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1 Introduction

Questions such as what lies beyond Earth, how the universe works, and where it originates
have occupied astronomers for many centuries. Over time, the state of research in astron-
omy and astrophysics has continued to evolve. The first significant advance in observable
astronomy was the invention of the optical telescope, which enabled more precise observa-
tion of stars and celestial bodies than with the naked eye. Although optical telescopes were
constantly being improved, the observation range was limited. Electromagnetic radiation
(e.g. infrared, ultraviolet, radio, X-ray, gamma ray radiation) revolutionized research as it
makes the detection of invisible astronomical phenomena possible. However, electromag-
netic radiation is easily absorbed, and the universe becomes opaque to the higher energies
over large distances, limiting our field of view. Nowadays, astronomers observe not only
different forms of electromagnetic radiation, but also cosmic rays, gravitational waves, and
neutrinos, allowing us to explore parts of the universe that are otherwise hidden from view. In
contrast to electromagnetic radiation and cosmic rays, neutrinos are not absorbed or scattered
by matter or deflected by electromagnetic fields, since they are uncharged particles, which
mainly interact with matter via weak interaction. Due to these properties, neutrinos can pro-
vide useful information about their origin. However, as a consequence, their detection is
challenging. In order to detect high-energy astrophysical neutrinos, a large detector volume
is required, as the IceCube Neutrino Observatory [1]], which consists of 1 km? antarctic ice
instrumented with photon detectors called digital optical modules (DOMs). These modules
equipped with photomultiplier-tubes (PMTs) can detect Cherenkov radiation which is emit-
ted by secondary charged particles produced through the interaction of neutrinos with the
ice. In the near future, a new extension called IceCube Upgrade [2], will be deployed with
new optical modules, among which is the multi-PMT digital optical module (mDOM) [3]]
that will be considered in this thesis. The complex geometry and optical properties of the
mDOM, compared to the standard DOM, require the development of new algorithms—for
example, for assigning photons that reach the vicinity of an mDOM to the corresponding
PMT in IceCube simulations—since the current IceCube simulation [4] cannot capture this
complexity. As demonstrated in [S]], for the case of the IceCube-Gen2DC-16 optical mod-
ule [6]], neural networks represent a strong candidate for this task, given their fast inference
times and ability to excel in high-dimensional problems. The approach is to train a neural
network that incorporates the inherent symmetries of the optical module on very detailed
Geant4 simulations, in order to predict the detection probability on any of the PMTs of the
optical module for a given incoming photon. This thesis takes that work as a starting point
and expands it to implement the mDOM. For this purpose, the structure of this work is as
follows: First a brief introduction into IceCube, with emphasis on IceