc̄). States
predicted in the non-relativistic quark model but not yet discovered are represented by gray boxes.
Experimentally confirmed states are shown by green boxes, while purple boxes represent exotic
candidates that do not fit the conventional charmonium spectrum. Dashed lines indicate different
open charm thresholds.

quark model in the heavy quark sector accumulated in recent years are presented in the
following.
Since the discovery of the exotic χc1(3872) in B± → K±χc1(3872) with χc1(3872) →
J/ψπ+π− by Belle in 2003 [2] and later confirmed by BaBar [141], many new exotics have
been searched for and also successfully discovered. The states being well-established and
confirmed by the PDG within the charmonium sector are the four charged Zc(3900)±,
Zc(4020)±, Zc(4200)±, Zc(4430)± and the four neutral χc1(3872), ψ(4230), ψ(4360),
ψ(4460) [56]. The ψ(4230) was originally discovered by BaBar decaying to J/ψπ+π−

in initial state radiation e+e− → γ(e+e− → ψ(4230)) in 2005 [28]. BESIII reported this
state in Born cross section studies of e+e− → J/ψπ+π− [29] using improved statistics with
a slightly lower mass, and also stated the need of a second heavier resonance ψ(4360).
While a simple Breit-Wigner ansatz in [29] needs two distinct resonances to describe
the region around

√
s = 4.23 GeV, the D1D̄ molecular model accurately describes the
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data using only one pole [142, 143]. Further experimental insights into the ψ(4230)
may have been revealed with the observations of ψ(4230) → π∓Zc(3900)± [30] and
ψ(4230) → γχc1(3872) [144] at BESIII, which both can be explained with a dominant
D1D̄ component in the ψ(4230) [145,146].
Since no significant coupling of the ψ(4230) to the DD̄ final state has been observed
[38, 40,41], current interpretations also describe this state as a hybrid charmonium with
spin-1 cc̄ [147, 148] or a spin-0 cc̄ [149, 150] core. The former may be ruled out by the
observation of ψ(4230)→ hcπ+π− [151] due to the zero spin of the cc̄ system in hc, which
is assumed to be conserved in the decay. Additionally, other models have been proposed
to interpret the ψ(4230) as a tetraquark state [33,34].
However, a common consensus about the inner structure of the ψ(4230) is still missing.
Thus, precise analyses using high luminosity data sets are needed in order to search
for possible decay patterns as well as production mechanisms of the ψ(4230) or exotic
states generally. Possible decay mechanisms include radiative or hadronic transitions to
lighter charmonia, open charm decays to DD̄ pairs or decays to light mesons or baryons.
Especially the latter are of high interest, since they have not been observed so far, e.g.
in the processes e+e− → pp̄π0 [49], φφφ, φφω [45], pK0

S n̄K− [152], K0
SK±π∓ [46],

K0
SK±π∓π0, K0

SK±π∓η [47], 2(pp̄) [48], φλλ̄ [44], pp̄η and pp̄ω [50]. In this work, the
final states φKK̄ and pp̄η′ are studied in the search for couplings of the ψ(4230) to these
light mesons and baryons. Of special interest are final states involving a pp̄ pair, since the
partial width ΓV→pp̄h with V being a vector charmonium or charmonium-like state and
h being a light meson, can be related to the production cross section σpp̄→Vh using [54]

σpp̄→Vh(s) = 4π2(2SV + 1)M
3
V

AD
ΓV→pp̄h

[
ph,cm
pp,cm

s−1
]

, (2.36)

with SV andMV being the spin and mass of particle V, respectively, AD being the area of
the Dalitz plot and pi,cm being the momentum of particle i in the center-of-mass system.
In light of the upcoming PANDA (Antiproton Annihilation at Darmstadt) experiment
at the Facility for Antiproton and Ion Research (FAIR) [55], it is important to obtain
partial widths and, thus, production cross sections of potentially exotic vector charmonia
with high accuracy.
The BESIII experiment is well suited for such studies, since exotic states like the ψ(4230)
with JPC = 1−− can be produced directly from e+e− annihilation due to the fixed
quantum numbers JPC = 1−− of the initial state [153]. For a broader discussion on
the current theoretical and experimental status of exotic states, we refer to the “Non-qq̄
Mesons” mini-review of the PDG [56], as well as to [154].
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2.4. Elements of Scattering Theory

Particle accelerator experiments provide an excellent opportunity for hadron spec-
troscopy. Among the many open questions that need to be answered, sophisticated
analysis techniques like partial wave analyses become more and more important.
Compared to previous experiments, nowadays statistics available are more than suitable
to carry out those analyses on a level of precision which could not have been achieved
before.
One of the most important necessities of such experiments is the study of analytical
properties of amplitudes, since the discovery and investigation of new particles base
mainly on the study of leading singularities in the amplitudes. Scattering amplitudes
can be separated into a spin part, describing the spin structure of the scattering (or
production) process, and a dynamical part, describing the energy-dependence of the
amplitude. In this work, the spin structure of all processes involved is described by
the so-called helicity formalism [155], which will be described in Section 2.7. However,
a more detailed discussion of the dynamical part of amplitudes will be provided in the
next paragraphs.

Scattering in Quantum Mechanics

Before the discussion about the different representations of partial wave amplitudes is
given, it is important to derive a general expression for the scattering amplitude. Starting
with non-relativistic two-particle elastic scattering of spinless particles (e.g., ππ→ ππ or
KK→ KK), the Hamiltonian of such a process is equal to

Ĥ = − 1
2m1

∆1 −
1

2m2
∆2 + V (r) , (2.37)

with mi and ∆i = ∂2

∂x2
i

+ ∂2

∂y2
i

+ ∂2

∂z2
i
being the mass and the Laplace operator for the

coordinates of particle i, respectively, and V (r) being the interaction potential depending
on the distance r = |~r| = |~r1 − ~r2| between particles 1 and 2. In the center of inertia,
the Hamiltonian can be reduced to a sum of two independent terms: a free movement
of the center-of-mass and an interaction of the particles. Equivalently, the two particle
wave function ψ(~r1, ~r2) can be written in the factorized form

ψ(~r1, ~r2) = φ(~R)ψ(~r) , (2.38)

with φ(~R) and ψ(~r) representing the center-of-mass movement and the relative movement
of particles 1 and 2 (which is equal to the movement of a particle with mass m in the
centrally symmetrical field V (r)), respectively.
In spherical coordinates, ψ(~r) reads ψ(~r) = R(r)Yl,m(θ,φ) with the radial wave function

23



2. Theoretical Framework

R(r) and the angular-dependent function Yl,m(θ,φ) with angular momentum l and its
projection m. At large distances, where V (r) can be neglected, the radial wave function
R(r) obeys the equation

1
r

d2(rR)
dr2 + k2R = 0 , (2.39)

with k =
√

2mE and E being the energy. Its general solution ca be written as

R ≈
√

2
π

sin(kr − lπ/2 + δl)
r

, (2.40)

with δl being the so-called phase shift, defining the behavior of R(r) at comparatively
small r [88].
The scattering of two particles can be reformulated as a scattering of one particle on
the stationary field V (r). In the center-of-mass system, where the total momentum is
~P (1 + 2) = 0, the two particle wave function is determined by ψ(~r) only (since φ(~R) = 1
without loss of generality). Assuming the movement of a free incoming particle along the
z-axis before scattering, which can be described by a plane wave eikz, and an outgoing
particle after scattering, which can be described (at asymptotically large distances) by a
spherical outgoing wave

f(θ)e
ikr

r
(2.41)

with scattering amplitude f(θ), the wave function can be written as

ψ(r) ' eikz + f(θ)
r
eikr . (2.42)

Note that f(θ) is fully determined by the phase shifts δl. Equation (2.42) is called the
asymptotic expression for the wave function. It describes the flux of incoming particles
with density v and the flux of outgoing particles. Scattered particles may go through an
element of the surface dS = r2dΩ with the probability

v|ψout|2dΩ = v|f(θ)|2dΩ . (2.43)

The cross section is defined by its ratio to the flux of the incoming particles

dσ = |f(θ)|2dΩ = 2π|f(θ)|2 sin θ dθ . (2.44)

In case of elastic scattering, the scattering amplitude f(θ) can be expressed as

f(θ) = 1
2ik

∑
l

(2l + 1)(e2iδl − 1)Pl(cos θ) , (2.45)
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with Pl(cos θ) being some standard Legendre-polynomials and

fl = 1
2ik (e2iδl − 1) = 1

k
eiδl sin δl (2.46)

defining a partial wave amplitude. Note that in case of scattering with absorption
(inelastic scattering, e.g., ππ → KK or KK → ππ), the intensities of incoming and
outgoing waves are no longer equal. The inelasticity parameter ηl with 0 ≤ ηl ≤ 1
incorporates such processes in the corresponding partial wave amplitude

fl = 1
2ik ηl(e

2iδl − 1) . (2.47)

Inelastic processes (ηl 6= 1) contribute to the imaginary part of the scattering amplitude
[88].
In the following, an overview about the framework of dispersion theory is given. After
the S-matrix is introduced, describing the probability for the transition from the initial
to the final state, the dispersion integral as well as the homogeneous Omnès problem will
be discussed.

2.5. Dispersion Theory

In Section 2.2 the theory of strong interaction, QCD, was introduced. It leads to a
wide range of phenomena, which still need to be understood. As already discussed
in Section 2.3, many experiments showed the abundant existence of bound states
compared to the most simple quark model predictions. In order to gain insights into
their nature, theoretically sound studies are required, preserving fundamental physical
properties such as Lorentz invariance, causality and probability conservation. Since the
standard perturbation theory approach in the strong coupling constant is not applicable
at the hadronic scale, proper alternatives have to be carried out. One of them is
dispersion theory, including analyticity, unitarity and crossing symmetry by construction.
Unfortunately, the application of dispersion theory is restricted to low energies due to
the opening of inelastic channels. Therefore, an effective high-energy extension of the
dispersive framework [156] is presented in Section 2.6.
While the renormalization procedure in QFT has been established for singularities of
QED in the fifties and sixties by Dyson, Feynman, Schwinger and others [73–81], the
description of the strong force with QFT proved to be difficult and has only been provided
in the seventies [24–26]. In the meantime, there was some prejudice that a solution outside
field theory has to be found, namely the S-matrix theory [157–162]. Being based on
dispersion theory [163, 164], the S-matrix relates the infinite past to the infinite future
in one step, without being decomposable into intermediate steps corresponding to time-
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slices. The coming passages intend to present its basic theory as well as their analytic
properties.

2.5.1. S-matrix Theory

In an experiment, in which, for the sake of clarity, only a short ranged interaction (e.g.
QCD) of the involved particles is considered, initial states i and final states f are prepared
in the distant past and future, respectively, by [163]

|i, in〉 = |i, t→ −∞〉 and |f , out〉 = |f , t→ +∞〉 , (2.48)

where t denotes the time. These states are normalized (〈i, in|j, in〉 = 〈i, out|j, out〉 = δij)
and fulfill the completeness relation (e.g. for the initial states)

1 =
∑
m

|m, in〉〈m, in| . (2.49)

The probability for the transition from the initial to the final state

|〈f , out|i, in〉|2 = |〈f , in|S|i, in〉|2 = |〈f , out|S|i, out〉|2 (2.50)

is described by the so-called S-matrix. Its unitarity (probability conservation) reads

SS† = S†S = 1 . (2.51)

Since the momenta of relativistic particles are easier to measure than their position, it
is common to work in momentum space, where each state |i〉 is a state consisting of n
particles with quantum numbers βj and momenta pj with j = 1, . . . ,n

|i〉 = |β1, p1〉 ⊗ |β2, p2〉 ⊗ · · · ⊗ |βn, pn〉 . (2.52)

All particles fulfill the on-shell condition p2
j = m2

j and thus the normalization for each
single-particle state is [163]

〈βi, p|βj , k〉 = 2p0δβi,βj (2π)3δ3(~p− ~k) . (2.53)

Because the particles have a defined momentum, they are not localized in position space
due to the Heisenberg uncertainty principle. Hence, they will pass each other without
interacting. The S-matrix can then be written as

S = 1 + iR , (2.54)
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separating off the interaction part R, which is usually defined as a distribution (following
overall momentum conservation as well as Lorentz invariance)

〈f |R|i〉 = (2π)4δ4(pi − pf )〈f |T |i〉 , (2.55)

with pi and pf being the overall momenta of the initial and final state, respectively, and
transition amplitude T . Further, the unitarity of the S-matrix (Equation (2.51)) can be
invoked to write

〈f |R|i〉 − 〈f |R†|i〉 = i〈f |R†R|i〉 . (2.56)

The unitarity relation for T can then be obtained after some calculations as [163]

〈f |T |i〉 − 〈i|T |f〉∗ = i

∫∑
m

(2π)4δ4(pi − pm)〈m|T |f〉∗〈m|T |i〉 , (2.57)

which can be simplified using 〈i|S|f〉 = 〈f |S|i〉 to

2i Im〈f |T |i〉 = i

∫∑
m

(2π)4δ4(pi − pm)〈f |T |m〉∗〈m|T |i〉 . (2.58)

2.5.2. Analytical Properties of the S-Matrix

Besides unitarity, analyticity is another important property of the S-matrix, which is
related to the micro-causality condition for some arbitrary field operator φ(x)

[φ(x),φ(y)] = 0 if (x− y)2 < 0 . (2.59)

This equation ensures that information cannot be transmitted faster than the speed of
light. From now on we restrict ourselves to the scattering process of four scalar particles

φ1(p1) + φ2(p2)→ φ3(p3) + φ4(p4) (2.60)

to illustrate further properties of the S-matrix. In the presence of spins, the helicity
formalism (see Section 2.7) developed by Jacob and Wick [165,166] may be used to ensure
the proper description of the spin structure of the processes investigated. Commonly,
decays are described within the isobar model, treating sequential decays as a coherent
sum of two-body interactions.
All momenta are restricted by the mass-shell condition p2

a = m2
a with a = 1, . . . , 4. For

scalar particles, T will only depend on the momenta [163]

〈φ3(p3)φ4(p4)|T |φ1(p1)φ2(p2)〉 = T fi(p1, p2; p3, p4) . (2.61)
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In order to preserve Lorentz invariance, the amplitude T can only depend on the Lorentz
invariant products [163,167]

sxy = px · py with x, y = 1, . . . , 4 (2.62)

and
εabcd = εµναβp

µ
ap

ν
bp
α
c p

β
d , (2.63)

with εµναβ being the antisymmetric fourth-order tensor. This can be written as

T fi(p1, p2; p3, p4) = T fis (sxy) + εabcdT
fi
abcd(sxy) . (2.64)

The first term on the right-hand side of Equation (2.64) transforms even under parity,
the second term changes sign. Since the strong interaction is parity conserving, the last
term can be neglected. Not all possible contractions sxy are independent of each other.
In fact, only two of them are necessary to describe the amplitude due to the on-shell
conditions and momentum conservation. Commonly, the Mandelstam variables [168] are
chosen given by

s = (p1 + p2)2, t = (p1 − p3)2 and u = (p1 − p4)2 . (2.65)

The transition amplitude can now be expressed as

T fi(p1, p2; p3, p4) = T fi(s, t,u) (2.66)

with the relation
s+ t+ u = m2

1 +m2
2 +m2

3 +m2
4 . (2.67)

If the scattering is described in the center-of-mass system (CMS), the momenta can be
written as

p1 =
(
p0

1
~p12

)
, p2 =

(
p0

2
−~p12

)
, p3 =

(
p0

3
~p34

)
and p4 =

(
p0

4
−~p34

)
(2.68)

with

p0
1/2 =

√
|~p12|2 +m2

1/2 , |~p12|2 = λ
(
s,m2

1,m2
2
)

4s

p0
3/4 =

√
|~p34|2 +m2

3/4 , |~p34|2 = λ
(
s,m2

3,m2
4
)

4s (2.69)
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and the Källén function λ(a, b, c)

λ(a, b, c) =
(
a−

(√
b+
√
c
)2
)(

a−
(√

b−√c
)2
)

. (2.70)

Using this notation, the Mandelstam variables t and u can be expresses through s and
the scattering angle θs between ~p12 and ~p34 as

t = 1
2

( 4∑
i=1

m2
i − s+ (m2

2 −m2
1)(m2

3 −m2
4) + 4|~p12||~p34|cosθs

)
(2.71)

and

u = 1
2

( 4∑
i=1

m2
i − s− (m2

2 −m2
1)(m2

3 −m2
4)− 4|~p12||~p34|cosθs

)
. (2.72)

Further, T can be partial wave projected, which reads for scalar particles [163]

T fi(s, t,u) = T (s, cosθs) = 8π
∞∑
l=0

(2l + 1)Pl(cos θs)t
fi
l (s) , (2.73)

with Pl(cos θs) being the standard Legendre-polynomials and tl(s) being the partial wave
amplitude (see Equation (2.46)). The unitarity equation for tl(s) in case of two-particle
intermediate states with masses ma and mb reads

Im tfil (s) =
∑

m={ma,mb}
(tfml )∗(s)σ(s,ma,mb)t

mi
l (s) (2.74)

with the phase space factor

σ(s,ma,mb) =

√
λ(s,m2

a,m2
b)

s
θ(s− (ma +mb)

2) . (2.75)

This derivation only applies for s > max{(m1 +m2)2, (m3 +m4)2} as the initial and final
states were assumed to be asymptotic states [169].
Using the CPT -theorem in QFT [170–173], the s-channel process can be related to the
t-channel and the u-channel processes by replacing a particle in an incoming state with
an antiparticle in an outgoing state with reversed momentum. A three body decay of m1
may then be written as

φ1(p1)→ φ̄2(−p2) + φ3(p3) + φ4(p4) . (2.76)

In the framework of S-matrix theory, the s-, t- and u-channels are related by requiring
crossing symmetry. Here, they are described by the same amplitude T (s, t,u) which
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is continued into different energy regions of the Mandelstam variables s, t and u (see
Figure 2.6). The s-channel produces imaginary parts for

s > max{(m1 +m2)2, (m3 +m4)2} = sthr (2.77)

and correspondingly the t- and u-channel for

t > max{(m1 +m3)2, (m2 +m4)2} = tthr

u > max{(m1 +m4)2, (m2 +m3)2} = uthr . (2.78)

Hence, the partial wave amplitude in the s-channel does not only have an imaginary part
for s > sthr, a so-called right-hand cut, but also an imaginary part extending to −∞, a
so-called left-hand cut, which is introduced due to the projection of T (s, t,u) onto the
s-channel process [169].

𝒔

𝒕 − 𝒖

𝐃𝐞𝐜𝐚𝐲

𝒖 − 𝐜𝐡𝐚𝐧𝐧𝐞𝐥 𝒕 − 𝐜𝐡𝐚𝐧𝐧𝐞𝐥

𝒔 − 𝐜𝐡𝐚𝐧𝐧𝐞𝐥

Figure 2.6.: Mandelstam plane, showing the s-, t- and u-channel as well as the decay region.

However, tl(s) can be analytically continued to the upper complex s-plane, without
encountering singularities. In addition, it can also be defined in the entire complex s-plane
using the Schwarz reflection principle tl(s) = t∗l (s∗). The mentioned left- and right-hand
cuts will then show up as discontinuities

disc tl(s) = lim
ε→0

(tl(s+ iε)− tl(s− iε)) = 2i Im tl(s) . (2.79)

tl(s) is therefore an analytic function in the entire first sheet of the complex s-plane,
except for the discontinuities along the real axis and possible bound states below the
lowest threshold. It follows, that the S-matrix is assumed to be analytic as well up to the
aforementioned kinematic singularities and poles. These phenomena can be distinguished
into branch points, bound states, virtual states and resonances.
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Branch points can be distinguished into the aforementioned right- and left-hand cuts.
While right-hand cuts occur at each threshold for a kinematically allowed process (e.g. at
the KK threshold in the ππ scattering amplitude), left-hand cuts become present when
reactions in the crossed channel become possible (e.g. in the reaction e+e− → φKK̄ at
the K∗ threshold with K∗ → φK in the KK̄ scattering amplitude). In fact, left-hand cuts
are located in the unphysical region (s < 0) for the reaction under investigation but can
still influence significantly their energy dependence.
Bound states appear as poles on the physical sheet (s > 0) and are only allowed to occur
on the real s-axis below the lowest threshold.
Virtual states appear on the real s-axis on the unphysical sheet [174].

Resonances

Resonances appear as poles on the unphysical sheets close to the physical one. They show
up either in formation experiments such as

e+e− → ψ→ φKK̄ , (2.80)

where they become visible in energy scans of the Born cross section, or in combination
with a spectator particle m as an associated production in production experiments of the
kind

e+e− → m + fJ → m + KK̄ , (2.81)

with m being, i.e., the φ meson. The characteristics of interest are the pole position sR in
the complex s-plane and its residue R. Usually, if the observed structure is narrow and
if there are no relevant thresholds or other resonances nearby, a standard Breit-Wigner
parametrization (see Subsection 2.5.3) may be employed in order to extract the resonance
properties such as the massMR and width ΓR. Their relation to the pole position is given
by [56]

√
sR = MR − iΓR/2 . (2.82)

However, in case one of these requirements is not satisfied, unitarity and analyticity get
violated, and more sophisticated parametrizations need to be used. Examples are the
K-matrix approach (see Subsection 2.5.4) or methods based on dispersion theory (see
Section 2.6). Note that in case of broad resonances, Equation (2.82) is no longer valid so
that the Breit-Wigner parameters deviate from the pole position.
A residue quantifies the coupling of a resonance to a certain channel and allows for the
definition of branching ratios. Close to the resonance pole, the scattering matrixM can
be written as

lim
s→sR

(s− sR)Mba = −Rba . (2.83)
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Rab can be calculated via an integration along a closed contour around the pole and its
factorization (Rba)2 = Raa ×Rbb allows the introduction of pole couplings according to

g̃a = Rba/
√
Rbb (2.84)

as well as the definition of a partial width and a branching fraction as [56]

ΓR→a = |g̃a|
2

MR

ρa(M
2
R) and BrR→a = ΓR→a/ΓR , (2.85)

with ρa(M2
R) being a factor related to the two-body phase space. Note that both the

pole position sR and the pole coupling g̃a (and therefore the partial decay width ΓR→a)
are independent of the reaction studied. Similar to Equation (2.82) regarding the mass
of a resonance, Equation (2.85) is equal to the commonly used definition of a branching
fraction in case of narrow resonances which is discussed further below [56].
In general, there is no universal model-independent recipe to construct the scatter-
ing amplitude. However, extracted resonance parameters should not depend on the
parametrization used. The most common parametrizations such as the Breit-Wigner
parametrization, the K-matrix approach as well as a method based on dispersion theory
will be presented in the following. Their limitations, although already indicated in the
previous passages, are also discussed.

2.5.3. Breit-Wigner Formula

The simplest form of a production amplitude of some resonance R coupling to channel a
is the constant-width Breit-Wigner parametrization

Aa(s) = αga
M2
R − s− iMRΓR

, (2.86)

with α being the resonance-source coupling. This parametrization holds if 2(MR −√
sthra)/ΓR � 1, with √sthra being the sum of the nominal masses of the daughter

particles of resonance R in channel a. In case of the φ meson, which is produced close to
the K+K− threshold, an energy-dependent width Γ(m) has to be used in order to account
for the threshold behavior. Additionally, it is common to replace s by m2, which is the
running invariant mass squared. The corresponding amplitude is then given by [175,176]

Aa(m) =
p
Lφ→K+K−

φ→K+K−

M2
φ −m2 − imΓ(m) ·

BL

(
pφ→K+K−

)
BL

(
p′
φ→K+K−

) , (2.87)

32



2.5. Dispersion Theory

with L = 1 being the lowest allowed orbital angular momentum between the daughter
particles K+K−, p and p′ with

p(m) =
√(

m− 2mK
2 +mK

)2
−m2

K, p′(Mφ) =

√√√√(Mφ − 2mK
2 +mK

)2

−m2
K (2.88)

being the momentum of the K+K− pair in the φ meson rest frame and evaluated at
m = Mφ, respectively, and BL(p)/BL(p′) being the corresponding L-dependent Blatt-
Weisskopf form factors given by [175,176]

B0(p) = 1

B1(p) = 1√
1 + (Rp)2

B2(p) = 1√
1 + (Rp)2

3 + (Rp)2

9

. (2.89)

R = 3 GeV−1 denotes some properly chosen momentum scale. The energy-dependent
width Γ(m) is defined as [175,176]

Γ(m) =
(
p

p′

)2Lφ→K+K−+1
(
Mφ

m

)
Γφ

B1

(
pφ→K+K−

)
B1

(
p′
φ→K+K−

)
 . (2.90)

The Breit-Wigner parametrization is no longer correct if one tries to describe more
than one resonance in one partial wave that significantly couples to the same channel,
although often done. It violates unitarity constraints, which can be easily seen as follows.
Generally, a resonance is uniquely characterized by its pole position sr and its residue g̃
(see Subsection 2.5.2). For the corresponding transition matrix element T [174]

Tab = −
∑
r

g̃rag̃
r
b

s− sr
(2.91)

a relation to the S-matrix exists via Sab = δab − 2i√σaTab
√
σb, with σi being the phase

space factor of channel i and g̃ri being the residue for the coupling of resonance r to
channel i. Equation (2.91) is a sum over Breit-Wigner functions. For a demonstration of
unitarity violation one may start with the unitarity condition in the single channel case

Im(T ) = σ|T |2 . (2.92)

Considering the T -matrix with two resonances a and b

T = −

(
g̃(a)

)2

s−M2
a + iMaΓa

−

(
g̃(b)

)2

s−M2
b + iMbΓb

(2.93)
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leads to

Im(T )− σ|T |2 =

(
g̃(a)

)2
(

ΓaMa − σ
(
g̃(a)

)2
)

(s−M2
a )2 +M2

aΓ2
a

+

(
g̃(b)

)2
(

ΓbMb − σ
(
g̃(b)

)2
)

(
s−M2

b

)2 +M2
b Γ2

b

+ Re

 2σ
(
g̃(a)g̃(b)

)2

(s−M2
a + iMaΓa)

(
s−M2

b − iMbΓb
)
 . (2.94)

The right-hand side of Equation (2.94) needs to vanish for unitarity to be satisfied. With
the unitarity condition for a single resonance (ΓiMi = σ

(
g̃(i)
)2
) and kinematically well

separated resonances (M1−M2 � (M1Γ1+M2Γ2)/(M1+M2)), this may be achieved [174].
However, especially for the scalar isoscalar sector (see Subsection 2.3.1), where many
broad and overlapping resonances are present, the sum of Breit-Wigner functions violates
unitarity significantly. Hence, the parameters extracted for the resonances will not be
correct and, in fact, reaction dependent. This makes sum of Breit-Wigner amplitudes
far unfavorable for spectroscopy. A more refined method, the K-matrix approach, is
described in the following section.

2.5.4. K-Matrix

The K-matrix provides a clear improvement compared to the Breit-Wigner parametriza-
tion for the treatment of two-body coupled-channel scattering processes, since two-body
unitarity is built in by construction. Additionally, the P -vector approach can be used to
provide an effective description for the production mechanisms as well as for the effect
of rescattering.
The S-matrix of scattering processes of the type a+ b→ c+ d can be written as a sum
of a term describing no interaction and a term describing interaction [177]

S = I + 2iT (2.95)

= I + 2i
√
σT̂
√
σ , (2.96)

with T̂ being the Lorentz-invariant transition matrix element, I being the identity and
σ being the phase space diagonal matrix. The relation to the K-matrix is defined as

T (s) = (I +K(s)C(s))−1K(s) , (2.97)

with s being the squared energy of the two-body system and C(s) being the diagonal
Chew-Mandelstam matrix where ImCii(s) = −σii(s). The elements of the phase space
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matrix in case of a decay into two stable particles with masses m1 and m2 can be written
as

σii(s,m1,m2) =
√(

1− (m1 +m2)2

s

)
·
(

1− (m1 −m2)2

s

)
. (2.98)

For the reaction channels i and j, the symmetric and real valued K-matrix can be
written as a sum over a number of resonances r plus a sum over polynomial background
contributions n [177]

Kij(s) =
∑
r

BLri(pi, pri) ·BLrj (pj , prj ) ·
gbare
ri gbare

rj

(mbare
r )2 − s +

∑
n

cnijs
n , (2.99)

with BLri being the aforementioned Blatt-Weisskopf barrier factors in channel i, and gbare
ri

as well asmbare
r being the coupling strength of the resonance r to channel i and its mass in

the K-matrix representation, respectively. The s-dependent polynomial background term
of the order n can be added while still conserving unitarity. It is important to note that
the properties of the resonances r in the K-matrix representation are not identical to the
properties in the T -matrix description (which are the real physical properties). In fact, if
left-hand cuts are neglected, the K-matrix can be transferred into the T -matrix via the
Chew-Mandelstam matrix using Equation (2.97), which then allows for the extraction of
the physical properties of the resonance r.
In order to describe also processes of the type a→ b+c+d with a resonance r being present
in the channel r → c + d, the P -vector approach is used. It describes the production of
two particles in the initial decay, which then undergo a scattering of the type a+ b̄→ c+d
so that the K-matrix formalism can be employed. A Lorentz-invariant F -vector, which
is equivalent to the T -matrix of the two-body scattering process, can be defined as [177]

F pl (s) =
∑
j

(I +K(s)C(s))−1
lj · P

p
j , (2.100)

with P pj being one element of the P -vector taking into account the production of the
wave or resonance. The sum runs over all channels relevant for the partial wave under
consideration. Since P has to exhibit the same pole structures as the K-matrix, it can
be written as [177]

P pi (s) =
∑
r

BLri(pi, pri) ·
βprg

bare
ri

(mbare
r )2 − s +

∑
n

cpnis
n , (2.101)

with βpr being a complex parameter representing the strength of the production process
of resonance r. Note that both the coupling strength and the mass are equal to the
ones in Equation (2.99). Usually, a K-matrix analysis of the scalar isoscalar sector (see
Subsection 2.3.1) needs to consider the channels ππ, KK̄,ηη,ηη′ and 4π. In this analysis,
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data is available for the KK̄ channel. Accordingly, the remaining channels are constrained
by using data available in the literature or by introducing effective channels.

2.5.5. Dispersion Integral

In general, scattering amplitudes and vertex functions will contain both real and
imaginary parts. As already mentioned in Subsection 2.5.1, causality implies certain
properties for the analytic structure of the amplitudes that allows to relate real and
imaginary parts via so-called dispersion relations [163,164].
An amplitude f(s), which is holomorphic in the entire complex s-plane, except for a
left-hand cut (CL = {s ∈ R|s < sL}), a right-hand cut (CR = {s ∈ R|s > sR}) and a
bound state pole at sp, can be written as

f(s) = 1
2πi

∫
C
dz f(z)
z − s (2.102)

for any s ∈ C with s /∈ CL∪ CR ∪ {sp}. C denotes any closed path with the mathematical
positive orientation encircling z = s but not any of the non-analyticities mentioned
above [169]. This is shown in Figure 2.7 (left). The integration path can be deformed

𝐈𝐦(𝒔)

𝒔𝒑

𝐑𝐞(𝒔)

𝒔𝑳 𝒔𝑹

𝒔
𝑪

𝐈𝐦(𝒔)

𝒔𝒑

𝐑𝐞(𝒔)

𝒔𝑳 𝒔𝑹

𝒔

Figure 2.7.: Closed path C (purple line) encircling z = s (left) and its deformation using
Cauchy’s theorem (right) for the dispersive representation in the complex s-plane. The left-hand
cut sL, the right-hand cut sR and the pole at sp are marked in green.

using Cauchy’s theorem as shown in Figure 2.7 (right). It is important to note that
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singularities such as the cuts and the pole have to be avoided. The integration path can
be obtained by subtracting the residue at sp

R

(
f(z)
s− z , sp

)
= Res

(
f(z)
z − s

) ∣∣∣∣
z=sp

(2.103)

due to the clockwise orientation of the integral around sp. Usually, the whole integral
can be separated into an integration along the real axis and a part along the complex
arc. For sufficiently convergent f(s) (|f(s)| → 0 for |s| → ∞), the contribution of the
complex arc vanishes and f(s) can be written as

f(s) = −R
(
f(z)
s− z , sp

)
+ 1

2πi

[∫ sL

−∞
dzdisc f(z)

z − s +
∫ ∞
sR

dzdisc f(z)
z − s

]
(2.104)

= −R
(
f(z)
s− z , sp

)
+ 1

2πi

[∫ sL

−∞
dz disc f(z)
z − s− iε +

∫ ∞
sR

dz disc f(z)
z − s− iε

]
, (2.105)

where in the last step the values on the cuts are accessed by an analytic continuation of
f(s) by approaching with the prescription s → s + iε. Note that using Equation (2.79),
the amplitude is nothing but an integral over its imaginary part, which may be provided
by experimental data.

2.5.6. Elastic Approximation and Omnès Problem

The simplest application of dispersion theory is the elastic approximation, or homoge-
neous Omnès problem [178]. Consider a two particle amplitude f(s) of a given isospin I
and angular momentum l which is analytic in the complex s-plane except a right-hand
cut starting at s0. In fact, we apply dispersion theory to the transition of a source ψ with
spin l to a final state consisting of two particles φ1 and φ2

〈f |S|i〉 = 〈φ1(p1),φ2(p2)|T |ψ(p1 + p2)〉 ∝ F fl
(
(p1 + p2)2

)
, (2.106)

with F fl being a so-called form factor [179–182]. We may consider a vector of form factors
F fl (s) (f = 1, . . . ,n denotes the open channels taking part in the rescattering process in
a fixed partial wave l) which fulfill the following unitarity condition (see Equation (2.74))

ImF fl (s) =
n∑

m=1

(
tfml (s)

)∗
σm(s)Fml (s) , (2.107)

with σm(s) being the phase space of the channel m and tfml being the partial wave
scattering amplitude between channels f and m. A form factor can be determined as

F fl (s) =
n∑
k=1

Ωfk
l (s)P k(s) , (2.108)
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with Ωfk
l (s) being an Omnès matrix and P k(s) being a polynomial from a Taylor

expansion [169]. From now on the discussion restricts to a single channel as final and
intermediate state (elastic approximation). In this case, the Omnès function can be
determined analytically and the partial wave amplitude tl(s) above s = s0 can be entirely
described by the phase shift δl(s)

tl(s) = sinδl(s)
σ1(s) eiδl(s) . (2.109)

In the elastic region (below some inelastic thresholds sinel > s0) the Watson theorem
holds [183], which states that since the imaginary part is a real number, the phase of both
Fl(s) and Ωt(s) needs to be equal to the phase shift δl(s) (or: the phase of the amplitude
is equal to the corresponding two particle scattering amplitude f(s) = eiδ(s)|f(s)|). The
unitarity condition reads

disc logΩl(s) = 2iδl(s) . (2.110)

Using the dispersion relation, the Omnès function can finally be written as

Ω(s) = exp
(
s

π

∫ ∞
s0

dz
z

δl(z)
z − s− iε

)
. (2.111)

In case of present left-hand cuts, the Omnès problem becomes inhomogeneous. However,
in practice such inelasticities do not play a significant role in low energy pion physics up
to 1GeV (KK̄ threshold). That is why one often assumes an approximation of keeping
only the elastic channels. For an overview of the inhomogeneous Omnès problem we refer
to [169].

2.6. A New Parametrization of the Scalar Pion Form Factor

In this section, a formalism aiming to parametrize the scalar pion form factor while
being consistent with the general principles of analyticity and unitarity is presented.
Regarding the low energy regime up to an energy of about s = (1.1 GeV)2, the two-
pion system is well understood: sophisticated investigations based on dispersion theory
have in particular derived the ππ−KK̄ phase shifts and inelasticities with high accuracy
[184–189]. From that, the scalar strange (and also non-strange) form factors for both
pions and kaons may be constructed, already capturing the physics of the f0(500) and the
f0(980) [123,179,190–195]. However, in order to be able to describe also the higher energy
regime, where many inelasticities like resonances start being present, a model needs to
be employed. Such a model is presented in [65], whose amplitudes match smoothly to
those constructed from dispersion relations only. In addition, resonance properties may
be extracted since the extension of the low energy regime is performed in a way consistent
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with analyticity.

Figure 2.8.: Dominant tree-level diagram for the weak transition on the quark level for the decay
process B̄0

s → J/ψπ+π−. The hadronization of the s̄s pair into π+π− (S-wave dominated) is given
by the scalar form factor Γsπ. Figure taken from [65].

This derived formalism was primarily used as an application for extracting resonance
properties of excited scalar mesons [65] from high accuracy LHCb data of the process
B̄0
s → J/ψππ/KK̄ (see Figure 2.8) [52,196]. In that case the production of the π+π− pair

(and also of the KK̄ pair) can be seen as evolving from a pure s̄s source. That is why the
strange pion and kaon scalar form factor Γsi can be extracted up to about 2GeV using
the data mentioned above according to

Γsi = Ωim [1− VRΣ]−1
mnMn . (2.112)

In the following, Equation (2.112) is explained in detail. Its derivation can be found
in [65]. Note that due to the fact that both the scalar isoscalar ππ and the KK̄ channels are
strongly coupled via the f0(980) resonance, a coupled channel description is mandatory.
In addition to ππ and KK̄, an effective 4π channel, modeled either by the ρρ or σσ, is
used in this three-channel model [65].
The Omnès matrix Ω [178] and the corresponding matrix elements Ωim are given by

Ω =


Ω11 Ω12 0
Ω21 Ω22 0
0 0 1

 , Ωim(s) = 1
2πi

∫ ∞
4M2

π

dzdiscΩim(z)
z − s− iε , (2.113)

with the discontinuity discΩim = 2i(T0)∗ijσjΩjm. Here, σj(s) =
√

1− 4M2
j /s is the two-

body phase space of channel j and

T0 =


η0e2iδ0−1

2iσπ g0e
iψ0 0

g0e
iψ0 η0e2i(ψ0−δ0)−1

2iσK
0

0 0 0

 (2.114)
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is the T -matrix for the energy regime below 1 GeV. In Equation (2.114), δ0 denotes the
scalar isoscalar ππ phase shift, ψ0 the phase of the ππ→ KK̄ scattering amplitude, g0 its
absolute value and

η0 =
√

1− 4(g0)2σπσKΘ(s− 4M2
K) (2.115)

the inelasticity [65]. The Omnès matrix elements Ωim must already be provided in terms
of a dispersively constructed coupled-channel Omnès matrix (which basically means phase
shift studies, see Equation (2.114)), e.g. from [197] and can then be used as input for the
form factor calculation. An extension up to five channels (e.g.ηη and ηη′) can be made
in a straightforward manner. In this case the 2× 2 Omnès submatrix for the additional
channels is equal to the identity matrix I.
The self-energy matrix Σ = GΩ with loop operator G and discontinuity given by

discΣij(s) = 2iΩ†im(s) discGmm(s)Ωmj(s) (2.116)

can be written as a once-subtracted dispersion integral according to

Σij(s) = Σij(0) + s

π

∫ dz
z

discΣij(z)
z − s− iε . (2.117)

In Equation (2.116), Ω is the Omnès matrix from Equation (2.113) and discGmm(s) for
channel m reads

discG11 = 2iσπ = 2i
√

1− 4M2
π/s

discG22 = 2iσK = 2i
√

1− 4M2
K/s

discGk33 = 2i
∫ ∞

4M2
π

dm2
1dm2

2ρk(m
2
1)ρk(m

2
2)λ

1/2(s,m2
1,m2

2)
s

. (2.118)

Here, λ(a, b, c) is the Källén function from Equation (2.70) and ρk(m2) is the spectral
density for the state k (ρ or σ), which can be written as

ρk(q
2) = 1

π

mkΓk(q2)
(q2 −m2

k)2 +m2
kΓ2

k(q2) , (2.119)

with the energy-dependent width

Γk(s) = Γkmk√
s

(
pπ(s)
pπ(m2

k)

)2Lk+1 (
F

(Lk)
R (s)

)2
, (2.120)

with pπ(s) =
√
s

2 σπ(s), the nominal width (mass) Γk(mk) of the resonance, the angular
momentum of the decay Lk = 1 and Lk = 0 for the ρ and the σ, respectively, and the
barrier factors F (L)

R (s) [198]. By this, the finite width of the two intermediate mesons is
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taken into account, which ensures the proper treatment of a four body phase space. In
case of an extension up to five channels the off-diagonal elements are Σ45,54 = 0 [169],
whereas the diagonal elements for the self-energy matrix read for a real and positive
Källén function λ = λ(s,ma,mb) (see Equation (2.70))

Σ44,55(s,ma,mb) = −4mamb

16π2

((
m2
a −m2

b

s
− m2

a +m2
b

m2
a −m2

b

)
log

(
ma

mb

)
− 1

+
√
λ

s

(
log

(
s−m2

a −m2
b +
√
λ

s−m2
a −m2

b −
√
λ

))
− 2iπΘ

(
s− (ma +mb)

2
))

(2.121)

and otherwise

Σ44,55(s,ma,mb) = −4mamb

16π2
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m2
a −m2

b

s
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b
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a −m2

b

)
log

(
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mb

)
− 1

+
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−λ
s

(
arctan

(
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−λ

)
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b − s√
−λ

)))
. (2.122)

The potential VR describes resonances above 1GeV and can be written as

(VR)ij =
∑
r

gri
s

m2
r(m2

r − s)
grj , (2.123)

with bare resonance masses mr and bare resonance-channel coupling constants gri . They
are universal (means reaction-independent) parameters and may be determined by a fit
to data.
The analytic term M describing the transition from the source to the channel n reads

Mi = ci + γis+ · · · −
∑
r

gri
s

m2
r − s

αr , (2.124)

with the normalizations ci = Γsi (0) for channel i, the resonance-source couplings αr and
some slope parameters γi (which are not necessarily 6= 0). Note that ci can be fixed based
on χPT 2 as they depend on the source only (in this case a s̄s source) [123].
In this work, the presented formalism is applied to BESIII data in Section 5.7 in order to
describe the dynamical part of the amplitudes of the KK̄ system with JPC = 0++ in the
reaction e+e− → φKK̄.

2Chiral Perturbation Theory (χPT) is an effective field theory that provides a systematic framework for
studying strong interaction processes at low energies, in contrast to a perturbative treatment of QCD
at high momentum transfers in terms of the running coupling constant. For an introduction to χPT we
refer to [199].
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2.7. Helicity Formalism

The final states investigated in the present analysis are treated as stable and are described
by a chain of two-body decays of short-lived intermediate resonances within the isobar
model. By this, the observed amplitude is decomposed into partial wave contributions.
The spin structure of the decay is described in the helicity formalism [165,166]. Figure 2.9
shows the most important kinematic variables for the production as well as decay
reference frames. The considered angles are the azimuthal and polar angle of the
production of the intermediate resonance X in the e+e− rest frame with respect to the
direction of the beam and of the decay of the single resonance (or partial wave containing
several resonances) in its helicity system, in which the y-axis is defined to be parallel to
the normal vector of the production plane.
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Figure 2.9.: Graphical representation of the most important kinematic variables for the
production (left) and decay (right) reference frames. Exemplary, the process e+e− → φKK̄ is
shown. In the production, the z-axis is defined as the flight direction of the e+, while the directions
of the x- and y-axes are arbitrary and only defined in the laboratory frame by convention (y-
axis pointing up in vertical direction). The e+e− pair annihilates either into φfJ with fJ → KK̄
(black) or into K∗K with K∗ → φK (blue). ∆φe+e− denotes the angle between the planes of these
two decay branches. In the helicity frame of the fJ depicted on the right-hand side, the z′-axis
is defined as the opposite direction of the e+e− system or equivalently of the φ meson. The
x′ − z′-plane is given by the production plane, spanned by the flight directions of the e− and e+.
Accordingly, the y′-axis is perpendicular to this production plane.

Relativistic particles with momentum ~p can properly be described in the helicity reference
system by first rotating the coordinate system so that, e.g., the z-axis is aligned with ~p

r̂(α,β γ)|j,m〉 =
∑
m′

Dj
mm′(α,β, γ)|j,m′〉 , (2.125)
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with r̂(α,β γ) being the unitary rotation operator acting on the state |j,m〉 (with angular
momentum j and its projection m along the direction of motion), α,β, γ being the Euler
angles and Dj

mm′(α,β, γ) being the complex unitary Wigner-D-matrices, which can be
found in [56].
Since the helicity λ is defined as the projection of the total angular momentum ~J to a
quantization axis along ~p, λ = ~J · ~p|~p| , it is invariant under rotations around and boosts
along that axis. The decay amplitude of a particle a with a total angular momentum
~J and a helicity λa decaying to daughters b and c with λ = λb − λc can be written
as [165,166]

AJa,λa
λb,λc (a→ b+ c) =

√
2Ja + 1

4π ·DJa∗
λa,λ(ϕ, θ, 0) · F Jaλb,λc , (2.126)

with ϕ and θ being the azimuthal and polar angle, respectively. Since the total spin S

as well as the orbital angular momentum L are good quantum numbers, the amplitude
can be transformed into the so-called LS-basis, enabling to write the parameter F Jaλb,λc
as follows [155]

F Jaλb,λc =
∑
L,S

√
2L+ 1
2Ja + 1〈L, 0;S,λ|Ja,λ〉〈Jb,λb; Jc,−λc|S,λ〉 · αJaLS . (2.127)

L and S are limited by |Jb − Jc| ≤ |Jb + Jc| and |L− S| ≤ Ja ≤ |L+ S|. 〈L, 0;S,λ|Ja,λ〉
and 〈Jb,λb; Jc,−λc|S,λ〉 are Clebsch-Gordan coefficients, which can be found in [56]. The
free, complex parameter αJaLS has to be determined in the fit. This amplitude is employed
for each L,S combination possible between the two daughter particles of the former
mother resonance.
Exemplary, the process e+e− → φKK̄ with a subsequent φ→ K+K− decay is investigated.
Assuming only resonances in the KK̄ system, the full decay amplitude can be written as

A =
∑

λe+e−=−1,1

∣∣∣∣∣∣
∑

R

∑
λR

∑
λφ

∑
L

∑
S

√
2L+ 1

4π ·D1∗
λe+e− ,λR−λφ(ϕR, θR, 0)

· 〈L, 0;S,λR − λφ|1,λR − λφ〉 · 〈JR,λR; 1,−λφ|S,λR − λφ〉 · α1
LS ·BL(p)

·
√

2JR + 1
4π ·DJR∗

λR,0(ϕK, θK, 0) · 〈JR, 0; 0, 0|JR, 0〉 · αJRJR0 · F̃JR,R

·
√

3
4π ·D

1∗
λφ,0(ϕK+ , θK+ , 0) · 〈1, 0; 0, 0|1, 0〉 · α1

10 · F̃1,φ

)∣∣∣∣∣
2

. (2.128)

In Equation (2.128), λe+e− denotes the helicity of the e+e− initial state, which is due to
the annihilation into a virtual photon equal to -1 or 1. R denotes a resonance in the KK̄
system and JR as well as λR its total spin and helicity, respectively. λφ is the helicity of
the φ meson. The sum over R runs through all resonances incorporated into the specific
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model. These may be the scalar isoscalar resonances listed in the PDG [56]. The sums
over λR and λφ run from −JR to JR and −1 to 1, respectively. L and S are the orbital
angular momentum and spin of the φ − R system from above. Since kaons do not have
spin, for both fJ → KK̄ and φ → K+K− decays the spin of the kaon system necessarily
is zero. Hence, the orbital angular momentum between the two kaons is equal to the
total spin J of the mother particle. While the index K denotes the kaon coming from the
resonance R, the index K+ denotes the K+ from the decay of the φ meson. The values
of Jφ = 1 and JK = JK+ = 0 have already been inserted in Equation (2.128).
The functions F̃JR,R and F̃1,φ contain the whole dynamics of the resonances R and
φ. They also include the barrier factors and thus additionally depend on the angular
momentum between their daughter particles given by JR and 1, respectively. Since only
the product α1

LS · αJRJR0 · α1
10 can be determined in the fit, the factors αJRJR0 and α1

10
describing the decay strength and phase of the decays fJ → KK̄ and φ → K+K− can be
fixed to 1 + i · 0.
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The analyses performed in this work are based on data at center-of-mass energies between
√
s = 3.7730−4.7008 GeV collected in e+e− annihilations with the Beijing Spectrometer

(BESIII) operating at the Beijing Electron-Positron Collider II (BEPCII). In this section,
the accelerator, the detector components as well as the trigger system used for the
acquisition of tremendous amounts of data are presented. While BESIII was initially
designed to meet the current physics program [153], several detector upgrades are planned
and partially already realized in order to do so also for the future program [200].

3.1. BEPCII Accelerator

BEPCII is a symmetric double-ring e+e− collider which serves the purpose of both high-
energy physics and synchrotron radiation, designed to provide a peak luminosity of
1 · 1033 cm−2s−1 at a beam energy of 1.89 GeV corresponding to the center-of-mass energy
of the ψ(2S). Before being injected into two separate storage rings, both electrons and
positrons are pre-accelerated up to an energy of Einj = 2.5 GeV by a linear accelerator
with a length of 202 m [201]. The beams are circulating at a design beam current of
910 mA with 93 bunches per beam. Inside the BESIII detector they are brought to collision
under a small angle of 2×11 mrad at a well-defined interaction point (IP). The two major
upgrades of BEPCII in past years were the increase of the maximum beam energy up to
2.5 GeV and the opportunity for a top-up injection mode, which is a highly efficient
operation scheme for the accelerator providing a nearly constant beam current as well
as increased integrated luminosity [200,202]. Figure 3.1 gives an overview of the BEPCII
facility and a summary of the operational parameters is listed in Table 3.1.

3.2. BESIII Experiment

The BESIII detector is designed to suffice the physics requirements as well as the technical
requirements for a high luminosity, multi-bunch collider [200]. It consists of four sub-
detector systems, covering 93% of 4π solid angle: A small-cell, helium based (60 %
He, 40 % C3H8) Multilayer Drift Chamber (MDC) surrounded by a solenoid magnet
that provides a 1 T magnetic field within the tracking volume, a Time-of-Flight system
(TOF) based on plastic scintillators, an Electromagnetic Calorimeter (EMC) to measure
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photons and the Muon Counter (MUC) to effectively distinguish muons from charged
pions and protons. Since two particles with identical mass and opposite momentum
are brought to collision, the center-of-mass system of the e+e− pair is approximately
at rest. Therefore, the sub-detector systems are built cylindrically symmetric around
the beam axis with the interaction point in the center. By combining the information
from all detector components, an excellent resolution as well as particle identification is
achieved, enabling high accuracy measurements with the BESIII experiment. Figure 3.2
shows a schematic drawing of the BESIII detector and its components. In the following,
an overview of each sub-detector system is given. For a more detailed review we refer to
the design and construction report [205] as well as to the future physics program [200]
by the BESIII collaboration.

3.2.1. Multilayer Drift Chamber (MDC)

Particles which are produced in e+e− annihilations and penetrating the beryllium beam
pipe have to traverse the innermost detector system, the MDC. This cylindrical wire drift
chamber is used to measure the momentum and energy of electrically charged particles
very precisely by measuring points along its trajectory in a well-defined magnetic field
of 1 T as well as the particle type by measuring the specific energy deposit dE/dx in
the chamber. The MDC consists of inner and outer chambers without any intervening
wall, sharing a common gas volume. Thus, a potential major source of multiple scattering
is eliminated. As a main constraint on the momentum resolution, multiple scattering is
further minimized by the use of thin gold-plated aluminum field wires with a diameter
of 110 µm for field shaping and a specific helium-based gas mixture of helium (60 %)
and propane C3H8 (40 %) with a radiation length of 550 m. The single wire position

Table 3.1.: Relevant operational parameters of BEPCII [201].

Parameter Unit BEPCII
Center-of-mass energy GeV 2 – 5.0
Circumference m 237.5
Peak luminosity (at 2× 1.89 GeV) cm−2s−1 ∼ 1033

Number of bunches 2× 93
Beam current A 2× 0.91
Bunch spacing m/ns 2.4/8
Bunch length σz cm 1.5
Bunch size (σx × σy) µm× µm ∼ 380× 5.7
Relative energy spread 5 · 10−4

Crossing angle mrad ±11
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Figure 3.1.: Pictures of the BESIII and BEPCII facilities. Top left: Bird view on the facilities.
Top right: The linear accelerator. Bottom left: The two storage rings. Bottom right: Front
view of the BESIII detector. Images are taken from [203,204].

resolution is expected to be∼ 130 µm in rϕ plane and∼ 2 mm in z direction, which gives a
momentum resolution of σp/p < 0.5 % at 1 GeV/c. Ions and electrons start drifting within
the electric field and produce electric signals at the corresponding sense wires which are
made of gold-plated tungsten-rhenium with a diameter of 25 µm. They are arranged with
alternating orientations to allow for a three-dimensional track reconstruction.
Technically, the chamber has an inner radius of 59 mm, an outer radius of 810 mm and
a maximum length of 2.582 m. In order to place the focusing quadrupole as close as
possible to the IP, the end plates of the chamber have a stepped conical shape with an
achieved minimal polar angle coverage of | cosϑ| ≤ 0.83 and a solid angle coverage of
∆Ω/4π = 93 %. The chamber is divided into 43 sense wire layers of small drift cells,
containing a total of 6796 sense wires and 21844 additional field wires [205].
With the measured curvature in the magnetic field and the energy loss dE/dx of a
charged track a first particle identification (PID) can be performed. The normalized
pulse height, which is proportional to the energy loss of incident particles, is a function
of βγ = p/m, with p and m being the momentum and mass of a charged particle,
respectively [206]. These include electrons e±, muons µ±, pions π±, kaons K± and protons
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p or antiprotons p̄, which are considered stable when traversing the MDC. Using dE/dx
pulse heights, protons can be clearly separated from all other particles up to a momentum
of ∼ 1 GeV/c. A well e/π separation is achieved above 0.4 GeV/c, whereas a 3σ π/K
separation is achieved up to 0.6 GeV/c. Both leptons e−,µ and pions π can not be well
separated around 0.2 GeV/c [206]. In order to improve the PID of the BESIII detector,
the information of MDC are married to the one from the TOF system as described in

Figure 3.2.: Schematic drawing of the BESIII detector and its subdetector components. Red:
Multilayer drift chamber. Orange: Time-of-flight system. Purple: Electromagnetic calorimeter.
Green: Solenoid magnet. Blue: Muon counter. The beam line goes horizontally through the
detector in z-direction. The interaction point is situated at the geometrical center of the detector.
Image edited from its original version [205].
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the next section.
Aging problems due to beam-induced background have caused the cell gains of the inner
chamber to drop about 40% [207], leading to a degradation of the spatial resolution and
reconstruction efficiency. Therefore, a Cylindrical Gas Electron Multiplier (CGEM) has
been suggested as one option among other for an upgrade. The main advantages of a
CGEM are a high counting rate capability as well as a low sensitivity to aging [200].
Many studies have to be performed in order to test if the CGEM can reach the required
performance so that the MDC still meets the future physics program. The current status
and development details can be found in [200,208].

3.2.2. Time-of-Flight System (TOF)

The TOF system, made up of plastic scintillator bars and read out by fine-mesh
photomultiplier tubes directly attached to the two end faces of the bars, is mounted
directly between the MDC and the EMC. It is composed of a barrel part and two endcaps,
measuring the flight time of charged particles in order to improve the PID efficiency. The
barrel part consists of two layers, each with 88 plastic scintillation bars of 2.3 m length
and a trapezoidal cross section with a thickness of 50 mm. The two endcaps contain only
a single layer of 48 fan-shaped scintillation counters, 480 mm in length and 50 mm thick.
They are read out by a single photomultiplier tube attached to the end of each segment.
While the barrel part covers a polar angle range of | cosϑ| < 0.83, the endcaps cover the
polar angle regions with 0.85 < | cosϑ| < 0.95. Thus, a small acceptance gap exists, due
to the needed space for the mechanical support structure of the MDC. Achieved time
resolutions in the barrel and end cap regions are σt ≈ 100 ps and σt ≈ 110 ps, respectively.
They mainly depend on the intrinsic TOF time resolution caused by the characteristics
of the scintillator and the photomultiplier as well as time resolution and jitter in the
readout electronics [153].
As mentioned in the previous section, TOF measurements enable PID. The mass m of a
charged particle can be calculated using the velocity β [206] by

m2 = p2 · 1− β2

β2 with β = L

ct
, (3.1)

with t being the measured time-of-flight, p being the momentum of the charged particle
measured in the MDC with corresponding flight path length L and c being the speed of
light in vacuum. Note that the start time can be determined from reconstructed tracks
of charged particles in the MDC [209]. A 2σ K/π separation is achieved for particle
momenta of up to 0.9 GeV/c [206]. However, the PID performance strongly relies on the
time resolution.
In order to even improve the capability of PID of the BESIII experiment, the endcaps were
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upgraded with a Multi-gap Resistive Plate Chambers technology (MRPC), yielding an
overall time resolution for pions with momentum around 0.8 GeV/c of about 65 ps. For a
detailed overview of the MRPC see [210].

3.2.3. Electromagnetic Calorimeter (EMC)

The EMC is the third and outermost sub-detector system surrounded by the solenoid
magnet. It allows the energy and direction of flight of incoming particles to be measured.
While charged particles emit energy in the form of photons as radiation, those from the IP
or from decays of short-lived resonances such as π0 and η are measured directly. Due to the
many sources the photons may come from, the EMC has to cover a wide energy range from
∼ 20 MeV up to 2.3 GeV. This is achieved with 6240 thallium doped cesium iodide CsI(Tl)
crystals. Each crystal has a length of 28 cm, which corresponds to 15.1 radiation lengths
X0 of CsI. Front and rear faces have a typical size of 5.2 cm× 5.2 cm to 6.4 cm× 6.4 cm,
respectively. Similar to the TOF, the EMC is divided into a cylindrical barrel part and
two endcaps. A total of 5280 crystals arranged in 44 layers make up the barrel part and
each endcap is composed of 480 crystals arranged in 6 layers. All crystals are slightly
tilted by ∼ 1.5◦, pointing to a region ±10 cm off the interaction point to avoid missing
photons that could pass exactly between two crystals. The EMC polar angle coverage
of the barrel and endcaps is | cosϑ| < 0.82 and 0.83 < | cosϑ| < 0.93, respectively. The
expected energy and spatial resolutions are σE/E ≤ 2.5 % and σz ≤ 0.6 cm at a photon
energy of 1 GeV, respectively [206].
Not only the energy deposition, but also the shape of the shower produced in the EMC
allow for PID. While muons and pions lose almost no energy passing through the EMC,
electrons and positrons are stopped completely and deposit all of their energy, thus
showing a ratio of deposit energy to the track momentum ∆E/p which is approximately
unity. However, the shape of the shower can be characterized by the energies Eseed,E3×3
and E5×5, denoting the energy deposit in the central crystal, in the central 3× 3 crystal
array and in the central 5 × 5 crystal array, respectively. Moreover, the second-moment
S is defined as [206]

S =
∑
iEi · d2

i∑
iEi

, (3.2)

with Ei being the energy deposit in the i-th crystal and di being the distance between the
i-th crystal and the center position of the reconstructed shower. The ratios Eseed/E3×3
and E3×3/E5×5 as well as S can be used as additional input for PID at BESIII.

3.2.4. Muon Counter (MUC)

The muon counter is the only sub-detector system which is mounted outside the coil
of the superconducting solenoid. It allows distinguishing between muons and pions by
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exploiting the feature of muons to penetrate large amounts of heavy material, while
pions tend to be stopped either in the EMC or the coil of the superconducting solenoid.
Both pions and muons produce almost the same specific energy loss and time-of-flight
signals due to the proximity of their masses as well as their equal charges. Hence, using
only information from the inner detector systems would not allow for a µ/π separation.
Therefore, the magnetic flux return yoke has been instrumented with Resistive Plate
Counters (RPC). The barrel part is organized into octanes, each of which consists of
nine layers. Endcaps include eight layers of RPC modules, organized into quadrants. The
full solid angle coverage amounts to ∼ 89 %. The active detector volume is filled with a gas
mixture of Argon Ar, Tetrafluoroethane C2F4H2 and n-Butan C4H10 (50 %/42 %/8 %),
providing an average single gap RPC efficiency of 96 % at a working voltage of 8 kV and
a dark current of less than 1 µA/m2. Investigating the penetration depth for muons and
pions, a clear µ/π separation is achieved at a cut-off length of ∼ 4 cm [206].

3.2.5. Trigger System

The trigger system is required to select physics events with a high efficiency while
simultaneously suppressing cosmic ray and beam related backgrounds. It is composed
of a two-stage trigger. The first trigger (L1 trigger) is realized as a hardware trigger
utilizing field-programmable gate array (FPGA) driven front-end boards. Once a signal
is accepted by the L1 trigger logic, the complete readout buffer is transmitted to an online
event filter. The second trigger level (L3 trigger) is a software event filter, further reducing
the background rate based on various event filters, such as MDC track finding and EMC
cluster shaping algorithms. After an event is accepted, it is permanently stored to disk
with approximately 42 Mb/s during normal operation, which corresponds to an event
rate of about 2 kHz at the mass of the J/ψ. The expected event as well as background
rates after both the L1 and L3 triggers are shown in Table 3.2.

Table 3.2.: Expected event and background rates of the BESIII trigger system at a center-of-mass
energy corresponding to the J/ψ mass before and after the L1 and L3 triggers. Values are taken
from [205].

Processes Event rate (kHz) After L1 (kHz) After L3 (kHz)
Physics 2 2 2
Bhabha 0.8 Pre-scaled Pre-scaled
Cosmic ray < 2 ∼ 0.2 ∼ 0.1
Beam background > 104 < 2 < 1
Total > 104 4 3
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3.3. BESIII Data Sets

In recent years, BESIII have accumulated several high statistics data sets in order to
cover its physics programs [153, 200]. Besides the world’s largest data set at the J/ψ
resonance containing about ten billion of events for precision studies of light hadrons, a
large data sample at the ψ(2S) resonance containing about three billion of events was
taken for detailed studies of charmonium transitions and decay studies of non-vector
charmonia. Additionally, a large amount of high luminosity data sets at various center-
of-mass energies between

√
s = 3.7 GeV and

√
s = 5.0 GeV enable dedicated studies of

exotic charmonia, in the following called XYZ data. The BESIII experiment is therefore
the world leading experiment in the study of exotic particles in the charmonium region
thanks to the ability to directly produce them in large numbers, with multiple important
contributions to the field of charmonium spectroscopy as mentioned in Subsection 2.3.4.
Figure 3.3 summarizes the current data available at BESIII above 3.7 GeV.
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Figure 3.3.: Luminosities of the high luminosity BESIII XYZ data sets at center-of-mass energies
above 3.7 GeV. Green: Data sets used in this work. Purple: Recently taken data sets, but not
finally calibrated yet. Gray: Low luminosity scan data sets. Values are taken from [211–213].

Since this work aims for both the search for couplings of exotic charmonia ψ to light
hadron final states and the investigation of the scalar isoscalar sector, the data at the
ψ(2S) resonance as well as the XYZ data are used, with the latter including a total
integrated luminosity L of 22.7 fb−1 measured based on the Bhabha scattering process
e+e− → (γ)e+e− [214].
All data as well as Monte Carlo (MC) simulations are reconstructed and analyzed in
the object-oriented BESIII Offline Software System (BOSS) [215], which is based on
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the GAUDI framework [216]. It provides tools for event and detector simulation, data
processing as well as physics analysis. While the detector simulation is realized using the
GEANT4-based [217] simulation software BOOST (BESIII Object-Oriented Simulation
Tool) [218], including a geometric description of the BESIII detector, its response as well
as performance and running conditions, the MC generator software package KKMC [219]
is used for event generation. It is constructed in the framework of BesEvtGen [220], an
adaptation of the EvtGen [221] package, allowing to precisely calculate correction factors
for initial-state radiation (ISR) and vacuum polarization (VP) factors as well as to obtain
efficiencies for the processes under investigation.
Typically, data events are not distributed evenly in phase space. In order to allow for a
proper efficiency correction using MC generated events, a partial wave analysis (PWA)
is carried out which uses signal MC samples containing evenly distributed phase space
events as input to obtain a new, weighted signal MC sample as an effective description of
data. The theoretical basis was already discussed in Sections 2.4 and 2.5 and its practical
application is shown in Chapter 5.
Furthermore, the so-called inclusive MC sample at

√
s = 4.178 GeV provided by the

BESIII collaboration is used for background studies. To minimize statistical uncertainties,
it contains an equivalent integrated luminosity of about 40 times the data luminosity,
including open charm processes, continuum production of hadrons, QED and initial-state
radiation processes. The branching fractions of all known decay modes are set to world
average values from the Particle Data Group (PDG) [56] and are generated with EvtGen
[221, 222]. The remaining unmeasured decay modes are generated by LUNDCHARM
[223–226]. Note that for the production of resonances in EvtGen a relativistic Breit-
Wigner according to Equation (2.87) is used as its lineshape.
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4. Event Selection

The data sets used in this work require a pre-selection due to the tremendous amount
of events accumulated with state of the art high-energy physics experiments like BESIII.
Standardized selection conditions for charged tracks and photon candidates, so-called
initial event selection criteria, will be presented in the following. Charged tracks are
reconstructed with a track fitting algorithm based on the Kalman filter method [227]
and are combined with the photon candidates to one of the analyzed final states
K+K−K+K−, K+K−K0

SK0
S , pp̄π+π−η and pp̄π+π−γ if satisfying the aforementioned initial

event selection criteria.

4.1. Charged Track Selection

Particle identification In a first step, the particle identification system (PID) of
BESIII [153,206] assigns a probability to each measured charged track for being a charged
particle of speciesH ∈ {e±,µ±,π±, K±, p, p̄}. Since the PID capabilities are quite different
for each sub-detector and for each momentum range, it is necessary to combine the
available information in the most optimal way in order to improve the PID performance.
In general, the response of a detector to each particle species is given by a probability
density function (PDF) P(x; p,H), which describes the probability that a particle of
the aforementioned species leaves a signature x described by a vector of measurements
(dE/dx, t,m2, ∆E/p, . . . ). P(x; p,H)dx is the probability for the detector (element) to
respond to a track of momentum p and type H with a measurement in the range (x,x+
dx) and consequently

∫ P(x; p,H)dx = 1. Note that x may describe a single or several
measurements in one or several detectors which may be correlated with respect to a single
hypothesis (e.g. ∆E/p and the shower shape of electrons in the EMC) or to different
detectors (e.g. the energy deposited in the EMC and the muon chambers by charged
pions). While in many cases these correlations are reasonably small and may be neglected,
they need sophisticated and powerful algorithms such as the likelihood method [153] to
take them into account if necessary. In case of highly correlated measurements, near-
optimal discrimination variables may be constructed using neural networks [228]. They
can be applied to the BESIII PID algorithm and are implemented in ROOT [229,230] as a
multilayer perceptron (MLP) neural network.
In this work however, a χ2(i) value for each sub-detector system is assigned to each
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4. Event Selection

charged track in an event for being a particle of the type Hi. The χ2(i) values are added
in quadrature for each sub-detector system used for PID according to

χ2
PID(i) = χ2

dE/dx(i) + χTOF(i), (4.1)

with NDFPID = 2 being the number of degrees of freedom in the χ2
PID(i) determination.

The probability of a charged track for being a particle of type Hi is calculated as

ProbPID(i) = Prob(χ2
PID(i),NDFPID). (4.2)

A minimal combined probability of 10−5 is required for pions, kaons and protons to be
identified in order to reduce background with tracks, where the PID system is unable to
assign a clear particle hypothesis H.
The number of charged tracks measured in each event is limited to two in addition to
the number of charged particles in the final state. Therefore, combinations can be formed
that are to be considered valid and used for further analysis if they satisfy the following
energy and momentum balance:∣∣∣∣∣

(
n∑
i=1

Ei

)
− Einitial

∣∣∣∣∣ < 0.25 GeV,
∣∣∣∣∣
(

n∑
i=1

~pi

)
− ~pinitial

∣∣∣∣∣ < 0.25 GeV/c , (4.3)

with Ei and ~pi being the energy and the momentum of track i, and Einitial and ~pinitial
being the initial energy and the initial momentum right after the collision of the e+e−

system, respectively. Furthermore, in the case of e+e− → φKK̄ the invariant mass
m(K+K−) of at least one combination of an oppositely charged kaon pair has to satisfy
2mK ≤ m(K+K−) < 1.5 GeV/c2 in the considered event, with 2mK being the nominal
mass of two kaons. Thereby, a first φ→ K+K− selection is performed.

Vertex fit Most of the hadronic resonances produced right after the annihilation of
the e+e− pair as well as during the subsequent decay processes leading to the investigated
final states decay via the strong interaction. Hence, they have a very short lifetime which
results in the assumption of a common point of origin of all charged tracks, the so-
called initial (primary) vertex. All charged tracks coming from this initial vertex are
constrained by a vertex fit to a helix model, varying their reconstructed track parameters
within its measured uncertainties. This fit contains five parameters ~a = (dρ,φ0,κ, dz,λ),
with dρ being the signed distance on the transverse x − y plane from the helix center
to the interaction point (pivot), φ0 being the azimuthal angle specifying the interaction
point with respect to the helix center, κ = 1/Pt being the reciprocal of the transverse
momentum Pt (the sign of κ represents the charge of the track), dz being the signed
distance of the helix center from the interaction point in z direction and tanλ being the
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slope of the track with λ being the dip angle [231]. Their geometrical meaning is illustrated
in Figure 4.1. Hence, a charged particle in a uniform magnetic field is represented by a
helical trajectory and its position along this helix is given by

x = x0 + dρcosφ0 + α

κ
(cosφ0 − cos (φ0 + φ))

y = y0 + dρsinφ0 + α

κ
(sinφ0 − sin (φ0 + φ))

z = z0 + dz −
α

κ
tanλ · φ , (4.4)

with α = 1/cB being the magnetic field constant and φ being the turning angle and
determines the location. Commonly, the helix parameters ~a are defined at the interaction
point ~x0 = (x0, y0, z0)T . Further, the helix center in x− y plane is

xc = x0 +
(
dρ + α

κ

)
cosφ0

yc = y0 +
(
dρ + α

κ

)
sinφ0 (4.5)

and the signed radius of the circle is given by ρ = α/κ. Consequently, the track momentum
can be expressed as Pt = 1/|κ| [231]. For the actual primary vertex reconstruction all

Figure 4.1.: Schematic representation of the helix parametrization for negative (left) and
positive (right) charged tracks. The vectors are defined by ~x = ~x0 + (dρ + ρ) · ~w − ρ · ~v, with
~w = (cosφ0, sinφ0)T and ~v = (cos (φ0 + φ), sin (φ0 + φ))T .

reconstructed tracks are used as input. Here, first lose selection criteria are applied:
Charged tracks are required to be measured within | cosϑ| < 0.93 with θ being the polar
angle and its track parameters have to satisfy |dz| < 20 cm with dz being the coordinate
of the closest point approaching the origin along the z-axis [232]. Accepted tracks are
regarded as the seed tracks for primary vertex fitting. In a next step, the pair of tracks
with the smallest distance is used as the first two candidates for vertex fitting, and the
remaining tracks are added to the pre-determined vertex one after the other. During
the fit procedure, the vertex position, the track helix parameters and therefore the 3-
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4. Event Selection

momentum vector are continuously updated. The 3-position vector is taken as the value
for the vertex position in the last Kalman filter step [232]. The χ2 of the primary vertex
reconstruction is set in order to minimize the distance d between the common vertex,
i.e., the point with the smallest distance to all charged particle trajectories, and the run
dependent interaction point (see Figure 4.2). After vertex fitting, selection conditions for

IP

𝒗

𝒅

Figure 4.2.: Illustration of the trajectories of two charged tracks with common vertex (purple
box). Its distance d to the run dependent interaction point (IP) is minimized in the vertex fit.
Constraints on the fit result are set with respect to the point of the closest approach v to the run
dependent interaction point according to Equation (4.6).

the point of the closest approach v = (vx, vy, vz) to the run dependent interaction point
are set to

vr =
√
v2
x + v2

y < 1 cm ,

|vz| < 10 cm . (4.6)

K0
S mesons are reconstructed via their decay into two charged pions. This weak decay with

a mean lifetime of τ = (8.954±0.004) ·10−11 s [56] leads to a second vertex. Hence, for the
process e+e− → φK0

SK0
S an additional secondary vertex fit is performed, reconstructing

two tracks of oppositely charged pions to a common vertex where a possible K0
S decay

could have happened. The only requirement is that the fit converges.
In case of e+e− → pp̄η′, selection conditions on photon candidates are applied before the
kinematic fit is performed. The photon candidate selections are discussed in the following.

4.2. Photon Candidate Selection

When a photon hits the EMC and interacts with one or more CsI(Tl) crystals, it is
transformed into a e+e− pair by γ-conversion. This e+e− pair emits further photons
through bremsstrahlung, leading to an alternating continuation of these processes. By
this, an electromagnetic shower is produced, which develops laterally and longitudinally
as well as loses energy in one or several connected crystals.
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4.3. Kinematic Fit

A cluster finding algorithm identifies these geometrically related crystals and combines
them to clusters [233]. Note that a cluster can be the result of one or more showers.
Hence, each shower is recognized by a seed, which is the local maxima of energy deposit
among its neighbors. For example, a high momentum π0 meson is likely to create a cluster
containing two showers. In that case, every crystal involved will be assigned a weight from
each seed and thus contributes a certain shared energy to each shower. The position of
the primary hit is calculated as the weighted mean [233]

xc =
∑
iWi(Ei)xi∑
iWi(Ei)

, (4.7)

with the weight Wi(Ei) being a function of energy deposited in the ith crystal and xi
being the coordinate of the crystal center at the front face. The simplest assumption is
a linear weighting function Wi(Ei) = Ei. A minimal energy deposit ∆E is required in
order to suppress background photons in the EMC

∆E > 25 MeV in the barrel region |cos ϑ| < 0.8 ,

∆E > 50 MeV in the endcap regions 0.86 < |cos ϑ| < 0.92 .

The higher threshold for photon detection in the endcap regions is set to reduce low-
energetic photons from beam backgrounds. Further, a cut on the timing information T
from the EMC with respect to the event start time further suppresses electronic noise
and energy deposits unrelated to the event

0 ns ≤ T ≤ 700 ns .

Additionally, a cut is applied on the angle between straight lines from the vertex to the
position of the shower and the extrapolated position of the closest charged track t in the
EMC

](t,γ) > 10◦ .

4.3. Kinematic Fit

Tracks that survive the previously described selection conditions are combined to different
final states, as depicted in Table 4.1. While K0

S mesons are reconstructed via their decay
into two charged pions, η mesons are reconstructed via their subsequent electromagnetic
decays into two photons. In case of finale states involving photons, the number of photon
candidates is only restricted to being greater than or equal to the number of photons in
the final state due to noise in the EMC.
For each combination, a kinematic fit is performed in order to improve the mass and
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momentum resolution of the measured quantities. Several kinematic constraints r can
be applied, such as the conservation of energy and momentum (four constraints) in the
initial production or additional mass constraints on charged pion (constrained to the K0

S

mass) or photon pairs (constrained to the η mass). The fitting algorithm is based on the
Lagrange multiplier method [234] and uses the MDC information for charged tracks and
EMC information for neutral particles. It is assumed that the constraint equations can
be linearized and summarized in two matrices D and d. The r constraint functions can
be written as [153]

H(α) ≡ 0, where H = (H1H2 . . . Hr) , (4.8)

with α being a column vector representing the parameters for a set of n tracks. α0 are
the unconstrained values of the initial track parameters after vertex fitting and before
kinematic fitting. The constraint functions can be expanded around some point αA,
yielding the linearized equations

0 = ∂H(αA)
∂α

(α− αA) +H(αA) = Dδα+ d , (4.9)

with δα = α− αA and thus Dij = ∂Hi
∂αj

and di = Hi(αA). Further, the χ2 can be written
as a sum of two terms [153]

χ2 = (α− α0)TV −1
α0 (α− α0) + 2λT (Dδα+ d) , (4.10)

with λ being a vector of r unknown Lagrange multipliers. The final equations after
minimizing the χ2 with respect to α and λ can be written as

α = α0 − Vα0
DTλ = 0 (4.11)

λ = VD(Dδα0 + d) (4.12)

Vα = Vα0
− Vα0

DTVDDVα0
, (4.13)

with VD = (DVα0
DT )−1 being the r × r constraint covariance matrix and

χ2 = λTV −1
D λ = λT (Dδα0 + d) (4.14)

being the final χ2 expression. In order to perform kinematic fitting, it is necessary to
choose a track representation that uses physically meaningful quantities. Typically, the so-
called four-parameterW format is adopted, using the four-momentum α = (px, py, pz,E).
Here, the aforementioned five helix parameters are used for charged tracks in MDC track
fitting, whereas for photon candidates the parameters used in EMC reconstruction serves
as input [234].
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4.3. Kinematic Fit

Table 4.1.: Branching fractions Br [56] and reconstruction patterns of the analyzed final states
as well as the number of additional mass constraints r used in the kinematic fit.

Mode i Br (Γi/Γ) Np Np̄ NK+ NK− Nπ+ Nπ− Nγ r

e+e− → φKK̄
φK+K− 0 0 2 2 0 0 0 0
φK0

SK0
S 0 0 1 1 2 2 0 2
φ→ K+K− (49.2± 0.5) %
K0
S → π+π− (23.6± 0.2) %

e+e− → pp̄η′

pp̄ηπ+π− 1 1 0 0 1 1 ≥ 2 1
pp̄γπ+π− 1 1 0 0 1 1 ≥ 1 0

η′ → ηπ+π− (42.6± 0.7) %
η′ → γπ+π− (29.5± 0.4) %
η→ γγ (39.4± 0.2) %

The most common kinematic constraint in high energy physics is the energy-momentum
conservation (four-momentum). It states that the sum of four-vectors of all final-state
particles must be equal to the four-vector of the initial state. Additional constraints used
in this analysis are invariant mass constraints, forcing several tracks to have an invariant
mass mc that satisfies E2 − p2

x − p2
y − p2

z −m2
c = 0, e.g. in decays such as K0

S → π+π− or
η→ γγ. In case of more than one combination in an event, the one yielding the smallest
χ2

NC value is kept for further analysis.
Another important validation of the kinematic fitting process is the study of so-called
pull distributions of the track parameters (a brief discussion of the Least-Squares method
and pulls is given in Appendix A.1). The pull of the ith-track parameter is defined as

(pull)i = αi − α0i√
(Vα0

)ii − (Vα)ii
. (4.15)

It is assumed that the pull distribution follows a Gaussian distribution with unit width
centered at x = 0. If a deviation is observed, proper correction parameters for the
covariance matrix of the helix parameters have to be determined. In this analysis the
values determined in [235] are used and implemented in the MC production. A detailed
description of how to extract correction parameters is given in [236].
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In this chapter, a lineshape study of the energy-dependent Born cross section σb for
the processes e+e− → φK+K− and e+e− → φK0

SK0
S is carried out in the search for

couplings of (exotic) vector charmonia to the investigated light hadron final states, using
the BESIII data sets accumulated at center-of-mass energies from

√
s = 3.7730 GeV to

√
s = 4.7008 GeV. The Born cross section, which is per definition the lowest order cross

section (see Section 5.4), is given by

σb(e+e− → φKK̄) = Nobs
L · (1 + δr) · (1 + δv) · ε · Br , (5.1)

with Nobs being the number of observed signal events in data, L being the integrated
luminosity (see Section 3.3), (1 + δr) and (1 + δv) being correction factors for initial
state radiation and vacuum polarization, respectively, ε being the detection efficiency
and Br being the product of the branching ratios of φ → K+K− and, if present, K0

S →
π+π− decays. The determination of these parameters required to calculate the Born
cross section is presented in the following sections including the study of their respective
statistical and systematic uncertainties.
After the initial event selection discussed in Chapter 4, also a reaction-dependent final
event selection is applied in order to identify all final state particles. While charged kaons
recoiling off the φ meson can be assumed as stable and can be measured directly with
the BESIII detector, K0

S mesons recoiling off the φ meson are reconstructed in their decay
K0
S → π+π− with Br(K0

S → π+π−) = (69.20± 0.05) % [56]. In order to identify the K0
S

mesons properly, a mass window is applied given by

|m(π+π−)−mK0
S ,PDG| < 12.0 MeV/c2 . (5.2)

Additionally, a flight significance L
σ with L and σ being the distance between the common

vertex of the π+π− pair and the primary vertex and its error, respectively, is defined.
Commonly, for both K0

S mesons L
σ > 2 is required [237].

As a light, short-lived meson, the φ meson is reconstructed in its decay φ → K+K−

with Br(φ → K+K−) = (49.2± 0.5) % [56]. φ meson candidates can be identified by
investigating the invariant mass spectra of their daughter particles after all selection
criteria as shown in Figure 5.1. A clear resonant structure is observed almost background
free at the nominal mass of the φ meson [56] in both final states. The number of observed
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5. Analysis of e+e− → φKK̄

signal events in data Nobs can be obtained by a fit to data, including individual functional
forms for the signal and background contributions, respectively, and integrating the signal
part. However, one has to ensure that no background processes are present which may
lead to resonant structures around the mass of the φ meson. Therefore, background
studies are performed in the next section.
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Figure 5.1.: Invariant mass spectrum of φ candidates for e+e− → φK+K− (left) and e+e− →
φK0

SK0
S (right) for the summed data set after all selection criteria. The green vertical lines

represent the world average value mφ = (1019.461± 0.016) MeV from the PDG [56]. A clear
resonant structure is observed almost background free at the mass of the φ meson in both final
states.

5.1. Background Studies

Using the inclusive MC sample at
√
s = 4.178 GeV, a proper analysis of reactions

contributing to both the signal and to the background events left after the aforementioned
selection criteria can be performed. The cross sections of reactions incorporated into this
inclusive MC sample were obtained from the PDG [56]. Since most of these processes are
poorly measured, if measured at all, the raw ratio of signal and background processes
does not necessarily match the observed data. Therefore, both signal and background
contributions are scaled separately using scale parameters determined by a fit to data.
The φ meson invariant mass spectra was chosen as the reference spectrum as shown in
Figure 5.2. An overall good agreement is observed, despite a deviation between the right
shoulder of the signal part of the inclusive MC sample (red) and the resonant structure
at the φ meson mass in data for m(K+K−) ∈ [1.03 GeV/c2, 1.10 GeV/c2]. The reason
for this is a lower and upper limit on the invariant mass of the φ meson on generator
level which was set by the BESIII collaboration. Also, the description of the recoiling
KK̄ invariant mass spectrum is lacking due to incomplete cross sections for processes
involving f0 and f2 mesons.
However, important information can be gained from the inclusive MC sample. An
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Figure 5.2.: Fit of the signal and background contributions extracted from the inclusive MC
sample to the invariant mass spectrum of φ candidates (left) and respective recoiling KK̄
invariant mass spectrum (right) for e+e− → φK+K− (top) and e+e− → φK0

SK0
S (bottom)

for
√
s = 4.178 GeV. Data (black dots with error bars), the signal contribution (red) as well as

main background contributions are shown.

overview of the surviving contributions is given in Table 5.1. In both final states, the
resonant structure observed at the φ meson mass fully relates to the signal processes
e+e− → φK+K− and e+e− → φK0

SK0
S while no peaking background is observed.

Additionally, the main background contributions lead to the same final state as the
signal, e.g. e+e− → f ′2(1525)(→ K+K−)K+K− or e+e− → K0

SK0
SK+K− where no φ

meson is involved. Hence, their kinematic χ2
NC value is equal to that of the signal

processes. A significant amount of background processes contributing in e+e− → φK+K−

comes from the misidentification of kaons as pions, e.g. in e+e− → (D∗− → (D̄0 →
K+π−)π−) + (D∗+ → (D̄0 → K−π+)π+). Due to the different masses of the K and π
mesons, the χ2

NC value of these processes is likely to be different compared to signal. The
signal significance with respect to these background processes, which lead to different

65



5. Analysis of e+e− → φKK̄

Table 5.1.: Inclusive MC events that survive the selection criteria identified as the K+K−K+K−
or K+K−K0

SK0
S final state. Green: Signal contributions. White: Background contributions. The

listed processes are sorted according to their yield. Processes with lower yields are denoted by
remaining. Note that the number of events is indicative, as the inclusive MC samples does not
accurately describe data.

Reaction Number of events
φ(→ K+K−)K+K− 63360
φ(→ K+K−)f ′2(1525)(→ K+K−) 8
f ′2(1525)(→ K+K−)K+K− 12077
K+K−K+K− 7107
(D∗− → (D̄0 → K+π−)π−) + (D∗+ → (D̄0 → K−π+)π+) 4380
(D∗0 → (D̄0 → K+π−)π0) + (D∗0 → (D̄0 → K−π+)π0) 3840
(D̄∗0 → (D̄0 → K+π−)π0) + (D0 → K−π+) 2918
(D̄0 → K+π−)π0) + (D∗0 → (D0 → K−π+)π0) 2862
sum of remaining 26363
φ(→ K+K−)K0

SK0
S 3730

K0
SK0

SK+K− 265
f ′2(1525)(→ K+K−)K0

SK0
S 246

f ′2(1525)(→ K0
SK0

S)K+K− 192
f0(980)(→ K+K−)K0

SK0
S 61

f0(1710)(→ K+K−)KK̄ 47
K−K0a2(1320)(→ K+K0) 42
sum of remaining 753

final states, can be maximized using the so-called figure of merit (FOM, see Figure 5.3).
It is defined as

f(χ2
cut) = S√

S +B
, (5.3)

with S and B being the scaled number of signal and background events left after a
selection condition on the χ2

NC value at χ2
cut, respectively. A maximum signal significance

is achieved for selection conditions of χ2
4C < 93 and χ2

6C < 227 for the processes e+e− →
φK+K− and e+e− → φK0

SK0
S , respectively.

5.2. Number of Observed Events

The remaining invariant mass distributions of the φ meson candidates are depicted in
Figure 5.4 after applying all selection criteria discussed in the previous sections. Since
no peaking background contributions are present around the φ meson mass, a fit to
data can be applied in order to extract the number of observed events Nobs for both
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Figure 5.3.: χ2
NC distributions (gray line) obtained using the inclusive MC sample at

√
s =

4.178 GeV with signal (red line) and background (blue line) contributions, as well as the resulting
FOM (green line) and data (black dots with error bars) for the processes e+e− → φK+K− (left)
and e+e− → φK0

SK0
S (right). The vertical dashed gray line indicates the selection condition on

the χ2
NC value of the kinematic fit.

final states. The signal fsig(x) is described using the Breit-Wigner function h(x) from
Equation (2.87) convolved with a Gaussian g(x) to account for the energy resolution of
the detector system

fsig(x) =
∫
h(x)g(x− τ)dτ , (5.4)

with x being the invariant mass of the φ meson candidates. The width of the Breit-
Wigner function is fixed to the world average value Γφ = (4.249± 0.013) MeV from the
PDG [56]. Background contributions of both the K+K−K+K− and K+K−K0

SK0
S final state

are described by a first order polynomial. A maximum likelihood fit is performed to the
sum of all 32 data samples in the XYZ regime from

√
s = 3.7730 GeV to

√
s = 4.7008 GeV

as shown in Figure 5.4. The nominal values for the mass mφ and the Gaussian widths
σK+K− and σK0

SK0
S
from the fit result are

σK+K− = 0.95 MeV

σK0
SK0

S
= 0.92 MeV

mφ = 1.019 79 GeV/c2 . (5.5)

Figure 5.4 also shows two colored regions. The green shaded box represents the signal
region in which the number of observed events Nobs is extracted. It contains 95 % of the
signal portion and is set symmetrically aroundmφ. In principle, this region can be chosen
arbitrarily (systematic studies can be found in Subsection 5.6.1), but should contain a
known percentage close to 100% of the signal component. The number of signal events
could instead not be determined in a fixed region defined by left and right bounds in
the invariant mass of the φ meson, because the same bounds in the accepted MC might
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Figure 5.4.: Invariant mass spectrum of φ candidates for e+e− → φK+K− (left) and e+e− →
φK0

SK0
S (right) for all data sets used. Data (black dots with error bars), a combined fit to data

(red), the signal and background contribution (solid green and blue dotted, respectively) as well
as signal regions to obtain the number of observed events Nobs and a global efficiency using a
partial wave analysis (green and gray shaded, respectively) can be seen.

not correspond to the same percentage of the total signal in data and MC due to, e.g.
possible differences in resolution.
The gray shaded box is set to

[
mφ − 0.01 GeV/c2,mφ + 0.01 GeV/c2

]
and represents the

signal events used for the partial wave analysis (PWA). This region is chosen in such a
way that the background portion is negligibly small in contrast to the signal. According
to the fit to the invariant mass distributions, the amount of background compared to
signal events in the blue region is approximately 6.64 % and 0.69 % for e+e− → φK+K−

and e+e− → φK0
SK0

S , respectively, and therefore can be safely neglected in the partial
wave analysis. Furthermore, for the φK0

SK0
S final state, the background component is

omitted in the following. In the case of significantly larger background portions, these
would have to be taken into account in the PWA. For example, sidebands can be defined
whose events are assigned negative weights. The assumption here is that the events in
the sidebands describe the background in the signal region sufficiently well. However,
since the φ meson is produced close to the K+K− threshold, no suitable left sideband
can be defined. Furthermore, due to its asymmetric lineshape, there is a long signal tail,
so that the right sideband could only be defined very far away from the nominal mass
of the φ meson. This means that the background in the signal range can no longer be
described sufficiently well. Another alternative would be to include the main background
reactions in the PWA model, e.g. e+e− → K+K−KK̄. However, in order to have sufficient
statistics close to the K+K− threshold in the accepted MC sample, a disproportionately
large number of events would have to be generated. After the PWA using the events in
the blue region, the solution can be extended to the region in which Nobs is obtained in
order to extract a weighted Monte Carlo sample as an effective and proper description

68



5.2. Number of Observed Events

of data to determine an efficiency correction for each data set.
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Figure 5.5.: Invariant mass spectrum of φ candidates for data (black dots with error bars)
at
√
s = 3.7730 GeV (left) and

√
s = 4.2776 GeV (right). A fit (red line) with a Breit-Wigner

function convolved with a Gaussian function as signal (green line) and a first-order polynomial as
background (dashed blue line) is applied. The green and gray shaded areas depict the signal regions
in which the number of observed events Nobs is extracted and for which a PWA is performed to
determine a global efficiency, respectively. Top: e+e− → φK+K−. Bottom: e+e− → φK0

SK0
S .

A maximum likelihood fit is performed for each data set individually with the mass
parameter in the Breit-Wigner function fixed to mφ from Equation (5.5), as shown in
Figure 5.5 exemplarily for the high statistics data sample at

√
s = 3.7730 GeV and the

small statistics data sample at
√
s = 4.2776 GeV. Fit results of all other data sets can be

found in Appendices A.3 and A.4. The number of signal eventsNobs in data is extracted by
integrating the signal part of the fit result. In order to account for asymmetric statistical
uncertainties due to Poisson statistics, a likelihood scan of Nobs is performed by fixing the
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5. Analysis of e+e− → φKK̄

signal amplitude to suitable values around its nominal value. The resulting distribution
can be described by an asymmetric Gaussian function

G(N) = 1√
2πσk

e
− (N−µ)2

2σ2
k with σk =

{
σL , N ≤ µ
σR , N > µ

, (5.6)

with µ being the mean (here Nobs) and σL and σR being the asymmetrical widths of
the Gaussian. Those widths correspond to the lower (σL) and upper (σR) statistical
uncertainty of Nobs. The fit results and fit parameters can be found in Figure 5.6
and Tables A.2 and A.4, respectively.
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Figure 5.6.: Fit results (green line) of the likelihood scans of the number of observed events
Nobs in the φ candidates invariant mass spectrum (black dots) at

√
s = 3.7730 GeV (left) and√

s = 4.2776 GeV (right). Top: e+e− → φK+K−. Bottom: e+e− → φK0
SK0

S .
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5.3. Efficiency

The efficiency ε can be defined according to

ε = Nacc
Ngen

, (5.7)

with Nacc and Ngen being the number of reconstructed and generated signal MC events,
respectively. In case of events that are not equally distributed over the full n-particle
phase-space, Equation (5.7) only holds if the signal MC sample properly reflects data
in all relevant coordinates ~x = {pφ, θφ,φφ, pKK̄, θKK̄,φKK̄, . . . }. Since its distribution is a
priori unknown, a partial wave analysis of the data is performed in order to re-weight the
signal MC sample. The principles of such analyses were already discussed in Sections 2.4
to 2.7.
Within the isobar model, the processes e+e− → γ∗ → φK+K− and e+e− → γ∗ → φK0

SK0
S

are decomposed into a sequence of two-body decays. Each is described in the helicity
formalism (see Section 2.7). The K0

S meson is treated as a stable particle. For the lineshape
of the φ meson, the signal MC simulations are employed that are used for normalization
in the partial wave analysis. Blatt-Weisskopf barrier factors according to [238] are used for
both the production γ∗ → φfJ and the two-body decays φ→ K+K− as well as fJ → KK̄.
The final model includes processes of the type e+e− → φfJ only, with fJ → K+K− or
fJ → K0

SK0
S . Due to limited statistics, the possible quantum numbers of the fJ resonances

are restricted to JPC = 0++ and JPC = 2++ in this work. The dynamical part of the
scalar isoscalar resonances are described by a K-matrix approach (see Subsection 2.5.4)
based on data up tom(KK̄) ≤ 1.9 GeV, incorporating the five channels ππ, KK̄,ηη,ηη′ and
4π with five fixed poles [239]. For higher invariant masses, an additional single JPC = 0++

resonance is included, while the JPC = 2++ contributions are described by four single
resonances. They are parametrized as relativistic Breit-Wigner amplitudes according to
Equation (2.87) with masses and widths as free parameters in the fit. No significant
contributions from processes of the type e+e− → KK∗ with K∗ → φK were found (see
Figures 5.9 and 5.10). Note that the aim of this partial wave analysis is only to describe
the data accurately enough to enable a proper determination of the efficiency. This is
why, as already mentioned previously in Section 5.1, the remaining background events
underneath the φ meson peak

(
|mφ,PDG −m(K+K−)| < 0.01 GeV/c2

)
are neglected in

the partial wave analysis. It is performed as an unbinned maximum likelihood fit using
the software package PAWIAN (Partial Wave Interactive Analysis) [240]. Details on
likelihood construction in PAWIAN can be found in [177,240,241].
A special comment has to be given regarding the φK0

SK0
S final state. Due to low statistics,

the fit is performed simultaneously over the energy range from
√
s = 3.8720 GeV to

√
s = 4.7008 GeV with all amplitudes fully constrained between the data sets apart from
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5. Analysis of e+e− → φKK̄

an overall scaling factor. In case of the data set at
√
s = 3.7730 GeV statistics allow for

a separate fit. The fit results at
√
s = 4.1784 GeV are displayed in Figures 5.9 and 5.10,

showing an overall good quality in all coordinates ~x.
Event weights w(~xj) can be obtained from the partial wave analysis for each energy
point as a function of the coordinates ~x in the n-particle phase-space. They are used to
determine the global efficiency ε as

ε =
∑Nacc
j=1 w(~xj)∑Ngen
j=1 w(~xj)

. (5.8)

Results are listed in Tables A.2 and A.4. The efficiencies calculated using the PWA are
compared to the PHSP values in Figure 5.7. In case of e+e− → φK+K−, the efficiencies
calculated using the PWA are generally higher compared to the one-dimensonal estimates.
The opposite behavior can be seen for e+e− → φK0

SK0
S . In order to understand these

results, the difference of the momentum distributions of the kaons recoiling off the φ
meson between the simple signal MC sample and the re-weighted MC sample using
the PWA result are investigated in Figure 5.8 at

√
s = 4.1784 GeV. According to the

PWA solution, a shift to higher momenta for e+e− → φK+K− and to lower momenta
for e+e− → φK0

SK0
S can be observed. Slow K0

S mesons result in lower reconstruction
efficiencies due to the reduced flight length and correspondingly decreasing resolution of
the secondary vertex.
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Figure 5.7.: Efficiencies for e+e− → φK+K− (left) and e+e− → φK0
SK0

S (right) calculated
using the PWA result (blue dots) and the signal MC simulation (red dots) for all data sets used
in this work.

It is important to note that these changes are nearly constant over the full energy range
and thus can not produce any unphysical structures in the resulting Born cross section.
Additionally, small fluctuations in the energy-dependence of the efficiency can be observed
for both the PWA and the PHSP case. This can be explained by the fact that the data
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5.3. Efficiency

sets used in this work were accumulated at different beam times and correspondingly with
different detector properties due to aging. Therefore, no exactly flat energy-dependence
can be expected a priori.
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Figure 5.8.: Difference of the momentum distributions of the KK̄ system recoiling off the φ
meson between the signal MC sample and the re-weighted MC sample using the PWA result at√
s = 4.1784 GeV for e+e− → φK+K− (left) and e+e− → φK0

SK0
S (right).
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Figure 5.9.: Fit results of the partial wave analysis for e+e− → φK+K− at
√
s = 4.1784 GeV.

Data (black dots with error bars), the total PWA projection (red solid line), the 0++ (blue solid
line) as well as the 2++ contributions (green solid line) are shown.
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Figure 5.10.: Fit results of the partial wave analysis for e+e− → φK0
SK0

S at
√
s = 4.1784 GeV.

Data (black dots with error bars), the total PWA projection (red solid line), the 0++ (blue solid
line) as well as the 2++ contributions (green solid line) are shown.
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5.4. Higher Order Correction Factors

In addition to the Born-level production, which describes the lowest order scattering
process, the initial state radiation (ISR) and the vacuum polarization (VP) processes
contribute to the observed hadronic cross sections of e+e− → φKK̄. ISR describes the
emission of one or more photons of either the electron or positron (or both) before
colliding at the interaction point, resulting in a reduced center-of-mass energy for this
event. Thus, the measured cross section for such processes involves the lineshape of the
Born cross section from the production threshold up to the nominal collision center-
of-mass energy due to ISR. The number of observed signal events has to be corrected
for this higher order scattering process to compare the results with those of theoretical
calculations. Note that one of the initial state leptons may reabsorb an ISR photon for
which a vertex correction is performed internally. Processes studied in this work at leading
order as well as three higher order contributions are shown in Figure 5.11.

Figure 5.11.: Schematic drawings of the main processes included in the measured cross section
for the reaction e+e− → φKK̄. From left to right: Born approximation, initial state radiation,
vertex smearing and vacuum polarization.

At BESIII, the KKMC generator [219] is used in combination with BesEvtGen [220] to
generate Monte Carlo events for e+e− annihilation processes. While KKMC is used to
generate the intermediate states by considering the ISR and the beam energy spread,
BesEvtGen is used to generate the final states of the intermediate state decays including
FSR effects. As mentioned above, the ISR correction factors depend on the lineshape
of the observed hadronic cross section. Thus, an iterative approach as described in the
following is used to obtain these correction factors.
The cross section can be corrected to a cross section without ISR contributions, the
so-called dressed cross section, given by

σdressed = σobs
(1 + δr)

= Nobs
L · (1 + δr) · ε · Br

. (5.9)

This can be further corrected to the Born cross section σb = σdressed
(1+δv) as shown in

Equation (5.1). ISR correction factors and the efficiency are obtained from ISR events
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5.5. Born Cross Sections

generated with KKMC. In order to generate these events, the lineshape of the energy-
dependent Born cross section is used as input. For the first iteration a flat lineshape is
used as a starting point. Within the simulation procedure, the dressed cross section is
roughly obtained from Equation (5.9), re-evaluating the efficiency and the ISR correction
factors. The resulting cross section is used as input for the next iteration until the ISR-
dependent quantity β = ε ·(1+δv) converges. Convergence is achieved if the ratio βi/βi−1
of two successive iterations is equal to one within its statistical uncertainties. During the
iterative procedure, the efficiency is obtained from the weighted MC sample extracted
from the partial wave analysis result.
Vacuum polarization processes describe the spontaneous production of a fermion-
antifermion pair from the virtual photon, which then annihilates again into a new virtual
photon. It can be described as a small correction to the leading order process given by

(1 + δv) = 1
|1−∏(s)|2 , (5.10)

with ∏(s) being the vacuum polarization tensor depending on the available center-
of-mass energy squared s. Correction factors for VP, including leptonic and hadronic
contributions, are calculated with the alphaQED software package [242] with an accuracy
of 0.5 %.

5.5. Born Cross Sections

In the previous sections, all parameters that serve to determine the Born cross section
according to Equation (5.1) were determined. The results are listed in Tables A.2
and A.4 and graphically shown in Figure 5.12, including statistical as well as systematic
uncertainties. The determination of the latter will be discussed in the next section. The
processes e+e− → φK+K− and e+e− → φK0

SK0
S were successfully observed in all data

sets used in this work. These results enable the search for possible couplings of (exotic)
vector charmonia ψ to the light hadron final state φKK̄ in the following. Therefore, a
maximum likelihood fit to the Born cross section at each center-of-mass energy from
√
s = 3.7730 GeV to

√
s = 4.7008 GeV is performed.

A likelihood L(x|Θ) can be defined for given data x and set of model parameters Θ. In
case of a fit to the energy-dependent Born cross section including several uncorrelated,
fixed data sets, the overall likelihood can be written as a product given by

L(Θ) =
∏
i

Li(Θ) , (5.11)
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with Li being the likelihood function of the model parameters Θ for data set i. In this
work, Li depends only on one parameter, e.g. the expected number of signal events to be
observed Ni(Θ), given by

Ni(Θ) = σb(xi|Θ) · Li · (1 + δr)(1 + δv)i · εi · Br . (5.12)

σb(xi|Θ) is the cross section hypothesis under investigation. The functions Li(Ni) have
already been determined in Section 5.2 including statistical uncertainties only. In order
to account also for the systematic uncertainties, the likelihood function is written as

Li(Ni) = 1√
2π(σ2

k,i + σ2
sys,i)

e
− (Ni−µi)

2

2
(
σ2
k,i+σ

2
sys,i

)
with σk,i =

{
σL,i , Ni ≤ µi
σR,i , Ni > µi

, (5.13)

with σsys,i being the total systematic uncertainty for data set i. The cross section
hypothesis under investigation is discussed in the following.
Continuum production processes of the type e+e− → γ∗ → φKK̄ in this energy regime
can be described by [49]

σcon =
(
C√
s

)λ
, (5.14)

with
√
s being the center-of-mass energy and the exponent λ being a priori unknown. C

and λ are free parameters in the fit. Potential resonant contributions from processes such
as e+e− → ψ→ φKK̄ are described by a Breit-Wigner amplitude according to [57]

ABW =

√
12πΓe+e−Br(ψ→ φKK̄)Γ

s−m2 + imΓ , (5.15)

with m and Γ being the mass and width of the possible resonant contribution ψ,
respectively, Γe+e− being its electronic width and Br(ψ → φKK̄) being the branching
ratio of ψ → φKK̄. The product σψ ≡ Γe+e− · Br(ψ → φKK̄) is a free parameter in
the fit. In case of no interference with the continuum production of φKK̄, the resonant
contribution is added incoherently as

σincoh = σcon +

∣∣∣∣∣∣
√

12πσψΓ
s−m2 + imΓ

∣∣∣∣∣∣
2

. (5.16)

Furthermore, the resonant contribution is added coherently if an interference is allowed,
which may be constructive or destructive. In this case, the full amplitude reads

σcoh =

∣∣∣∣∣∣√σcon +

√
12πσψΓ

s−m2 + imΓe
iφ

∣∣∣∣∣∣
2

, (5.17)
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with φ being the relative phase between the amplitudes of continuum and resonant
production. To test the contribution of ψ states, the mass and width in Equation (5.15)
can be fixed to the corresponding world average values from the PDG [56]. As already
mentioned in Chapter 1, the ψ(4230) is of particular interest because it has not been
observed in decays to light hadrons so far. Its mass and width is mψ = 4.2187 GeV/c2

and Γψ = 0.044 GeV, respectively.
Unbinned maximum likelihood fits are performed for continuum processes and an addi-
tional incoherent or coherent resonant contribution using the Minuit optimizer of ROOT

[243], as shown in Figure 5.12. The significance of a resonant contribution is calculated
based on the likelihood ratio for the hypotheses of continuum production and an ad-
ditional resonant contribution using the function RooStats::PValueToSignificance()

from the RooStats package [244]. The p-values are assumed to follow a χ2 distribution
and, thus, are obtained via TMath::Prob(|2 logLres−2 logLcon|, NDFres−NDFcon), with
NDFres − NDFcon = 1 (2) being the difference of the number of degrees of freedom in
both fits in the incoherent (coherent) case. According to the fit results, the significance
of a resonant contribution of the ψ(4230) to the production of the φKK̄ final state for
the coherent and incoherent case is 0.57σ and 0.03σ (1.02σ and 1.37σ) for φK+K− (for
φK0

SK0
S), respectively. Hence, upper limits for these processes will be determined in the

next section. These results indicate that the ψ(4230) strongly prefers to preserve its charm
content in decays, as in charmonium transitions to ψ(2S) or J/ψ under the emission of
a ππ pair.
The results of the Born cross sections are compared for the φK+K− and φK0

SK0
S final

states in Figure 5.13. A linear fit is performed, yielding a proportionality factor of
3.85±0.01, which differs significantly from the value of two if assuming isospin symmetry.
However, since the continuum production of the final states investigated goes through a
virtual photon γ∗, isospin is a priori not conserved. Thus, the determined proportionality
factor is not unexpected. A more detailed discussion is given in Section 5.7.
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Figure 5.12.: Born cross section (black dots with thick and thin error bars, denoting statistical
and systematic uncertainties, respectively) for e+e− → φK+K− (left) and e+e− → φK0

SK0
S

(right) at center-of-mass energies from
√
s = 3.7730 GeV to

√
s = 4.7008 GeV. Maximum

likelihood fits are performed according to Equations (5.14), (5.16) and (5.17), assuming pure
continuum production (solid gray line) and an additional coherent (dashed red line) or incoherent
(dashed blue line) resonant contribution of the ψ(4230).
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Figure 5.13.: Ratio of the Born cross section of e+e− → φK+K− and e+e− → φK0
SK0

S at center-
of-mass energies from

√
s = 3.7730 GeV to

√
s = 4.7008 GeV (black dots with error bars). A linear

fit (red line) is performed, yielding a proportionality factor of 3.85± 0.01.
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5.5.1. Upper Limit on e+e− → ψ→ φKK̄

Since no obvious resonant structure in the Born cross sections σb(e+e− → φKK̄) was
observed, upper limits on e+e− → ψ → φK+K− and e+e− → ψ → φK0

SK0
S will be set

using a Bayesian approach [42,245,246]. The observable for which an upper limit σUL
ψ is

calculated is σψ = Γe+e− · Br(ψ→ φKK̄), given by

C.L. =

σUL
ψ∫
−∞
L(Θ)π(Θ)dσψ

+∞∫
−∞
L(Θ)π(Θ)dσψ

, (5.18)

for a confidence level C.L. typically chosen to be equal to 90%. The prior π(Θ) for the
model parameters Θ

π(Θ) =
{

1, σψ ≥ 0
0, σψ < 0

(5.19)

excludes unphysical negative cross section values. Here, L(Θ) is the product of likelihood
functions Li(Θ) (see Equation (5.11)), which have already been determined in Equa-
tion (5.13). Figure 5.14 shows the resulting likelihood scans in case of the hypothesis of
a resonant ψ(4230) contribution. In the coherent case, the fit shows two solutions with
exactly the same fit quality, which is a direct result of the interference effect between both
the continuum production process and the resonant amplitude, incorporating constructive
and destructive interference, corresponding to smaller and larger values of σψ, respectively
[247]. The upper limits for the ψ(4230) hypothesis calculated using Equation (5.18)
are σUL

ψ,coh = 1.75 eV and σUL
ψ,incoh = 0.019 eV for e+e− → ψ(4230) → φK+K− and

σUL
ψ,coh = 0.47 eV and σUL

ψ,incoh = 0.025 eV for e+e− → ψ(4230)→ φK0
SK0

S .
Motivated by the still lacking knowledge of the masses and widths of ψ states around
m = 4.23 GeV/c2, upper limit scans were performed for possible resonant contributions
with masses m ∈ [4.15 GeV/c2, 4.45 GeV/c2] and widths Γ ∈ [0.04 GeV, 0.24 GeV]. This
ensures that possible contributions from the ψ(4160) and ψ(4415) as lowest and highest
mass representatives for vector charmonia in the energy range studied are taken into
account. Results for the coherent case are shown in Figure 5.15. While the upper limit
does not seem to depend on the mass for a fixed width bin, it increases with larger
widths for a fixed mass bin. Furthermore, no obvious region can be observed in which the
upper limits may show any discrepancy from these behaviors. Consequently, no specific
pair of mass and width can be identified, which could be assigned to a possible resonant
contribution. The observation that these vector charmonia also do not couple to the
investigated final state thus provides information about their inner structure since they
seem to preserve its charm content in decays, as in charmonium transitions to ψ(2S) or
J/ψ under the emission of a ππ pair.
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Figure 5.14.: Likelihood distribution for a coherent (left) and incoherent (right) resonant
contribution of the ψ(4230) to the Born cross section of e+e− → φK+K− (top) and e+e− →
φK0

SK0
S (bottom). Upper limits indicated by the dashed lines are calculated at 90 %C.L.

according to Equation (5.18).
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5.6. Systematic Uncertainties

In order to reach maximum sensitivity in the search for rare processes, the careful
evaluation of sources of uncertainties is very important. Especially the results of the
Born cross sections as well as for the upper limit determination strongly depend on a
proper uncertainty estimation. While the statistical uncertainties arise from finite data
and signal MC samples, systematic effects and their uncertainties appear, e.g. due to
fixed selection criteria in the analysis. Furthermore, combining the information from
many data sets gathered throughout ten years of measurement time over a wide energy
range is very complicated and requires careful investigation of many possible sources of
systematic uncertainties. Examples are differences between data and signal MC, aging
of detector components, and different measurement conditions, although every data
set is accumulated with a very high accuracy and precision. Therefore, it is of special
importance to perform the study of systematic uncertainties properly and diligently.
Beyond systematic effects due to fixed selection criteria specifically depending on the
analysis, more general systematic uncertainties which have been determined by the BESIII
collaboration in previous studies are summarized in Table 5.2. For each data set, an
uncertainty of 1 % [214] is assigned to the integrated luminosities which were measured
based on the Bhabha scattering process e+e− → (γ)e+e−. Using a J/ψ→ pp̄π+π−

control sample [248], the systematic uncertainty of the tracking efficiency is determined
to be 1 % per charged track in the final state. Branching fractions are taken from the
PDG [56]. In case of K0

S → π+π− decays the systematic uncertainty related to the
reconstruction efficiency is treated separately in Subsection 5.6.5.

Table 5.2.: Systematic uncertainties for the luminosity [214], the tracking efficiency [248] as well
as the branching ratio [56] in % for the reactions e+e− → φK+K− and e+e− → φK0

SK0
S .

e+e− → φK+K− e+e− → φK0
SK0

S

Luminosity 1.0 1.0
Tracking efficiency 4.0 2.0
Branching ratio 1.0 1.0

Total 4.2 2.4

Additional systematic effects are studied by varying fixed parameters like selection
conditions within the analysis around its nominal values and investigate a possible
deviation in the results. Since all other parameters in the Born cross section formula
are constant, only the number of observed signal events Ni and the efficiency εi for a
variation i are investigated compared to its nominal values Nref and εref by calculating
the ratio

Ri = σB
i

σB
ref

= Ni · εref
εi ·Nref

(5.20)
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and its uncertainty

∆Ri =

√√√√√ m∑
j=1

(
∂Ri
∂xj

∆xj

)2

+ 2
m−1∑
j=1

m∑
k=j+1

∂Ri
∂xj

∂Ri
∂xk
· cov(xj ,xk) . (5.21)

m = 4 is the number of parameters Ri depends on,
∂Ri
∂xj

is the partial derivative of Ri with
respect to parameter xj with uncertainty ∆xj and cov(xj ,xk) is the covariance between
parameters xj and xk, given by cov(xj ,xk) = ∆xj ·∆xk · corjk with the correlation factor
corjk due to a certain number of events being shared in both samples. The correlation

factors are given by
√

min
(
Ni
Nref

, Nref
Ni

)
and

√
min

(
εi
εref

, εref
εi

)
.

A systematic uncertainty is then obtained as the standard deviation σR of a weighted
average of the ratios Ri according to

σ2
R =

∑
i
ωi (1−Ri)2

∑
i
ωi

with ωi = (∆Ri)
−1 . (5.22)

The sources of systematic effects for both processes e+e− → φK+K− and e+e− → φK0
SK0

S

are discussed in the following. The results are summarized in Table A.1.

5.6.1. Signal Region

A signal region is defined in which the signal part of the fit function is integrated to
extract the number of observed events Nobs from data. This region was chosen to contain
95 % of the respective signal. Since this value was initially chosen arbitrarily, the impact
on the final result is investigated. No systematic behavior is observed in either final states.

5.6.2. Background Description

To study a potential systematic effect caused by the choice of a specific background
function in case of φK+K−, higher order polynomials (2nd and 3rd order) instead of
a 1st order polynomial are used to describe the background contribution. Results are
shown in Figure 5.16 and listed in Table A.1. No systematic trend, but a distribution
around the reference value is observed. The systematic uncertainty regarding the choice
of a background function is determined to be 0.39% at

√
s = 4.1784 GeV.

5.6.3. Kinematic Fit

The nominal selection conditions of χ2
4C,φK+K− < 93 and χ2

6C,φK0
SK0

S
< 227 are varied in

the ranges from χ2
4C < 43 to χ2

4C < 143 and from χ2
6C < 170 to χ2

6C < 270. Results are
shown in Figures 5.16 and 5.17 and listed in Tables A.1 and A.3. No systematic trend,
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but a distribution around the reference value is observed. The systematic uncertainty
regarding the selection condition on the kinematic fit is determined to be 0.14% and
0.16% for the final states φK+K− and φK0

SK0
S at

√
s = 4.1784 GeV, respectively.
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Figure 5.16.: Systematic studies of the functional form to describe the background part (left)
and the selection condition on the χ2

4C value of the kinematic fit (right) for e+e− → φK+K− at√
s = 4.1784 GeV. The nominal value, which is the reference value, is depicted as the red marker.

The error bars are calculated using equation 5.21.

5.6.4. Partial Wave Model

To estimate a systematic uncertainty arising from the choice of the PWA model an
additional JPC = 0++ as well as JPC = 2++ resonance is added. The deviation in the
efficiency and hence Born cross section is used as the systematic uncertainty. It amounts
to 1.00% for both the φK+K− and φK0

SK0
S final state for each center-of-mass energy.

5.6.5. K0
S Reconstruction

The systematic studies regarding the K0
S reconstruction are based on the linear piece wise

function of [237], taking the momentum-dependence for the systematic uncertainty of the
K0
S meson reconstruction into account. The momentum distribution obtained from the

PWA is used as input for this linear piece wise function to determine a weight for each
event. All event weights are summed up to obtain a value for the systematic uncertainty
regarding the K0

S reconstruction, which is determined to be 1.98% at
√
s = 4.1784 GeV.

5.7. Partial Wave Analysis at √s = mψ(2S)

The data set at the ψ(2S) resonance used in this work contains about (448.1± 2.9) · 106

events [249] and is therefore well suited to test the formalism introduced in Section 2.6
within a partial wave analysis. While the first application in [156] used data from
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Figure 5.17.: Systematic studies of the selection condition on the χ2
6C value of the kinematic

fit for e+e− → φK0
SK0

S at
√
s = 4.1784 GeV. The nominal value, which is the reference value, is

depicted as the red marker. The error bars are calculated using equation 5.21.

LHCb [52,196] in terms of angular moments Y 0
L (
√
s), the BESIII data is directly available

for all relevant coordinates ~x = {pφ, θφ,φφ, pKK̄, θKK̄,φKK̄, . . . }. Hence, Equation (2.112)
can be used as a parametrization for the S-wave scattering amplitude observed in data.
In the following, the model used to perform the PWA is discussed briefly.
S-wave contributions (JPC = 0++) in the KK̄ system recoiling off the φ meson are
parametrized using the formalism discussed in Section 2.6. This already captures the
physics of the f0(500) and f0(980) due to the dispersive approach and the incorporated
Omnès matrix. Furthermore, two additional resonances representative for the f0(1500)
and f0(2020) are included in order to extend the description onto the energy regime of
√
s > 1.0 GeV. All universal parameters, namely the bare resonance masses as well as

the bare resonance-channel couplings are fixed in the fit to the values obtained in [156],
incorporating the ππ, KK̄ and an effective 4π channel. The latter is modeled by ρρ in this
work. Note that some scalar isoscalar resonances above

√
s = 1.0 GeV have already been

suggested to be dynamically generated by attractive ρ meson interactions [250–253]. The
normalization of the form factors from Equation (2.124) can be fixed in the fit according
to [123] to c1 = 0, c2 = 1 and c3 = 0 for the ππ, KK̄ and 4π channel, respectively.
Resonance-source couplings as well as a linear background term in the KK̄ channel from
Equation (2.124) are free parameters in the fit. The extraction of resonance poles on
the nearest unphysical sheets using the framework of Padé approximants [254–256] is
discussed in [156].
D-wave contributions (JPC = 2++) are parametrized using the K-matrix approach
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of [177], including the four poles f2(1270), f ′2(1525), f2(1810) and f2(1950) with the four
channels ππ, KK̄,ηη and an effective 4π channel. Furthermore, constant background terms
in the K-matrix (see Equation (2.99)) and in the P -vector (see Equation (2.101)), as well
as linear terms in the latter are included. All parameters despite the P -vector background
terms in the KK̄ channel are fixed to the parametrization of [177]. Again, the extraction
of resonance poles is discussed in [177].
Not only the KK̄ system recoiling off the φ meson shows structures in the invariant mass
spectra, but also the φK system. The fit quality can significantly be improved if excited
kaons modeled by simple Breit-Wigner functions are included into the model, namely
the K2(1820), recently observed by LHCb [257], as well as the K2(2250), representative
for various peaks in strange meson systems reported in the 2150-2260 MeV region as well
as for enhancements seen in the antihyperon-nucleon system [56]. Note that no excited
kaons were found in the analysis of the XYZ data, as the statistics there were significantly
lower.
The final results are shown in Figures 5.21 and 5.22 for invariant masses limited up to
m(K+K−) = 2.0 GeV due to the parametrizations used. The data is well described by
the respective partial wave projections in each of the kinematic variables. However, this
approach has to be understood as a first step for an even more sophisticated analysis in
the future. The goal in this work was to implement the form factor formalism [156] into
the PAWIAN tool [240] as part of the GRK2149 theory project, which successfully have
been achieved. The current assumptions concentrate on strong decays of the ψ(2S) only,
which conserve isospin. Actually, also decays via virtual photons γ∗ are possible, which
are not sensitive to isospin-conservation. Hence, also processes of the type ψ(2S)→ φaJ
with aJ → KK̄ may occur. In the φKK̄ final state only, isospin can not be distinguished
and, thus, analyzing this single channel is not able to disentangle the several isospin
contributions. Including aJ waves with the data available in this work would therefore
probably lead to unphysical results. As a next step in the future, the channels φπ0π0 and
φπ0η should be investigated. Since in π0π0 only fJ and in π0η only aJ contributions are
allowed due to conservation rules, a proper separation of isospin contributions could be
achieved.
Additional improvements of the fit quality may be achieved by considering purely
kinematic effects in the PWA model which can produce resonant structures in data. The
S-matrix has kinematic singularities due to the on-shellness of intermediate particles for
a process, such as two-body thresholds and triangle singularities (TS). For example, the
position of the K2(1820) is close to the K∗(892)φ threshold which may have to be taken
into account by using a Flattè formula to describe its lineshape. An introduction into
the principles of TS and its applications for XYZ states can be found in [258] and [259],
respectively. They basically describe the rescattering processes of intermediate particles
(see Figure 5.18). The final state φKK̄ may be produced via an intermediate K∗, which
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Figure 5.18.: A triangle diagram for the reaction ψ(2S)→ φKK̄ via an intermediate K∗, denoting
some excited kaon that decays to φK. For a triangle singularity to be operative one needs the K∗
to be allowed to decay into φK on-shell.

generically stands for some excited kaon that decays to φK. For a triangle singularity to
be operative one needs the K∗ to be allowed to decay into φK on-shell. In fact, a resonant
K∗ contribution to the invariant mass of φK at mφK = 2.36 GeV and re-scattering of the
two K mesons in the scalar channel introduces a TS which leads to a cusp-like effect close
to the KK̄ threshold, which may interfere with the f0(980). Note that the broader the K∗,
the smaller the strength of the TS because the on-shell requirement gets more and more
meaningless. However, since the width is attached to the resonance which decays to φK,
it will not smear out the cusp structure at the KK̄ threshold, which is due to the opening
of the KK̄ channel. How large the effects of TS and therefore the proper description of
the φK system to the full amplitude are has to be investigated in future analyses.
Comparing the two different final states φK+K− and φK0

SK0
S , a significant difference can

be observed especially in the invariant mass distributions of the kaons recoiling off the
φ meson (not only at this energy point, but also at higher energies, see e.g. Figures 5.9
and 5.10). This behavior has also been observed in previous analyses, e.g. in amplitude
analyses of D+

s → K+K−π+ [260, 261] and D+
s → K0

SK0
Sπ

+ (BESIII preliminary). In
case of D+

s → K+K−π+, the branching fraction of D+
s → S(980)π+ (S(980) denotes the

combined state of a0(980) and f0(980)) was determined to be one order of magnitude
larger as the branching fraction of D+

s → f0(1710)π+. In case of D+
s → K0

SK0
Sπ

+,
almost no signal contribution is observed below 1.1 GeV/c2 in the K0

SK0
S mass spectrum.

The authors of (BESIII preliminary) try to explain this suppression phenomenon with a
destructive interference between the a0(980) and the f0(980). Surprisingly, an anomalous
enhancement was observed around 1.7 GeV/c2. The corresponding branching fraction of
D+
s → f0(1710)π+ with f0(1710)→ K0

SK0
S results one order of magnitude larger than the

expectation from [261] assuming only isospin symmetry. This may provide the evidence
for a new resonance as a possible isospin one partner of the f0(1710), namely the a0(1710),
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as proposed in [262] and recently observed in [263]. Since the f0 and (K+K−+K0K̄0) have
isospin zero while a0 and (K+K− − K0K̄0) have isospin one, an opposite phase of both
the f0 and the a0 would cause constructive and destructive interferences in the K0

SK0
S and

K+K− mass spectra, respectively. This is in agreement with the amplitude analysis of
D+
s decays. Destructive and constructive interferences of f0 and a0 mesons may also be

present in the analysis of the φK+K− and φK0
SK0

S final states and need to be investigated
in the future.
In principle, the form factor formalism may also be used as a parametrization of the D-
wave contributions if proper phase-shifts would be available to describe the low-energy
regime. However, the K-matrix approach and the form factor formalism are technically
similar in the energy regime of

√
s > 1.0 GeV and so should be their results. The amount

of data and therefore the statistics available at this center-of-mass energy is currently
being increased fivefold which enables studies with even higher precision in the future.

5.7.1. Determination of Br(ψ(2S)→ φKK̄)

The branching fractions Br(ψ(2S)→ φKK̄) are given by

Br(ψ(2S)→ φKK̄) = Nobs
Nψ(2S) · ε · Brrec

, (5.23)

with Nobs being the number of observed signal events in data, Nψ(2S) = (448.1±2.9) ·106

being the number of ψ(2S) mesons produced in e+e− annihilations at BESIII [249], ε
being the detection efficiency and Brrec being the product branching ratio of φ→ K+K−

and, if present, subsequent K0
S → π+π− decays. Figure 5.19 shows the invariant mass

distributions of φ meson candidates in data for e+e− → φK+K− and e+e− → φK0
SK0

S . A
maximum likelihood fit is performed in order to extract Nobs as described in Section 5.2.
The detection efficiency ε is calculated using both the partial wave analysis results and the
simple signal MC simulations from Section 5.7. Hence, two branching fractions BrPWA and
BrPHSP are determined. Even though the result using the simple signal MC simulation
is included here for the sake of completeness, only the reliable result from the PWA is
discussed below. Results are listed in Table 5.3. The ratio RPWA(φK+K−/φK0

SK0
S) of the

branching fractions Br(ψ(2S) → φK+K−) and Br(ψ(2S) → φK0
SK0

S) yields 2.78± 0.12,
which can be explained as in Sections 5.5 and 5.7. A more detailed discussion of the
results can be found in Chapter 7.
In case of ψ(2S)→ φK+K− a comparison with previous results listed in the PDG [56] is
shown in Figure 5.20. The value of the branching fraction determined in this work matches
the one from CLEO [264], but disagrees with the previous BES result [265]. The new,
preliminary world average value determined in this work amounts to (7.86± 1.07) · 10−5.
No value for Br(ψ(2S)→ φK0

SK0
S) is stated in the PDG yet.

89



5. Analysis of e+e− → φKK̄

1 1.05 1.1 1.15 1.2
)2) (GeV/c-K+m(K

0

0.2

0.4

0.6

0.8

1

1.2

1.4

310×)2
E

ve
n

ts
 / 

(0
.0

01
 G

eV
/c

 data (3.6860 GeV)  fit to data

 -2ln(L)/NDF = 378.63 / 261 = 1.45 

 signal  background

obs N  PWA

1 1.05 1.1 1.15 1.2
)2) (GeV/c-K+m(K

0

20

40

60

80

100

120

)2
E

ve
n

ts
 / 

(0
.0

01
 G

eV
/c

 data (3.6860 GeV)  fit to data

 -2ln(L)/NDF = 276.45 / 261 = 1.06 

 signal  

obs N  PWA

Figure 5.19.: Invariant mass spectrum of φ candidates for data (black dots with error bars) at√
s = mψ(2S). A fit (red line) with a Breit-Wigner function convolved with a Gaussian function

as signal (green line) and a first-order polynomial as background (dashed blue line) is applied.
The green and gray shaded areas depict the signal regions in which the number of observed events
Nobs is extracted and for which a partial wave analysis (PWA) is performed to determine a global
efficiency, respectively. Left: e+e− → φK+K−. Right: e+e− → φK0

SK0
S .

Table 5.3.: Results for the branching fractions Br(ψ(2S) → φKK̄) calculated using the PWA
results and the simple signal MC simulation as well as their ratios R.

ψ(2S)→ φK+K− ψ(2S)→ φK0
SK0

S

Nobs 8408.52+99.84
−98.14 721.59+28.00

−26.51
Brrec / % 49.20 49.20 · 69.202

εPWA / % 39.93± 0.27 19.81± 0.19
εPHSP / % 40.16± 0.16 20.98± 0.11

BrPWA / % 9.58+0.14
−0.14 ± 0.45 3.45+0.14

−0.13 ± 0.11
RPWA(φK+K−/φK0

SK0
S) 2.78± 0.12

BrPHSP / % 9.50+0.13
−0.13 ± 0.44 3.26+0.13

−0.12 ± 0.11
RPHSP(φK+K−/φK0

SK0
S) 2.92± 0.12
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Figure 5.20.: Branching fraction of ψ(2S) → φK+K− determined in this work (red) compared
with previous results from the PDG [264, 265] (black) and the PDG world average value [56]
(green).
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Figure 5.21.: Fit results of the partial wave analysis for e+e− → φK+K− at
√
s = mψ(2S). Data

(black dots with error bars), the total PWA projection (red solid line), the 0++ (blue solid line),
the 2++ (green solid line) as well as the K2 contributions (solid purple line) are shown.
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Figure 5.22.: Fit results of the partial wave analysis for e+e− → φK0
SK0

S at
√
s = mψ(2S). Data

(black dots with error bars), the total PWA projection (red solid line), the 0++ (blue solid line),
the 2++ (green solid line) as well as the K2 contributions (solid purple line) are shown.
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6. Analysis of e+e−→ pp̄η′

The second part of this thesis deals with the lineshape study of the energy-dependent Born
cross section σb(e+e− → pp̄η′) in the search for couplings of (exotic) vector charmonia
to the investigated light hadron final state, using the same data as in Chapter 5. Born
cross sections are calculated according to Equation (5.1).
While protons p and anti-protons p̄ can be directly measured with the BESIII detector,
η′ mesons are reconstructed in their decays η′ → ηπ+π− with η→ γγ and η′ → γπ+π−.
The respective branching fractions can be found in Table 4.1. All signal MC events are
generated evenly distributed in phase space, except those of the decay η′ → γπ+π−,
which are generated with the DIY generator taking ρ−ω interference and box anomaly
into account [266–269].

6.1. Background Studies

η′ meson candidates can be identified by investigating the invariant mass spectra of
ηπ+π− and γπ+π− as shown in Figure 6.1. A clear resonant structure is observed in
both channels. Compared to η′ → ηπ+π−, where the η mass constraint is applied to the
reconstructed photon pair, the background increases drastically for η′ → γπ+π− due to
the single photon without additional constraints in the kinematic fit. Hence, an additional
kinematic fit is performed, either including one extra photon from the event (χ2

+γ, e.g.
π0 meson contributions) or excluding an initially reconstructed one (χ2

−γ, e.g. processes
leading to the pp̄π+π− final state to which photons have been incorrectly assigned). The
kinematic χ2

NC value has to satisfy

χ2
NC < χ2

+γ and χ2
NC < χ2

−γ . (6.1)

Note that this will in principle also reduce the absolute number of signal events. In
Figure 6.1, a maximum likelihood fit is performed to the invariant mass distributions
before and after applying the selection conditions in Equation (6.1). Signal contributions
are described by the signal MC shape convolved with a Gaussian function to account
for possible differences in resolution between data and signal MC, while background
contributions are described by a second-order and first-order polynomial for η′ → ηπ+π−

and η′ → γπ+π−, respectively. According to the fit results, the signal to background
significance S/

√
S +B has increased from 4.82 (3.60) to 7.10 (5.96) for the pp̄ηπ+π−
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(pp̄γπ+π−) final state.
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Figure 6.1.: Invariant mass spectrum of η′ candidates for η′ → ηπ+π− (top) and η′ → γπ+π−

(bottom) before (left) and after (right) the selection conditions χ2
NC < χ2

+γ and χ2
NC < χ2

−γ
for all data sets used. A maximum likelihood fit as in Section 5.2 is performed to calculate the
signal to background significance.

Similar to the strategy presented in Section 5.1, the inclusive Monte Carlo sample at
√
s = 4.178 GeV is used in order to identify reactions contributing to both the signal and

to the background events left after the selection criteria applied so far. The extracted
signal and background samples are scaled to data as shown in Figure 6.2. An overall
good agreement between data and the inclusive MC sample is observed, showing no
peaking background contributions at the mass of the η′ meson, neither in η′ → ηπ+π−

nor in η′ → γπ+π−. In case of η′ → γπ+π−, the resonant background contribution
at m(γπ+π−) = 1.0 GeV from the final state pp̄f0(980) with f0(980) → γπ+π− can be
observed, which clearly does not match data.
Table 6.1 lists the composition of events from the inclusive MC sample, separated
in signal and the main background contributions. Dominant background contributions
contain processes leading to different final states as the signal hypotheses and thus may
be suppressed by proper selection conditions on the kinematic χ2

NC value. The signal
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Figure 6.2.: Fit of the signal and background contributions extracted from the inclusive MC
sample to the invariant mass spectrum of η′ (left) and respective pη′ (right) candidates for
η′ → ηπ+π− (top) and η′ → γπ+π− (bottom) at

√
s = 4.178 GeV. Data (black dots with error

bars), the signal contribution (red) as well as main background contributions are shown.
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Figure 6.3.: χ2
NC distributions for data sets used (S +B, black dots with error bars) and signal

MC (S, red line) summed up over all center-of-mass energies analyzed, as well as the resulting
FOM (green line) for the pp̄ηπ+π− (left) and pp̄γπ+π− final states (right). The vertical dashed
gray line indicates the selection condition on the χ2

NC value of the kinematic fit.
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Table 6.1.: Inclusive MC events that survive the selection criteria identified as the pp̄(η′ →
ηπ+π−) or pp̄(η′ → γπ+π−) final state. Green: Signal contributions. White: Background
contributions. The listed processes are sorted according to their yield. Processes with lower yields
are denoted by remaining.

Reaction Number of events
pp̄(η′ → ηπ+π−) 6777
pp̄(ω→ π+π−π0) 8412
pp̄(b0

1 → (ω→ π+π−π0))π0 2665
pp̄(a0

0 → (η→ π+π−π0))π0 2158
sum of remaining 10543
pp̄(η′ → γπ+π−) 12752
pp̄(ρ0 → π+π−) 38532
pp̄(ρ0 → π+π−γ) 11193
(∆++ → pπ+)p̄π− 8376
sum of remaining 132158

significance with respect to the background processes is again maximized using the figure
of merit according to Equation (5.3). However, the χ2

NC distributions of the inclusive MC
sample are in disagreement with data, so that they are not used for the optimization.
Instead, signal MC (representing the χ2

NC distribution for signal S) and data (representing
the χ2

NC distribution for the sum of signal S and background B ensuring a correct relative
scaling) distributions are employed for the calculation of the figure of merit in Figure 6.3.
This leads to maxima at χ2

5C = 96 and χ2
4C = 22 for η′ → ηπ+π− and η′ → γπ+π−,

respectively.

6.2. Number of Observed Events

Since overall statistics are rather limited, so that especially in data samples with lower
luminosities no significant η′ contributions can be observed, data from specific center-
of-mass energy ranges is combined to subsets (see Table 6.2). A maximum likelihood
fit is performed to each subset in order to extract the background shape for the
respective energy regime, exemplary shown for the region from

√
s = 4.2263 GeV to

√
s = 4.3964 GeV in Figure 6.4. In subsequent fits to each individual data set, the

parameters related to the background shape are fixed to the results from the fits to the
corresponding subset. An additional free background scale parameter allows adjusting
the background level according to data due to, i.e., different luminosities for each data
set. As in Figure 6.1, signal contributions are described by the signal MC shape convolved
with a Gaussian function to account for possible differences in resolution between data
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and signal MC, while background contributions are described by a second-order and first-
order polynomial for η′ → ηπ+π− and η′ → γπ+π−, respectively. Results for all other
individual data samples can be found in Appendix A.5.

Table 6.2.: Data subsets defined in a specific center-of-mass energy range
√
s with summed

integrated luminosity L to extract the background shape.

Subset
√
s / GeV L / pb−1

1 3.7730 2931.8
2 3.8695 – 4.2187 6788.4
3 4.2263 – 4.3964 6742.8
4 4.4156 – 4.7008 6233.4
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Figure 6.4.: Invariant mass spectrum of η′ candidates for data (black dots with error bars) from√
s = 4.2263 GeV to

√
s = 4.3964 GeV (left) and

√
s = 4.2777 GeV (right). A fit (red line) with

the signal MC shape convolved with a Gaussian function as signal (green line) and a second-order
and first-order polynomial as background for η′ → ηπ+π− and η′ → γπ+π− (dashed blue line)
is applied, respectively. The green shaded area depicts the signal region in which the number of
observed events Nobs is extracted. Top: η′ → ηπ+π−. Bottom: η′ → γπ+π−.
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6. Analysis of e+e− → pp̄η′

As can be seen in Figure 6.4 for the data set at
√
s = 4.2777 GeV, only a few events survive

the selection criteria. In such cases, a significant η′ contribution may not be observed in
data and, thus, the nominal value of Nobs, extracted for each data set as described in
Section 5.2, is compatible with zero within the 3σ interval of statistical uncertainty. The
results for Nobs are listed in Table A.5.

6.3. Efficiency

The reconstruction and selection efficiency is determined according to Equation (5.7).
However, since the available statistics is limited, a partial wave analysis can not be carried
out in order to extract a re-weighted signal MC sample as an effective description of
data. Hence, the efficiency is determined by integrating the reconstructed invariant mass
distributions m(ηπ+π−) and m(γπ+π−) using the simple signal MC samples containing
events evenly distributed in phase space and divide the results by the number of generated
events. The radiative corrections factors are obtained as described in Section 5.4 and
results are summarized in Table A.5.

6.4. Systematic Uncertainties

The strategy to determine the systematic uncertainties is equal to the one presented
in Section 5.6. Systematic uncertainties which have been determined by the BESIII
collaboration in previous studies [214, 248, 270] are summarized in Table 6.3. Additional

Table 6.3.: Systematic uncertainties for the luminosity [214], the tracking efficiency [248], the
photon detection [270] as well as the branching ratio [56] in % for the reaction e+e− → pp̄η′.

η′ → ηπ+π− η′ → γπ+π−

Luminosity 1.0 1.0
Tracking efficiency 4.0 4.0
Photon detection 2.0 1.0
Branching ratio 1.3 1.4

Total 4.8 4.5

systematic effects are studied according to Equations (5.20) and (5.21). A systematic
uncertainty is again obtained as the standard deviation σR of a weighted average of
the ratios Ri using Equation (5.22). Due to the low statistics in data, the evaluation of
systematic effects is performed based on the subsets listed in Table 6.2. A systematic
uncertainty obtained from a subset is then assigned to each corresponding individual
data set. Results are shown in Figures 6.5 and 6.6 and summarized in Table 6.4.
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91 92 93 94 95 96 97 98 99
 / %sδ

0.98

0.99

1

1.01

1.02
re

f
B σ

 / 
B σ

91 92 93 94 95 96 97 98 99
 / %sδ

0.99

1

1.01

1.02re
f

B σ
 / 

B σ

 pol2  pol3  

bkgf

0.992

0.994

0.996

0.998

1

1.002

re
f

B σ
 / 

B σ

 pol1  pol2  

bkgf

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

re
f

B σ
 / 

B σ

Figure 6.5.: Systematic studies of the arbitrarily chosen signal region containing a certain signal
portion δs (top) and the functional form to describe the background part (bottom) for η′ →
ηπ+π− (left) and η′ → γπ+π− (right) for subset 2. The nominal value, which is the reference
value, is depicted as the red marker. The error bars are calculated using Equation (5.21).

Table 6.4.: Systematic uncertainties in % for each data subset for η′ → ηπ+π− and η′ → γπ+π−

obtained from this analysis due to the choice of the signal region δs, of the background shape
fBkg, and of the selection condition on the χ2

NC value, as well as the total systematic uncertainty,
including the sources from Table 6.3.

η′ → ηπ+π− η′ → γπ+π−

Subset δs fBkg χ2
5C Total δs fBkg χ2

4C Total

1 0.21 0.35 0.77 4.84 0.22 5.48 2.24 7.41
2 0.14 0.23 0.61 4.80 0.26 5.30 0.68 6.96
3 0.18 0.00 0.75 4.82 0.25 6.40 3.53 8.56
4 0.19 0.00 0.61 4.80 0.22 1.32 3.15 5.62

6.5. Born Cross Sections

Since the η′ meson is reconstructed in its decay to both ηπ+π− and γπ+π−, a combined
Born cross section is determined in the following. As in Section 5.5, the likelihood
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6. Analysis of e+e− → pp̄η′
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Figure 6.6.: Systematic studies of the selection condition on the χ2
NC value of the kinematic fit

for η′ → ηπ+π− (left) and η′ → γπ+π− (right) for subset 2. The nominal value, which is the
reference value, is depicted as the red marker. The error bars are calculated using Equation (5.21).

distribution of a single Born cross section measurement is assumed to be properly
described by an asymmetric Gaussian function. In case of combining two measurements,
the resulting vector-valued random variable σb,comb =

[
σb,η′→ηπ+π− ,σb,η′→γπ+π−

]T
is

said to have a multivariate Gaussian distribution with mean µ ∈ Rn and the symmetric
positive definite n× n covariance matrix Σ ∈ Sn++

1, if its probability density function is
given by [271]

p(~x; ~µ, Σ) = 1
(2π)n/2(det Σ)1/2 exp

(
−1

2(~x− ~µ)TΣ−1(~x− ~µ)
)

. (6.2)

Here, n = 2 and the corresponding matrices read

~x =
(
Nη′→ηπ+π−

Nη′→γπ+π−

)
~µ =

(
µη′→ηπ+π−

µη′→γπ+π−

)
Σ =

(
σ2

1 cov(x1,x2)
cov(x2,x1) σ2

2

)
, (6.3)

with σ1 and σ2 being the total uncertainty for η′ → ηπ+π− and η′ → γπ+π−, respectively,
calculated by taking the squared sum of statistical and systematic uncertainties, and
cov(x1,x2) = cov(x2,x1) = x1 · ρ12 · x2 · ρ21 being the covariance between channels 1 and
2, including the measured values x and their common relative systematic uncertainties
ρ. Equation (6.2) reduces to the product of two independent Gaussian densities in
case of vanishing covariances between both channels the η′ meson is reconstructed in.
Furthermore, the multivariate Gaussian function can be set up asymmetrically as in
Equation (5.13) to account for Poisson-like distributed statistical uncertainties.
In order to obtain a value for the combined Born cross section for a single data set, a
likelihood scan is performed as described in Section 5.5. Instead of the parametrizations

1Sn++ is the space of symmetric positive definite n× n matrices, defined as Sn++ = {A ∈ Rn×n : A = AT

and xTAx > 0 for all x ∈ Rn such that x 6= 0}.
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6.5. Born Cross Sections

given in Equations (5.14), (5.16) and (5.17), a single parameter is used representing the
Born cross section value. The common relative systematic uncertainties between channel
1 and 2 include the luminosity as well as the tracking efficiency and photon detections due
to a shared number of charged tracks and photon candidates, respectively. Results are
shown exemplary for

√
s = 4.1784 GeV and

√
s = 4.2777 GeV in Figure 6.7. Additionally,

the 90% confidence level according to Equation (5.18) can be stated in case no significant
η′ contribution is observed. Results for each data set are listed in Table A.5.
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Figure 6.7.: Fit results (purple line) to the likelihood scans of the combined Born cross sections
(black dots) at

√
s = 4.1784 GeV (left) and

√
s = 4.2776 GeV (right) for e+e− → pp̄η′. Upper

limits indicated by the dashed lines are calculated at 90 %C.L. according to Equation (5.18).

After having determined the results for the individual data sets, couplings of (exotic)
vector charmonia ψ to the hadron final state pp̄η′ are investigated following the same
procedure as in Section 5.5. Hence, three maximum likelihood fits to the Born cross
section at each center-of-mass energy from

√
s = 3.7730 GeV to

√
s = 4.7008 GeV are

performed according to Equations (5.14), (5.16) and (5.17). The mass and width of
the resonance described by the Breit-Wigner function in Equation (5.15) are fixed to
the world average values from the PDG [56] mψ = 4.2187 GeV/c2 and Γψ = 0.044 GeV,
respectively. If the results for channel 1 (2) of all energies necms are combined, the common
systematic uncertainty due to the branching ratios Br(η′ → ηπ+π−) and Br(η→ γγ) (or
Br(η′ → γπ+π−)) must be taken into account. In this case, the n× n covariance matrix
with n = nchannel · necms reads

Σ =



σ2
11 cov(x11,x21) cov(x12,x11) 0 · · ·

cov(x21,x11) σ2
21 0 cov(x22,x21) · · ·

cov(x11,x12) 0 σ2
12 cov(x22,x12) · · ·

0 cov(x21,x22) cov(x12,x22) σ2
22 · · ·

...
...

...
... . . .


. (6.4)
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6. Analysis of e+e− → pp̄η′

The diagonal elements σik and cov(xik,xjk) = cov(xjk,xik) = xik · ρijk · xjk · ρjik denote
the total uncertainty for channel i at energy k and the covariance between channel i and j
at energy k with measured values xik,xjk and common relative systematic uncertainties
ρijk = ρjik. Covariances due to the energy-coupling are described by cov(xik,xil) =
cov(xil,xik) = xik · ρiik · xil · ρiil for channel i at energies k and l. The covariance due
to energy-coupling of different channels is cov(xik,xjl) = cov(xjl,xik) = 0, because they
share no common relative systematic uncertainties. Accordingly, the measured values ~x
and means ~µ become 1× n vectors.
A hint for a resonant structure can be seen in data at

√
s = 4.20 GeV, which can be

described by the hypothesis of a coherent resonant contribution of the ψ(4230) with a
significance of 2.43σ compared to the continuum production only.
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Figure 6.8.: Combined Born cross section (black dots with error bars, denoting the combined
statistical and systematic uncertainties) for e+e− → pp̄η′ at center-of-mass energies from√
s = 3.7730 GeV to

√
s = 4.7008 GeV. Maximum likelihood fits are performed according to

Equations (5.14), (5.16) and (5.17), assuming pure continuum production (gray line) and an
additional coherent (red line) or incoherent (blue line) resonant contribution of the ψ(4230).

6.5.1. Upper Limit on e+e− → ψ→ pp̄η′

Since no significant coupling of the ψ(4230) to the final state pp̄η′ was observed,
upper limits on e+e− → ψ(4230) → pp̄η′ are set, following the procedure described
in Subsection 5.5.1. Figure 6.9 shows the resulting likelihood scans for the hypothesis of
a resonant ψ(4230) contribution. The upper limits are obtained as σUL

ψ,coh = 0.069 eV and
σUL
ψ,incoh = 0.0069 eV.
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Figure 6.9.: Likelihood distribution for a coherent (left) and incoherent (right) resonant
contribution of the ψ(4230) to the Born cross section of e+e− → pp̄η′. Upper limits indicated by
the dashed lines are calculated at 90 %C.L. according to Equation (5.18).

6.6. Comparison with e+e− → J/ψη′

The Born cross section of e+e− → pp̄η′ calculated in Section 6.5 includes all processes
which lead to the investigated final state pp̄η′, e.g. its production via intermediate
resonances such as J/ψ decaying into pp̄. In principle, also the process e+e− → hcη′

with hc → pp̄ can contribute. However, the PDG [56] only states an upper limit for
Br(hc → pp̄) of < 1.5 · 10−4, whereas the branching fraction of J/ψ decaying into pp̄ is
Br(J/ψ → pp̄) = (2.12 ± 0.03)−3. Thus, the process e+e− → hcη′ is not considered in
this work.
In [57], the Born cross section of e+e− → J/ψη′ with J/ψ→ e+e− and J/ψ→ µ+µ− has
been measured at center-of-mass energies from

√
s = 4.1784 GeV to

√
s = 4.5995 GeV by

the BESIII collaboration. Their results are in agreement with a resonant contribution of
both the ψ(4160) and the ψ(4230), as shown in Figure 6.10. Here, a maximum likelihood
fit of a coherent and an incoherent sum of Breit-Wigner amplitudes according to

σcoh,2B,2B =
∣∣∣A1 · PHSP1 · eiφ1 +A2 · PHSP2

∣∣∣2 (6.5)

and
σincoh,2B,2B = |A1 · PHSP1|2 + |A2 · PHSP2|2 (6.6)

has been performed, respectively, with Ai being the Breit-Wigner amplitude from
Equation (5.15), PHSPi being the two-body (2B) phase space factor for the two-particle
decay ψ→ J/ψη′

PHSP = Φ
3
2 (
√
s)

Φ
3
2 (Mψ)

=

(
p(
√
s)√
s

) 3
2

(
p(Mψ)
Mψ

) 3
2

, (6.7)
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Figure 6.10.: Left: Born cross section of e+e− → J/ψη′ measured by the BESIII collaboration
[57] at center-of-mass energies from

√
s = 4.1784 GeV to

√
s = 4.5995 GeV. A maximum likelihood

fit is performed, assuming resonant contributions only of both the ψ(4160) and the ψ(4230) with
(red line) and without (blue line) interference. Right: Two-body phase space factors for the
decays ψ(4160)→ J/ψη′ (red line) and ψ(4230)→ J/ψη′ (blue line).

p(x) being the momentum of the η′ or J/ψ meson in the center-of-mass system at the
energy

√
s or in the system of the ψ with mass Mψ

p(x) =
√(

x2 −
(
MJ/ψ +Mη′

)2
)
·
(
x2 −

(
MJ/ψ −Mη′

)2
)
· 1

2x , (6.8)

and φ being a phase allowing for interferences between both resonant contributions.
Figure 6.10 shows also the two-body phase space factor for both the ψ(4160) and the
ψ(4230). At center-of-mass energies below the mass of the resonanceMψ, the amplitudeA
is reduced (PHSP<1), whereas at larger energies the decay of ψ→ J/ψη′ is kinematically
more favored, yielding an amplification of the amplitude (PHSP>1)2.
The results published in [57] can be used to cross check with the analysis procedure
developed in this work. Figure 6.11 shows the invariant mass distribution of pp̄ pairs
summed up over all data samples used in this work. Since the J/ψ meson decaying into
pp̄ can be clearly observed, the Born cross section of e+e− → pp̄η′ determined in this
work should contain contributions of the two-body decay ψ → J/ψη′. To be precise, a
portion of the resonant structure seen in the Born cross section of e+e− → pp̄η′ with a
significance of 2.43σ should come from the process ψ → J/ψη′. Therefore, the analysis
is repeated without J/ψ contributions, which is realized by a veto in the invariant mass
of pp̄ pairs in the range from m(pp̄) ∈ [3.07 GeV/c2, 3.13 GeV/c2] (see the green shaded
box in Figure 6.11). The range corresponds to the J/ψ signal region in [57]. Results of
the Born cross section excluding processes with intermediate J/ψ resonances are shown

2Note that Equation (6.7) converges in case of very large center-of-mass energies (s� (MJ/ψ +Mη′)) to
PHSP =

√
1/(23Φ3(Mψ)).
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Figure 6.11.: Left: Invariant mass spectrum of pp̄ pairs summed up over all data samples used
in this work and channels the η′ meson is reconstructed in. The green shaded box in the range
fromm(pp̄) ∈ [3.07 GeV/c2, 3.13 GeV/c2] represents the veto of the J/ψ meson. Right:Maximum
likelihood fits to the Born cross section of e+e− → pp̄η′ excluding processes with intermediate
J/ψ mesons assuming pure continuum production (gray line) and an additional coherent (red
line) or incoherent (blue line) resonant contributions of the ψ(4230).

in Figure 6.11. The significance of a coherent resonant contribution of the ψ(4230) is
2.13σ and thus lower than in the case where J/ψ processes are involved. Even though no
significant contribution of the ψ(4230) can be observed in either case, the hint of such a
structure remains with the veto on the J/ψ meson.
In [57], a significant contribution of not only the ψ(4230) but also of the ψ(4160) was
observed. With the data available in this work, resonant contributions of the latter can
also be searched for. Based on the results so far, it is interesting to additionally investigate
whether the fit can distinguish between two- and three-body decays. Hence, in Figure 6.12
a maximum likelihood fit assuming coherent resonant contributions of both the ψ(4160)
and the ψ(4230) decaying into J/ψη′ or into pp̄η′ is performed to the Born cross section
determined in this work according to

σcoh,2B =
∣∣∣√σcont +A · PHSP · eiφ

∣∣∣2 and σcoh,3B =
∣∣∣√σcont +A · eiφ

∣∣∣2 . (6.9)

Both fits describe the data equally well (note that the number of degrees of freedom
is the same), but the background shapes change due to the asymmetric Breit-Wigner
amplitudes caused by the two-body phase space factors. Therefore, this fit does not allow
a distinction between two- and three-body decays when the resonances are implemented
individually.
In a next step (see Figure 6.13), both resonances are included simultaneously, allowing
for both two-body and three-body decays to check whether any interference (or only the
presence in the incoherent case) of the ψ(4160) and the ψ(4230) favors one of the two
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Figure 6.12.: Maximum likelihood fits to the Born cross section of e+e− → pp̄η′ determined
in Section 6.5 assuming coherent resonant contributions of the ψ(4160) (left) and the ψ(4230)
(right) decaying via a three-body decay into pp̄η′ (red line) or via a two-body decay into J/ψη′
(blue line). The corresponding continuum productions are drawn as dashed lines.

possibilities. In this case, the Born cross section for coherent contributions is described
by

σcoh,2B+3B,2B+3B =
∣∣√σcont

+ Ã1 ·
(√

σ1,2B · PHSP1 +√
σ1,3B

)
eiφ1

+ Ã2 ·
(√

σ2,2B · PHSP2 +√
σ2,3B

)
eiφ2

∣∣∣2 , (6.10)

with Ãi being the Breit-Wigner amplitude of Equation (5.15) except from the product
σψ = Γe+e−Br(ψ → daughters), σi,2B = Γi,e+e−Br(ψi → J/ψη′) and σi,3B =
Γi,e+e−Br(ψi → pp̄η′ \ J/ψη′). A comparison to the fit result shown in Figure 6.8 can
be made where only the ψ(4230) has been considered. The significance of an additional
resonant contribution of the ψ(4160) amounts to 0.44σ.
For incoherent contributions the amplitudes σi,2B extracted from Figure 6.10 can be
incorporated as a fixed contribution into the fit to the Born cross section of e+e− → pp̄η′.
The fit function is given by

σincoh,2B+3B,2B+3B = σcont

+
∣∣∣Ã1 ·

(√
σ1,2B · PHSP1 +√

σ1,3B

)∣∣∣2
+
∣∣∣Ã2 ·

(√
σ2,2B · PHSP2 +√

σ2,3B

)∣∣∣2 . (6.11)

Table 6.5 summarizes the fit results presented in this section. As already indicated in
Figure 6.12, no distinction between two- and three-body decays can be made with the
data available. Each model listed in Table 6.5 has the same fit quality with and without
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additional two-body phase space factors, why this notation is omitted in the following.
The significance of a coherent resonant contribution of the ψ(4160) or the ψ(4230)
compared to the continuum production is 1.78σ or 2.43σ, respectively. However, the
significance of both contributions simultaneously is only 1.40σ due to the two additional
free parameters in the fit. When the fixed contribution of ψ → J/ψη′ is built into the
fit, no improvement of the fit quality can be achieved with an additional amplitude for
three-body processes (σ1,3B = σ2,3B = 0). The significance of such model compared to
the continuum production is 1.10σ. With the data available, the resonant production
of the final state pp̄η′ through (exotic) vector charmonia ψ occurs exclusively via the
intermediate state J/ψη′ with J/ψ → pp̄, although the resonant structure does not
completely disappear in the case where the veto was made on the J/ψ (see Figure 6.11).
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Figure 6.13.: Maximum likelihood fits to the Born cross section of e+e− → pp̄η′ determined
in Section 6.5 assuming coherent (red line) and incoherent (blue line) resonant contributions of
both the ψ(4160) and the ψ(4230) decaying via a three-body decay into pp̄η′ or via a two-body
decay into J/ψη′.
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6. Analysis of e+e− → pp̄η′

Table 6.5.: Fit model, −2 lnL value of the minimization, number of free parameters npar and
significance calculated with respect to model 1, which considers the continuum production only.

Model −2 lnL npar σ

1 σcont 58.64 2
2 + coherent ψ(4230) 50.24 4 2.43
3 + coherent ψ(4160) 53.48 4 1.78
4 + incoherent ψ(4230) 57.10 3 1.24
5 + coherent ψ(4160),ψ(4230) 49.40 6 1.40
6 + incoherent ψ(4160),ψ(4230) 56.03 4 1.10
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7. Conclusions and Perspectives

In this work, Born cross sections of e+e− → φK+K−, e+e− → φK0
SK0

S and e+e− → pp̄η′

have been determined successfully using the high luminosity XYZ data sets accumulated
with the BESIII detector at center-of-mass energies from

√
s = 3.7730 GeV to

√
s =

4.7008 GeV. By investigating the lineshape of the Born cross sections, possible couplings
of exotic vector charmonia to these charmless meson final states have been studied. This
thesis consists of two main parts, the results of which are summarized and discussed
separately in the following.

e+e− → φKK̄
In the first part of this thesis, the processes e+e− → φK+K− and e+e− → φK0

SK0
S have

been analyzed. The φ meson was reconstructed in its decay into K+K−. K0
S mesons were

reconstructed by their weak decays into π+π−, leading to a secondary vertex in the
detector. For both the φK+K− and the φK0

SK0
S final state, the φ meson was observed in

data nearly background free. The number of observed events was extracted precisely via
maximum likelihood scans of the signal amplitude, taking Poisson-distributed statistics
into account. An efficiency determination was performed in order to determine the Born
cross sections properly. For this purpose, a partial wave analysis was carried out, allowing
for the extraction of event weights to re-weight the signal MC sample to get an effective
description of data. This was achieved with the PAWIAN software [240], developed by our
colleagues from Bochum. The search for possible couplings of (exotic) vector charmonia,
e.g. the ψ(4230) to φK+K− and φK0

SK0
S was done by calculating the significance of

an additional resonant contribution described by a Breit-Wigner amplitude based on the
likelihood ratio for the hypotheses of continuum production and such additional resonant
contribution. The significances are 0.57σ and 0.03σ (1.02σ and 1.37σ) for φK+K− (for
φK0

SK0
S) in the coherent and incoherent case, respectively, and, thus, the Born cross

section of e+e− → φKK̄ in this energy regime is dominated by the continuum production
of the respective channel. These results indicate that the ψ(4230) strongly prefers to
preserve its charm content in decays, as in charmonium transitions to ψ(2S) or J/ψ under
the emission of a ππ pair. Consequently, upper limits on the product of the electronic
width and the branching fraction σψ = Γe+e− · Br(ψ→ φKK̄) have been calculated. The
results are σUL

ψ,coh = 1.75 eV and σUL
ψ,incoh = 0.019 eV for e+e− → ψ(4230)→ φK+K− and

σUL
ψ,coh = 0.47 eV and σUL

ψ,incoh = 0.025 eV for e+e− → ψ(4230) → φK0
SK0

S . Additionally,
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7. Conclusions and Perspectives

the Born cross sections of e+e− → φK+K− and e+e− → φK0
SK0

S have been compared,
and a proportionality factor of 3.85±0.01 has been found, which differs significantly from
the value of two if assuming isospin symmetry.
Motivated by the still lacking knowledge of the masses and widths of ψ states
around m = 4.23 GeV/c2, additional upper limit scans were performed for possible
resonant contributions with masses m ∈ [

4.15 GeV/c2, 4.45 GeV/c2] and widths Γ ∈
[0.04 GeV, 0.24 GeV]. The results are shown in Figure 5.15. While the upper limit does
not seem to depend on the mass for a fixed width bin, it increases with larger widths for
a fixed mass bin. Furthermore, no obvious region could be observed in which the upper
limits may show any discrepancy from these behaviors. Consequently, no specific pair
of mass and width could be identified, which could be assigned to a possible resonant
contribution.
Furthermore, the data set at the ψ(2S) resonance including (448.1±2.9) ·106 events [249]
was used in order to study the KK̄ system recoiling off the φ meson. The amount of data
and therefore the statistics available at this center-of-mass energy is currently being
increased fivefold which enables studies with even higher precision in the future. Possible
quantum numbers the KK̄ system could carry are, e.g. JPC = 0++, so that the scalar
isoscalar sector (f0 mesons) could be investigated. Simultaneously to the experimentally
observed overpopulation of these states, lattice QCD calculations predict the lightest
glueball to have quantum numbers JPC = 0++ and a mass around 1.6 − 1.7 GeV/c2

[61–64]. This makes the study of the reaction e+e− → φKK̄ at BESIII particularly
interesting. Due to many broad and overlapping resonances in the scalar isoscalar sector,
analyticity and unitarity are violated if the dynamical parts of the amplitudes in a partial
wave analysis are described by Breit-Wigner amplitudes, as extensively discussed in
Chapter 2. Instead, more sophisticated approaches have to be used. An existing formalism
based on dispersion theory [65], allowing for the proper description of both the low energy
regime (

√
s < 1.0 GeV) and the higher resonances between 1.0 GeV ≤ √s ≤ 2.0 GeV

simultaneously, was successfully extended from the three channels ππ, KK and 4π up to
five channels including ηη and ηη′ and built into the PAWIAN software. Thereby, not only
this analysis, but other analyses using PAWIAN can also benefit from this collaboration
between experiment and theory.
The final results of the partial wave analysis using the ψ(2S) data were shown in
Figure 5.21. Overall, the data is well described by the respective partial wave projections
in each of the kinematic variables. However, also suggestions for improvement have been
discussed already. First, electromagnetic decays of the ψ(2S) via virtual photons γ∗

could be considered which do not require isospin conservation. Thus, processes such as
ψ(2S) → φaJ with aJ → KK̄ may occur. Unfortunately, the final states φKK̄ does not
allow disentangling isospin contributions why more data is needed, e.g. for the φππ and
the φπη channels. Second, purely kinematic effects such as triangle singularities may
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influence especially the region at the KK̄ threshold if excited kaons in the φK system are
present, which has to be evaluated in the future.
Comparing the two different final states φK+K− and φK0

SK0
S , a significant difference

can be observed especially in the invariant mass distributions of the kaons recoiling off
the φ meson. As already discussed in Section 5.7, this behavior has also been observed
in previous analyses [260, 261](BESIII internal), which might be due to constructive and
destructive interferences between fJ and aJ mesons.
Using the partial wave analysis, an efficiency correction was applied in order to extract the
branching fractions Br(ψ(2S) → φK+K−) = (9.58+0.14

−0.14 ± 0.45) · 10−5 and Br(ψ(2S) →
φK0

SK0
S) = (3.45+0.14

−0.13 ± 0.11) · 10−5 with the ratio RBr = 2.78 ± 0.12. Similar to the
ratio Rσb

= 3.85 ± 0.01 for the Born cross sections in the XYZ regime, also RBr is in
disagreement with the value of two if assuming isospin symmetry. In case of the data
at the ψ(2S) resonance, the value is closer to the factor of two because strong decays
of the ψ(2S) also occur, whereas the final state is mainly produced by electromagnetic
decays at center-of-mass energies in the XYZ region. The result of Br(ψ(2S)→ φK+K−)
was compared to previous results listed in the PDG [56]. In general, the precision is of
a factor six times higher. While it is in agreement with the previous CLEO result [264],
it deviates from the BES result from 2003 [265]. However, this can be explained by
the huge improvements and upgrades made from BES to BESIII, e.g. an increase of the
detection efficiency from (13.4 ± 1.6)% [265] to (39.9 ± 0.3)%. The branching fraction
Br(ψ(2S)→ φK0

SK0
S) was determined in this work for the first time ever.

Since many inelasticities are present in the scalar isoscalar sector, such as the opening
of other channels (ππ, KK, 4π,ηη,ηη′), a coupled fit to these channels is sought. The
preliminary φ, φπ, π+π− and Kπ invariant mass spectra for the φπ+π− channel are
shown in Figure 7.1 in the φ meson signal region. Compared to φKK̄, the φ meson is
observed on top of a non-negligible background. According to the inclusive MC sample,
the main contributions are non-resonant ψ(2S)→ K+K−π+π−, ψ(2S)→ K+K̄∗0(892)π−

and ψ(2S) → K−K∗0(892)π+. Especially the excited kaons decaying to Kπ can be
observed in Figure 7.1. Such contributions necessarily have to be taken into account in
the partial wave analysis. The π+π− system recoiling off the φ meson shows a significant
resonant structure at the mass of the f0(980). In a future fit with multiple channels, this
will help to better describe the KK system at the KK threshold.
In order to summarize the aforementioned results of the analysis of e+e− → φKK̄ and
to draw a final conclusion, the two main objectives should be highlighted once again.
The Born cross sections of both e+e− → φK+K− and e+e− → φK0

SK0
S have been

successfully determined using the high luminosity XYZ data sets of BESIII. No significant
couplings of (exotic) vector charmonia to these light hadron channels have been observed,
which indicates that they strongly prefer to preserve their charm content in decays, as in
charmonium transitions to ψ(2S) or J/ψ under the emission of a ππ pair. This analysis
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Figure 7.1.: Invariant mass spectra of φ (top left), φπ (top right), π+π− (bottom left) and
Kπ (bottom right) candidates for the process e+e− → φπ+π− at

√
s = mψ(2S). The green

shaded area denotes the signal region of the φ meson where the other spectra have been filled.

thus supports the assumption that exotic vector charmonia have cc̄ content [35, 36]. In
addition, the data set at

√
s = mψ(2S) was investigated to study the scalar isoscalar sector

using a partial wave analysis and a newly employed formalism which is in accordance with
analyticity and unitarity. The analysis showed a clear discrepancy in the KK̄ invariant
mass spectra for φK+K− and φK0

SK0
S at m(KK̄) > 1.5 GeV, which might be explained

with interferences of fJ and aJ contributions. To disentangle these different isospin
contributions, a coupled-channel approach has to be performed in the future. However,
the partial wave analysis describes the data for both channels accurately, so that an
efficiency correction could be applied to extract branching fractions for ψ(2S) → φKK̄.
Compared to a previous BES result [265] a slight deviation is observed. This can be
explained by the many improvements that have been made to BESIII, including an
increase in efficiency through a 4π detector acceptance, as well as improved reconstruction
algorithms and particle identification.
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e+e− → pp̄η′

In the second part of this thesis, the process e+e− → pp̄η′ has been studied. The η′

meson was reconstructed and significantly observed in its decays η′ → ηπ+π− with
η→ γγ and η′ → γπ+π−. While the reconstruction of both decay channels was strongly
limited by statistics, the background for γπ+π− increased drastically due to the single
photon without additional constraints in the kinematic fit as in the case of ηπ+π−. Thus,
no partial wave analysis could be performed. However, Born cross sections have been
determined successfully for the first time in this energy regime. The significance of a
coherent resonant contribution of the ψ(4230) to the continuum production of pp̄η′ was
calculated to be 2.43σ. Hence, an upper limits were calculated as σUL

ψ,coh = 0.069 eV and
σUL
ψ,incoh = 0.0069 eV for the coherent and incoherent case, respectively.

The results of this work have been compared to the Born cross section of e+e− → J/ψη′

with J/ψ → e+e− and J/ψ → µ+µ− determined previously by the BESIII collaboration
[57]. Their results are in agreement with a resonant contribution of both the ψ(4160) and
the ψ(4230), which was then included in the fit model to the Born cross section of pp̄η′.
Ultimately, no distinction between two-body decays into J/ψη′ and three-body decays
into pp̄η′ could be made with the data available, limited by the statistical uncertainties.
The fixed contribution extracted from a fit to the data of [57] describes the resonant
contributions to the Born cross section of e+e− → pp̄η′ accurately, which serves as a
good cross check for the analysis procedure developed in this work. Hence, the resonant
production of the pp̄η′ final state via the ψ(4160) and the ψ(4230) is assumed to happen
solely via intermediate J/ψ resonances, which decay into pp̄, indicating again that they
strongly prefer to preserve their charm content in decays.
The Born cross sections of e+e− → pp̄η′ determined in this work are of special interest
for the proton-antiproton annihilation experiment PANDA since the partial width of
ψ→ pp̄h, with h being a light unflavored meson, can be related to the production cross
section for pp̄ → ψh. This may serve as information for the PANDA physics program,
both to formulate detection strategies and to evaluate luminosity requirements, as well
as for detailed detector simulations with theoretically preferred final states. Using an
p̄-beam with pmax = 15 GeV/c, a maximal center-of-mass energy of

√
s = 5.5 GeV will

be achieved at PANDA. The rest mass of ψ(4230)η′ is mψ(4230)η′ = 5.2 GeV/c2 and
thus could be produced in pp̄ annihilation processes close to the production threshold.
However, Equation (2.36) from [54] is exclusively based on the assumption of three-
body decays of possible (exotic) vector charmonia, so that no proper estimates for the
production cross section of pp̄ → ψ(4230)η′ or pp̄ → ψ(4230)η′ could be made in this
work. Nevertheless, the analysis procedure developed in this work can be used to make
predictions for the production cross section of lighter charmonia, e.g. the ψ(2S) or the
ψ(3770) in association with an η′ meson. Here, kinematically no decay to J/ψη′ is allowed
and Equation (2.36) can be employed. In that case, a cross-check with a previous BESIII
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7. Conclusions and Perspectives

analysis of ψ(3770)→ pp̄π0 [272] could be made.
In summary, it should be said that the Born cross section of e+e− → pp̄η′ has been
successfully determined for all data sets used in this work. Although the inclusion of the
lineshape of the process e+e− → J/ψη′ from [57] fully describes the resonant contributions
to the Born cross section of e+e− → pp̄η′, this process can not be significantly observed
due to the total uncertainty of this measurement. However, the elaborated analysis
strategy can be applied to the data set at

√
s = mψ(2S) in order to make predictions

on the production cross section of pp̄→ ψ(2S)η′.
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A. Appendix

A.1. The Least-Squares Method

The purpose of this section is to give an overview of the most commonly used method for
parameter estimation, the so-called Least-Squares (LS) method. The following discussion
mainly follows the ideas from [273].
Assume a set of N independent, experimental values y1, y2, . . . , yN measured at the points
x1,x2, . . . ,xN . A theoretical model exists, which predicts the true values η1, η2, . . . , ηN
of the observables yi associated with each xi through the functional dependence

fi = fi(θ1, θ2, . . . , θL;xi) , (A.1)

with θi being a set of L a priori unknown parameters with L ≤ N . The LS principle
states that the best set of values θ̂ = {θ̂1, θ̂2, . . . , θ̂L} of the parameters θi are those that
minimizes

X2 =
N∑
i=1

wi(yi − fi)2 , (A.2)

with wi being the weight assigned to the i-th observation. It expresses the accuracy in
the measurement yi. In case that all observations are equally accurate wi = 1. If the
uncertainty σi is different but known for each yi the weight is usually set to wi = 1/σ2

i .
In general, the observations may be correlated, with uncertainties and covariance terms
given by the symmetric covariance matrix V (y). Equation (A.2) then reads

X2 =
N∑
i=1

N∑
j=1

(yi − fi)V 2
ij(yj − fj). (A.3)

It should be noted that the LS method is applicable regardless of the underlying
distribution of the observed variables. If they are normally distributed, the minimum
value X2

min will be distributed as a χ2 variable. The fit quality can then be evaluated
based on the properties of a χ2 distribution.
In principle, a distinction can be made between the two cases in which the theoretical
model implies either a linear dependence (and, incidentally, no dependence of the weights
on the parameters) or a non-linear dependence of the parameters. In the first case, the
LS method provides an exact, unbiased solution for the parameters θi with minimum
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variance.
Generally however, when the predicted values fi have a non-linear dependence on the
parameters, it is not possible to give an exact solution as in the linear case, but one has
to perform the minimization by an iterative approach, e.g. the Newton’s method.

A.1.1. Least-Squares Fit

The LS principle provides a prescription for how to find the best values of some
unknown parameters θ. They are linked to the true observables η through the functional
dependence f . However, the unknowns are often actually the observables η, although
directly measurable. In an LS fit, the observations y with covariance matrix V (y) may
be taken as the initial estimate of the unknown η. Thus, the best estimate of η are those
values which minimize

X2 = εTV −1ε, (A.4)

with ε = y − η being the difference between the measured and true values. Accordingly,
after the minimization, the final estimates η̂ of the true η are called the improved
measurements, or fitted variables, and the residuals ε̂ = y−η̂ can be defined. The weighted
sum of squared residuals, which is the minimum value obtained for X2 in the fit, is then
given as

X2
min = ε̂TV −1ε̂ = (y − η̂)TV −1(y − η̂) . (A.5)

So far, no assumptions have been made about the distribution of ε. In case that the
uncorrelated εi are normally distributed centered at x = 0 with width σ2

i , the N

measurements yi are independent and normally distributed with mean ηi and width
σ2
i . Hence, the quantity

X2 =
N∑
i=1

(
εi
σi

)2

=
N∑
i=1

(
yi − ηi
σi

)2

(A.6)

is a sum of N independent squared standard normal variables and thus equal to a chi-
square variable with N degrees of freedom. Here, the estimated values η̂i as obtained
from the minimization instead of the unknown ηi can be used, leading to the weighted
sum of squared residuals

X2
min =

N∑
i=1

(
ε̂i
σi

)2

=
N∑
i=1

(
yi − η̂i
σi

)2

. (A.7)

Analogously, it can be shown that X2
min is equal to a sum of (N-L) independent squared

standard normal variables and thus a chi-square variable with (N-L) degrees of freedom.
Note that this only applies to linear LS estimators. For a discussion of non-linear cases
we refer to [273].
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A.1.2. Goodness of Fit

Since the weighted sum of squared residuals X2
min in Equation (A.7) for normally

distributed measurements yi follows a chi-square distribution, it provides a measure of
the goodness of fit. In case of ν degrees of freedom (also called ν-constrained fit) the
chi-square probability Pχ2 corresponding to the contents of the chi-square p. d. f f(u; ν)
between the values u = X2

min and u =∞ can be obtained as

Pχ2 =
∫ ∞
X2

min

f(u; ν)du = 1− F (X2
min; ν) , (A.8)

with F (X2
min; ν) being the cumulative chi-square distribution for ν degrees of freedom. Pχ2

corresponds to the probability for obtaining a higher value for X2
min if a new minimization

with similar measurements and the same model is performed. It follows that a large value
for Pχ2 (corresponding to a small X2

min) means a good fit and vice versa.
However, a large value of X2

min need not necessarily be due to an incorrect fit model, but
may be due to a large contribution from a few of the N measurements. In such cases
an investigation of the residuals ε̂ = yi − η̂i is helpful. In order to allow for different
accuracies, the examination of the fit should be done in terms of the pull

zi = ε̂i
σ(ε̂i)

, (A.9)

which takes the standard deviation σ(ε̂i) into account. If the observations are uncorrelated
(note that yi and η̂i are fully, positively correlated), one can write

σ2(ε̂i) = Vii(y − η̂) = Vii(y)− 2 cov (y, η̂)ii + Vii(η̂)

= Vii(y)− Vii(η̂) . (A.10)

This leads to the i-th pull, which is in agreement with Equation (4.15):

zi = yi − η̂i√
σ2(yi)− σ2(η̂i)

. (A.11)

It is assumed to follow a Gaussian distribution with unit width centered at x = 0. A
shift relatively to zero indicates a bias in the i-th observation, whereas a substantially
broader (narrower) width indicates that the error in the i-th observation has probably
consistently been taken too small (large).
In particle physics, the observables η in an LS estimation are usually connected
by constraints, e.g. by energy and momentum conservation. In such cases, different
approaches can be used to solve the new minimization problem. One approach is the
method of Lagrangian multipliers, where the constrainedX2 minimization is reformulated
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into an unconstrained minimization by increasing the number of unknowns by adding a
set of Lagrange multipliers corresponding to the number of constraints. This method is
used in the kinematic fit in BESIII [234].

A.2. Results for e+e− → φK+K−, e+e− → φK0
SK0

S and
e+e− → pp̄η′

Table A.1.: Systematic uncertainties in % for each center-of-mass energy
√
s for the reaction

e+e− → φK+K− obtained from this analysis due to the choice of the background shape fBkg and
the selection condition on the χ2

4C value, as well as the total uncorrelated systematic uncertainty,
including luminosity and tracking efficiency from Table 5.2.

√
s / GeV fBkg χ2

4C Total
√
s / GeV fBkg χ2

4C Total

3.7730 1.84 0.26 4.52 4.3121 0.18 0.92 4.23
3.8695 2.44 0.68 4.84 4.3374 1.00 0.52 4.28
4.0076 1.65 0.65 4.49 4.3583 0.09 0.30 4.13
4.1285 0.31 0.82 4.21 4.3774 0.50 0.81 4.23
4.1574 0.16 0.42 4.15 4.3964 0.13 0.82 4.21
4.1784 0.39 0.14 4.14 4.4156 0.39 0.61 4.19
4.1888 0.15 0.53 4.16 4.4362 0.06 1.14 4.28
4.1989 0.46 0.26 4.16 4.4671 2.03 0.41 4.62
4.2091 0.07 0.54 4.16 4.5271 2.25 0.51 4.73
4.2187 0.49 0.70 4.21 4.5995 0.17 0.75 4.19
4.2263 0.53 0.41 4.18 4.6151 1.82 1.79 4.85
4.2357 0.19 0.36 4.14 4.6304 0.25 0.88 4.22
4.2438 0.53 0.44 4.18 4.6431 0.09 0.87 4.22
4.2580 0.29 0.56 4.17 4.6639 0.94 0.49 4.26
4.2666 0.49 0.50 4.18 4.6842 0.49 0.56 4.19
4.2776 0.17 0.85 4.21 4.7008 0.99 0.94 4.34
4.2879 0.86 0.59 4.25
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A.2. Results for e+e− → φK+K−, e+e− → φK0
SK0

S and e+e− → pp̄η′

Table A.2.: Center-of-mass energies
√
s, luminosities L, number of observed events Nobs,

efficiencies ε, radiation correction factors (1 + δr), vacuum polarization correction factors (1 + δv)
and calculated Born cross sections σb for the process e+e− → φK+K−, including lower and upper
statistical as well as systematic uncertainties.

√
s / GeV L / pb−1 Nobs ε / % (1 + δr) (1 + δv) σb / pb

3.7730 2931.8 7329.2+94.6
−92.9 35.8± 0.2 0.8295 1.0560 16.19+0.24

−0.23 ± 0.73
3.8695 224.0 452.5+24.1

−22.4 34.7± 0.2 0.8889 1.0506 12.68+0.68
−0.63 ± 0.61

4.0076 482.0 825.3+32.5
−30.8 33.7± 0.2 0.9390 1.0441 10.53+0.43

−0.41 ± 0.47
4.1285 401.5 590.3+27.4

−25.7 32.4± 0.2 0.9675 1.0525 9.06+0.43
−0.41 ± 0.38

4.1574 408.7 633.9+28.4
−26.7 32.4± 0.2 0.9739 1.0533 9.48+0.44

−0.41 ± 0.39
4.1784 3189.0 4572.5+74.9

−73.2 32.6± 0.2 0.9783 1.0541 8.67+0.17
−0.17 ± 0.36

4.1888 524.6 754.9+30.9
−29.2 32.6± 0.2 0.9801 1.0558 8.68+0.37

−0.35 ± 0.36
4.1989 526.0 785.2+31.6

−29.9 32.3± 0.2 0.9823 1.0564 9.05+0.38
−0.36 ± 0.38

4.2091 518.0 694.2+29.6
−27.9 31.6± 0.2 0.9846 1.0568 8.28+0.37

−0.35 ± 0.34
4.2187 514.6 673.6+29.2

−27.5 32.1± 0.2 0.9866 1.0563 7.94+0.36
−0.34 ± 0.33

4.2263 1056.4 1390.2+41.6
−39.9 33.1± 0.2 0.9882 1.0564 7.74+0.25

−0.24 ± 0.32
4.2357 530.3 715.6+30.1

−28.4 32.2± 0.2 0.9902 1.0555 8.14+0.35
−0.34 ± 0.34

4.2438 538.1 659.4+29.4
−27.7 32.1± 0.2 0.9919 1.0555 7.42+0.34

−0.32 ± 0.31
4.2580 828.4 978.9+35.4

−33.6 32.9± 0.2 0.9951 1.0536 6.96+0.26
−0.25 ± 0.29

4.2666 531.1 697.3+29.7
−28.0 32.7± 0.2 0.9970 1.0532 7.76+0.34

−0.32 ± 0.32
4.2776 175.7 241.6+17.5

−15.8 31.4± 0.2 0.9990 1.0530 8.47+0.62
−0.56 ± 0.36

4.2879 502.4 577.7+27.2
−25.5 31.4± 0.2 1.0010 1.0527 7.07+0.34

−0.32 ± 0.30
4.3121 501.2 583.1+27.5

−25.7 31.9± 0.2 1.0056 1.0522 7.00+0.34
−0.32 ± 0.30

4.3374 505.0 556.2+26.5
−24.8 31.0± 0.2 1.0105 1.0508 6.81+0.33

−0.31 ± 0.29
4.3583 543.9 604.6+27.6

−25.9 33.1± 0.2 1.0141 1.0511 6.41+0.30
−0.28 ± 0.27

4.3774 522.7 593.3+27.5
−25.8 32.4± 0.2 1.0177 1.0513 6.65+0.32

−0.30 ± 0.28
4.3964 507.8 530.2+26.1

−24.4 32.0± 0.2 1.0214 1.0510 6.17+0.31
−0.29 ± 0.26

4.4156 1043.9 1114.1+37.3
−35.6 32.4± 0.2 1.0244 1.0524 6.21+0.22

−0.21 ± 0.26
4.4362 569.9 619.2+28.2

−26.5 32.5± 0.2 1.0275 1.0537 6.27+0.29
−0.28 ± 0.27

4.4671 111.1 93.4+11.6
−9.9 32.6± 0.2 1.0325 1.0548 4.81+0.60

−0.51 ± 0.22
4.5271 112.1 97.8+11.5

−9.8 33.2± 0.2 1.0427 1.0545 4.86+0.57
−0.49 ± 0.23

4.5995 586.9 533.4+26.0
−24.3 32.2± 0.2 1.0543 1.0546 5.16+0.26

−0.24 ± 0.22
4.6151 102.5 69.3+9.9

−8.2 32.7± 0.2 1.0569 1.0545 3.77+0.54
−0.45 ± 0.18

4.6304 511.1 424.3+23.5
−21.8 32.4± 0.2 1.0592 1.0544 4.66+0.26

−0.24 ± 0.20
4.6431 541.4 407.0+23.0

−21.3 31.9± 0.2 1.0612 1.0544 4.28+0.24
−0.23 ± 0.18

4.6639 523.6 398.5+22.7
−21.0 31.9± 0.2 1.0644 1.0544 4.32+0.25

−0.23 ± 0.18
4.6842 1631.7 1295.0+40.5

−38.7 32.0± 0.2 1.0677 1.0545 4.48+0.14
−0.14 ± 0.19

4.7008 526.2 389.6+22.7
−21.0 31.9± 0.2 1.0704 1.0545 4.18+0.24

−0.23 ± 0.18
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Table A.3.: Systematic uncertainties in % for each center-of-mass energy
√
s for the reaction

e+e− → φK0
SK0

S obtained from this analysis due to the selection condition on the χ2
6C value

and the K0
S reconstruction efficiency, as well as the total uncorrelated systematic uncertainty,

including luminosity and tracking efficiency from Table 5.2.

√
s / GeV χ2

6C K0
S Total

√
s / GeV χ2

6C K0
S Total

3.7730 0.23 2.11 3.08 4.3121 0.53 1.97 3.03
3.8695 0.54 2.00 3.05 4.3374 0.59 1.96 3.03
4.0076 0.31 1.99 3.01 4.3583 0.46 1.97 3.01
4.1285 0.56 1.98 3.04 4.3774 0.51 1.96 3.02
4.1574 0.41 1.97 3.01 4.3964 0.58 1.96 3.03
4.1784 0.16 1.98 2.99 4.4156 0.46 1.96 3.01
4.1888 0.49 1.98 3.02 4.4362 0.44 1.97 3.01
4.1989 0.52 1.97 3.03 4.4671 0.58 1.96 3.03
4.2091 0.47 1.98 3.02 4.5271 0.57 1.96 3.03
4.2187 0.15 1.98 2.99 4.5995 0.52 1.94 3.01
4.2263 0.56 1.98 3.04 4.6151 0.51 1.94 3.01
4.2357 0.54 1.98 3.03 4.6304 0.51 1.95 3.01
4.2438 0.50 1.97 3.03 4.6431 0.50 1.93 3.00
4.2580 0.31 1.97 3.00 4.6639 0.56 1.94 3.01
4.2666 0.38 1.97 3.00 4.6842 0.37 1.92 2.97
4.2776 0.59 1.97 3.04 4.7008 0.62 1.93 3.01
4.2879 0.46 1.96 3.01
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A.2. Results for e+e− → φK+K−, e+e− → φK0
SK0

S and e+e− → pp̄η′

Table A.4.: Center-of-mass energies
√
s, luminosities L, number of observed events Nobs,

efficiencies ε, radiation correction factors (1 + δr), vacuum polarization correction factors (1 + δv)
and calculated Born cross sections σb for the process e+e− → φK0

SK0
S , including lower and upper

statistical as well as systematic uncertainties.

√
s / GeV L / pb−1 Nobs ε / % (1 + δr) (1 + δv) σb / pb

3.7730 2931.8 360.8+20.9
−19.2 18.0± 0.1 0.8281 1.0560 3.31+0.19

−0.18 ± 0.10
3.8695 224.0 27.1+5.9

−4.3 17.6± 0.1 0.8864 1.0506 3.14+0.69
−0.50 ± 0.10

4.0076 482.0 56.6+8.2
−6.6 16.2± 0.2 0.9346 1.0441 3.16+0.46

−0.37 ± 0.09
4.1285 401.5 34.7+6.6

−5.0 15.8± 0.1 0.9611 1.0525 2.30+0.44
−0.33 ± 0.07

4.1574 408.7 27.1+5.9
−4.3 15.2± 0.1 0.9667 1.0533 1.82+0.40

−0.29 ± 0.05
4.1784 3189.0 289.6+18.6

−16.9 15.9± 0.1 0.9710 1.0541 2.37+0.16
−0.14 ± 0.07

4.1888 524.6 49.9+7.7
−6.1 16.1± 0.2 0.9727 1.0558 2.44+0.38

−0.30 ± 0.07
4.1989 526.0 42.3+7.2

−5.6 15.9± 0.1 0.9746 1.0564 2.09+0.35
−0.28 ± 0.06

4.2091 518.0 47.1+7.5
−5.9 16.2± 0.1 0.9765 1.0568 2.31+0.37

−0.29 ± 0.07
4.2187 514.6 48.0+7.6

−6.0 16.0± 0.1 0.9784 1.0563 2.39+0.38
−0.30 ± 0.07

4.2263 1056.4 79.4+9.5
−7.9 16.0± 0.1 0.9798 1.0564 1.92+0.23

−0.19 ± 0.06
4.2357 530.3 51.8+7.8

−6.3 16.5± 0.2 0.9820 1.0555 2.43+0.37
−0.30 ± 0.07

4.2438 538.1 35.7+6.7
−5.1 15.8± 0.1 0.9832 1.0555 1.72+0.32

−0.25 ± 0.05
4.2580 828.4 69.9+9.0

−7.4 16.1± 0.1 0.9867 1.0536 2.14+0.28
−0.23 ± 0.06

4.2666 531.1 33.8+6.5
−4.9 16.0± 0.1 0.9882 1.0532 1.62+0.31

−0.24 ± 0.05
4.2776 175.7 13.8+4.5

−2.9 17.0± 0.2 0.9898 1.0530 1.88+0.61
−0.40 ± 0.06

4.2879 502.4 37.6+6.8
−5.2 15.7± 0.1 0.9918 1.0527 1.94+0.35

−0.27 ± 0.06
4.3121 501.2 35.7+6.7

−5.1 15.8± 0.1 0.9955 1.0522 1.82+0.34
−0.26 ± 0.06

4.3374 505.0 25.2+5.7
−4.2 14.9± 0.1 1.0001 1.0508 1.36+0.31

−0.22 ± 0.04
4.3583 543.9 45.2+7.4

−5.8 16.7± 0.2 1.0032 1.0511 2.01+0.33
−0.26 ± 0.06

4.3774 522.7 41.4+7.1
−5.5 16.1± 0.1 1.0063 1.0513 1.98+0.34

−0.27 ± 0.06
4.3964 507.8 33.8+6.5

−4.9 16.0± 0.1 1.0094 1.0510 1.67+0.32
−0.24 ± 0.05

4.4156 1043.9 75.6+9.3
−7.7 16.7± 0.1 1.0118 1.0524 1.72+0.21

−0.18 ± 0.05
4.4362 569.9 32.8+6.4

−4.8 15.6± 0.1 1.0147 1.0537 1.47+0.29
−0.22 ± 0.04

4.4671 111.1 8.1+3.7
−2.1 18.7± 0.2 1.0193 1.0548 1.55+0.69

−0.40 ± 0.05
4.5271 112.1 3.4+2.7

−1.2 18.0± 0.2 1.0282 1.0545 0.66+0.52
−0.22 ± 0.02

4.5995 586.9 30.0+6.2
−4.6 16.5± 0.1 1.0382 1.0546 1.20+0.25

−0.18 ± 0.04
4.6151 102.5 4.3+2.9

−1.4 16.9± 0.1 1.0403 1.0545 0.97+0.65
−0.31 ± 0.03

4.6304 511.1 21.4+5.4
−3.8 15.5± 0.1 1.0424 1.0544 1.04+0.26

−0.18 ± 0.03
4.6431 541.4 19.5+5.2

−3.6 16.0± 0.1 1.0440 1.0544 0.87+0.23
−0.16 ± 0.03

4.6639 523.6 31.9+6.3
−4.8 15.6± 0.1 1.0466 1.0544 1.50+0.30

−0.23 ± 0.05
4.6842 1631.7 61.3+8.5

−6.9 15.3± 0.1 1.0492 1.0545 0.94+0.13
−0.11 ± 0.03

4.7008 526.2 22.4+5.5
−3.9 14.0± 0.1 1.0515 1.0545 1.16+0.28

−0.20 ± 0.04
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Table A.5.: Center-of-mass energies
√
s, radiation correction factors (1+δr), number of observed

events Ni, efficiencies εi, and combined Born cross sections σb for the process e+e− → pp̄η′
with η′ → ηπ+π− (1) and η′ → γπ+π− (2), including combined statistical and systematic
uncertainties.

√
s / GeV (1 + δr) N1 ε1 / % N2 ε2 / % σb / pb

3.7730 0.8244 5.3+6.7
−5.0 23.4± 0.1 10.1+16.5

−14.8 31.5± 0.1 0.35+0.04
−0.04

4.0076 0.9134 1.5+2.6
−1.0 21.9± 0.1 4.0+6.0

−4.4 29.0± 0.1 0.31+0.07
−0.06

4.1285 0.9227 2.3+3.3
−1.7 21.2± 0.1 3.1+5.2

−3.5 28.1± 0.1 0.34+0.09
−0.06

4.1574 0.9185 1.8+2.8
−1.3 21.6± 0.1 3.0+5.0

−3.3 28.3± 0.1 0.26+0.09
−0.05

4.1784 0.9100 6.7+7.9
−6.3 21.5± 0.1 8.4+11.8

−10.1 28.3± 0.1 0.33+0.03
−0.03

4.1888 0.9033 2.7+3.5
−2.0 21.9± 0.1 3.7+6.1

−4.4 28.7± 0.1 0.36+0.08
−0.06

4.1989 0.8981 2.1+3.3
−1.7 22.5± 0.1 5.2+6.7

−5.1 29.2± 0.1 0.50+0.07
−0.07

4.2092 0.9045 2.9+3.7
−2.2 21.6± 0.1 3.2+5.3

−3.6 28.8± 0.1 0.36+0.07
−0.06

4.2187 0.9418 2.3+3.3
−1.7 21.7± 0.1 3.9+5.7

−4.0 27.8± 0.1 0.34+0.08
−0.05

4.2263 0.9905 2.7+3.9
−2.2 21.7± 0.1 5.8+8.0

−6.3 27.5± 0.1 0.30+0.04
−0.04

4.2357 1.0295 2.2+3.2
−1.7 20.9± 0.1 2.9+5.3

−3.6 26.2± 0.1 0.22+0.06
−0.04

4.2438 1.0352 1.7+2.7
−1.2 20.3± 0.1 2.3+4.8

−3.2 25.5± 0.1 0.14+0.06
−0.03

4.2580 1.0231 2.5+3.6
−2.0 20.5± 0.1 3.7+6.0

−4.3 26.1± 0.1 0.20+0.05
−0.03

4.2668 1.0140 2.2+3.0
−1.5 20.3± 0.1 3.4+5.5

−3.8 26.0± 0.1 0.26+0.07
−0.04

4.2777 1.0045 2.0+2.8
−1.3 20.1± 0.1 2.2+3.7

−2.2 25.9± 0.1 0.51+0.13
−0.11

4.2879 0.9981 1.9+2.9
−1.4 19.8± 0.1 3.4+5.3

−3.7 26.2± 0.1 0.25+0.07
−0.05

4.3121 0.9882 1.9+3.0
−1.4 20.1± 0.1 3.7+5.4

−3.7 26.4± 0.1 0.30+0.07
−0.05

4.3374 0.9831 1.5+2.4
−0.9 20.6± 0.1 2.9+4.8

−3.1 26.9± 0.1 0.17+0.06
−0.04

4.3583 0.9807 1.1+2.2
−0.8 21.1± 0.1 3.5+5.5

−3.9 27.4± 0.1 0.19+0.05
−0.05

4.3774 0.9796 2.2+3.1
−1.6 20.6± 0.1 3.8+5.5

−3.9 26.9± 0.1 0.31+0.07
−0.05

4.3965 0.9792 1.6+2.6
−1.0 20.6± 0.1 0.0+3.8

−50.5 27.2± 0.1 0.10+0.04
−0.03

4.4156 0.9785 2.9+3.8
−2.2 21.0± 0.1 5.7+7.7

−6.1 27.2± 0.1 0.32+0.04
−0.04

4.4362 0.9787 2.3+3.2
−1.6 20.9± 0.1 2.4+4.2

−2.6 27.2± 0.1 0.19+0.05
−0.04

4.5271 0.9819 0.9+2.0
−0.5 21.2± 0.1 1.5+2.8

−1.4 27.4± 0.1 0.23+0.18
−0.07

4.5995 0.9854 2.0+2.8
−1.3 21.3± 0.1 3.4+5.0

−3.4 27.2± 0.1 0.21+0.06
−0.04

4.6304 0.9870 2.1+2.9
−1.4 20.4± 0.1 2.7+4.5

−2.9 26.9± 0.1 0.20+0.06
−0.04

4.6431 0.9874 2.7+3.5
−2.0 20.7± 0.1 3.6+5.2

−3.6 27.1± 0.1 0.33+0.06
−0.05

4.6639 0.9886 1.2+2.1
−0.6 20.7± 0.1 3.2+4.8

−3.2 26.8± 0.1 0.17+0.05
−0.04

4.6842 0.9897 3.0+3.9
−2.3 20.7± 0.1 5.5+7.7

−6.0 27.2± 0.1 0.19+0.03
−0.03

4.7008 0.9904 2.2+3.5
−1.5 20.8± 0.1 3.7+5.2

−3.5 26.9± 0.1 0.30+0.07
−0.05
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A.3. Invariant Mass Spectra of φ Meson Candidates for e+e− → φK+K−
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A.3. Invariant Mass Spectra of φ Meson Candidates for
e+e− → φK+K−
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Figure A.1.: Invariant mass spectrum of φ candidates for data from
√
s = 3.7730 GeV to√

s = 4.1784 GeV. A fit (red line) with a Breit-Wigner function convolved with a Gaussian
function as signal (green line) and a first-order polynomial as background (dashed blue line)
is applied. The green and blue shaded areas depict the signal regions in which the number of
observed events Nobs is extracted and for which a PWA is performed to determine a global
efficiency, respectively.
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A.3. Invariant Mass Spectra of φ Meson Candidates for e+e− → φK+K−
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Figure A.2.: Invariant mass spectrum of φ candidates for data from
√
s = 4.1888 GeV to√

s = 4.2357 GeV. A fit (red line) with a Breit-Wigner function convolved with a Gaussian
function as signal (green line) and a first-order polynomial as background (dashed blue line)
is applied. The green and blue shaded areas depict the signal regions in which the number of
observed events Nobs is extracted and for which a PWA is performed to determine a global
efficiency, respectively.
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Figure A.3.: Invariant mass spectrum of φ candidates for data from
√
s = 4.2438 GeV to√

s = 4.3121 GeV. A fit (red line) with a Breit-Wigner function convolved with a Gaussian
function as signal (green line) and a first-order polynomial as background (dashed blue line)
is applied. The green and blue shaded areas depict the signal regions in which the number of
observed events Nobs is extracted and for which a PWA is performed to determine a global
efficiency, respectively.
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Figure A.4.: Invariant mass spectrum of φ candidates for data from
√
s = 4.3374 GeV to√

s = 4.4671 GeV. A fit (red line) with a Breit-Wigner function convolved with a Gaussian
function as signal (green line) and a first-order polynomial as background (dashed blue line)
is applied. The green and blue shaded areas depict the signal regions in which the number of
observed events Nobs is extracted and for which a PWA is performed to determine a global
efficiency, respectively.
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Figure A.5.: Invariant mass spectrum of φ candidates for data from
√
s = 4.5271 GeV to√

s = 4.6639 GeV. A fit (red line) with a Breit-Wigner function convolved with a Gaussian
function as signal (green line) and a first-order polynomial as background (dashed blue line)
is applied. The green and blue shaded areas depict the signal regions in which the number of
observed events Nobs is extracted and for which a PWA is performed to determine a global
efficiency, respectively.
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Figure A.6.: Invariant mass spectrum of φ candidates for data from
√
s = 4.6842 GeV to√

s = 4.7008 GeV. A fit (red line) with a Breit-Wigner function convolved with a Gaussian
function as signal (green line) and a first-order polynomial as background (dashed blue line)
is applied. The green and blue shaded areas depict the signal regions in which the number of
observed events Nobs is extracted and for which a PWA is performed to determine a global
efficiency, respectively.
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Figure A.7.: Invariant mass spectrum of φ candidates for data from
√
s = 3.7730 GeV to√

s = 4.1784 GeV. A fit (red line) with a Breit-Wigner function convolved with a Gaussian
function as signal is applied. The green and blue shaded areas depict the signal regions in which
the number of observed events Nobs is extracted and for which a PWA is performed to determine
a global efficiency, respectively.
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Figure A.8.: Invariant mass spectrum of φ candidates for data from
√
s = 4.1888 GeV to√

s = 4.2357 GeV. A fit (red line) with a Breit-Wigner function convolved with a Gaussian
function as signal is applied. The green and blue shaded areas depict the signal regions in which
the number of observed events Nobs is extracted and for which a PWA is performed to determine
a global efficiency, respectively.
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Figure A.9.: Invariant mass spectrum of φ candidates for data from
√
s = 4.2438 GeV to√

s = 4.3121 GeV. A fit (red line) with a Breit-Wigner function convolved with a Gaussian
function as signal is applied. The green and blue shaded areas depict the signal regions in which
the number of observed events Nobs is extracted and for which a PWA is performed to determine
a global efficiency, respectively.

134



A.4. Invariant Mass Spectra of φ Meson Candidates for e+e− → φK0
SK0

S

1 1.05 1.1 1.15 1.2
)2) (GeV/c-K+m(K

0

0.5

1

1.5

2

2.5

3

3.5

)2
E

ve
n

ts
 / 

(0
.0

01
 G

eV
/c

 data (4.3374 GeV)  fit to data

 -2ln(L)/NDF = 75.72 / 263 = 0.29 

 signal  

obs N  PWA

1 1.05 1.1 1.15 1.2
)2) (GeV/c-K+m(K

0

1

2

3

4

5

6

7

8

9

)2
E

ve
n

ts
 / 

(0
.0

01
 G

eV
/c

 data (4.3774 GeV)  fit to data

 -2ln(L)/NDF = 91.80 / 263 = 0.35 

 signal  

obs N  PWA

1 1.05 1.1 1.15 1.2
)2) (GeV/c-K+m(K

0

1

2

3

4

5

6

7

)2
E

ve
n

ts
 / 

(0
.0

01
 G

eV
/c

 data (4.3964 GeV)  fit to data

 -2ln(L)/NDF = 65.39 / 263 = 0.25 

 signal  

obs N  PWA

1 1.05 1.1 1.15 1.2
)2) (GeV/c-K+m(K

0

2

4

6

8

10

12

14

)2
E

ve
n

ts
 / 

(0
.0

01
 G

eV
/c

 data (4.4156 GeV)  fit to data

 -2ln(L)/NDF = 105.18 / 263 = 0.40 

 signal  

obs N  PWA

1 1.05 1.1 1.15 1.2
)2) (GeV/c-K+m(K

0

1

2

3

4

5

6

7

)2
E

ve
n

ts
 / 

(0
.0

01
 G

eV
/c

 data (4.4362 GeV)  fit to data

 -2ln(L)/NDF = 88.75 / 263 = 0.34 

 signal  

obs N  PWA

1 1.05 1.1 1.15 1.2
)2) (GeV/c-K+m(K

0

0.2

0.4

0.6

0.8

1

1.2)2
E

ve
n

ts
 / 

(0
.0

01
 G

eV
/c

 data (4.4671 GeV)  fit to data

 -2ln(L)/NDF = 48.17 / 263 = 0.18 

 signal  

obs N  PWA

Figure A.10.: Invariant mass spectrum of φ candidates for data from
√
s = 4.3374 GeV to√

s = 4.4671 GeV. A fit (red line) with a Breit-Wigner function convolved with a Gaussian
function as signal is applied. The green and blue shaded areas depict the signal regions in which
the number of observed events Nobs is extracted and for which a PWA is performed to determine
a global efficiency, respectively.
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Figure A.11.: Invariant mass spectrum of φ candidates for data from
√
s = 4.5271 GeV to√

s = 4.6639 GeV. A fit (red line) with a Breit-Wigner function convolved with a Gaussian
function as signal is applied. The green and blue shaded areas depict the signal regions in which
the number of observed events Nobs is extracted and for which a PWA is performed to determine
a global efficiency, respectively.
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Figure A.12.: Invariant mass spectrum of φ candidates for data from
√
s = 4.6842 GeV to√

s = 4.7008 GeV. A fit (red line) with a Breit-Wigner function convolved with a Gaussian
function as signal is applied. The green and blue shaded areas depict the signal regions in which
the number of observed events Nobs is extracted and for which a PWA is performed to determine
a global efficiency, respectively.
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A.5. Invariant Mass Spectra of η′ Meson Candidates for
η′ → ηπ+π−
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Figure A.13.: Invariant mass spectrum of η′ → ηπ+π− candidates for data (black dots with error
bars) subset 1 (top left), subset 2 (top right), subset 3 (bottom left) and subset 4 (bottom
right). A fit (red line) with the signal MC shape convolved with a Gaussian function as signal
(green line) and a second-order polynomial as background for (dashed blue line) is applied. The
green shaded area depicts the signal region in which the number of observed events Nobs is
extracted.
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Figure A.14.: Invariant mass spectrum of η′ → ηπ+π− candidates for data from
√
s =

3.7730 GeV to
√
s = 4.1888 GeV. A fit (red line) with the signal MC shape convolved with a

Gaussian function as signal (green line) and a second-order polynomial as background for (dashed
blue line) is applied. The green shaded area depicts the signal region in which the number of
observed events Nobs is extracted.
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Figure A.15.: Invariant mass spectrum of η′ → ηπ+π− candidates for data from
√
s =

4.1989 GeV to
√
s = 4.2438 GeV. A fit (red line) with the signal MC shape convolved with a

Gaussian function as signal (green line) and a second-order polynomial as background for (dashed
blue line) is applied. The green shaded area depicts the signal region in which the number of
observed events Nobs is extracted.
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Figure A.16.: Invariant mass spectrum of η′ → ηπ+π− candidates for data from
√
s =

4.2580 GeV to
√
s = 4.3374 GeV. A fit (red line) with the signal MC shape convolved with a

Gaussian function as signal (green line) and a second-order polynomial as background for (dashed
blue line) is applied. The green shaded area depicts the signal region in which the number of
observed events Nobs is extracted.
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Figure A.17.: Invariant mass spectrum of η′ → ηπ+π− candidates for data from
√
s =

4.3583 GeV to
√
s = 4.5271 GeV. A fit (red line) with the signal MC shape convolved with a

Gaussian function as signal (green line) and a second-order polynomial as background for (dashed
blue line) is applied. The green shaded area depicts the signal region in which the number of
observed events Nobs is extracted.
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Figure A.18.: Invariant mass spectrum of η′ → ηπ+π− candidates for data from
√
s =

4.5995 GeV to
√
s = 4.7008 GeV. A fit (red line) with the signal MC shape convolved with a

Gaussian function as signal (green line) and a second-order polynomial as background for (dashed
blue line) is applied. The green shaded area depicts the signal region in which the number of
observed events Nobs is extracted.
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A.6. Invariant Mass Spectra of η′ Meson Candidates for
η′ → γπ+π−
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Figure A.19.: Invariant mass spectrum of η′ → γπ+π− candidates for data (black dots with error
bars) subset 1 (top left), subset 2 (top right), subset 3 (bottom left) and subset 4 (bottom
right). A fit (red line) with the signal MC shape convolved with a Gaussian function as signal
(green line) and a second-order polynomial as background for (dashed blue line) is applied. The
green shaded area depicts the signal region in which the number of observed events Nobs is
extracted.
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Figure A.20.: Invariant mass spectrum of η′ → γπ+π− candidates for data from
√
s =

3.7730 GeV to
√
s = 4.1888 GeV. A fit (red line) with the signal MC shape convolved with a

Gaussian function as signal (green line) and a second-order polynomial as background for (dashed
blue line) is applied. The green shaded area depicts the signal region in which the number of
observed events Nobs is extracted.
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Figure A.21.: Invariant mass spectrum of η′ → γπ+π− candidates for data from
√
s =

4.1989 GeV to
√
s = 4.2438 GeV. A fit (red line) with the signal MC shape convolved with a

Gaussian function as signal (green line) and a second-order polynomial as background for (dashed
blue line) is applied. The green shaded area depicts the signal region in which the number of
observed events Nobs is extracted.
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Figure A.22.: Invariant mass spectrum of η′ → γπ+π− candidates for data from
√
s =

4.2580 GeV to
√
s = 4.3374 GeV. A fit (red line) with the signal MC shape convolved with a

Gaussian function as signal (green line) and a second-order polynomial as background for (dashed
blue line) is applied. The green shaded area depicts the signal region in which the number of
observed events Nobs is extracted.

147



A. Appendix

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
)2) / (GeV/c-π+πγm(

2

4

6

8

10

-1 )2
) 

/ (
0.

00
5 

G
eV

/c
- π+ πγ

d
N

/d
m

(

 data (4.3583 GeV)  fit to data

 -2ln(L)/NDF = 62.54 / 48 = 1.30 

 signal  background

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
)2) / (GeV/c-π+πγm(

1

2

3

4

5

6

7

8

9-1 )2
) 

/ (
0.

00
5 

G
eV

/c
- π+ πγ

d
N

/d
m

(

 data (4.3774 GeV)  fit to data

 -2ln(L)/NDF = 49.80 / 48 = 1.04 

 signal  background

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
)2) / (GeV/c-π+πγm(

1

2

3

4

5

6

-1 )2
) 

/ (
0.

00
5 

G
eV

/c
- π+ πγ

d
N

/d
m

(

 data (4.3965 GeV)  fit to data

 -2ln(L)/NDF = 63.71 / 48 = 1.33 

 signal  background

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
)2) / (GeV/c-π+πγm(

2

4

6

8

10

12

14

16

18-1 )2
) 

/ (
0.

00
5 

G
eV

/c
- π+ πγ

d
N

/d
m

(

 data (4.4156 GeV)  fit to data

 -2ln(L)/NDF = 40.47 / 48 = 0.84 

 signal  background

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
)2) / (GeV/c-π+πγm(

1

2

3

4

5

6

7

-1 )2
) 

/ (
0.

00
5 

G
eV

/c
- π+ πγ

d
N

/d
m

(

 data (4.4362 GeV)  fit to data

 -2ln(L)/NDF = 61.11 / 48 = 1.27 

 signal  background

0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1
)2) / (GeV/c-π+πγm(

0.5

1

1.5

2

2.5

3

3.5

-1 )2
) 

/ (
0.

00
5 

G
eV

/c
- π+ πγ

d
N

/d
m

(

 data (4.5271 GeV)  fit to data

 -2ln(L)/NDF = 42.55 / 48 = 0.89 

 signal  background

Figure A.23.: Invariant mass spectrum of η′ → γπ+π− candidates for data from
√
s =

4.3583 GeV to
√
s = 4.5271 GeV. A fit (red line) with the signal MC shape convolved with a

Gaussian function as signal (green line) and a second-order polynomial as background for (dashed
blue line) is applied. The green shaded area depicts the signal region in which the number of
observed events Nobs is extracted.
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Figure A.24.: Invariant mass spectrum of η′ → γπ+π− candidates for data from
√
s =

4.5995 GeV to
√
s = 4.7008 GeV. A fit (red line) with the signal MC shape convolved with a

Gaussian function as signal (green line) and a second-order polynomial as background for (dashed
blue line) is applied. The green shaded area depicts the signal region in which the number of
observed events Nobs is extracted.
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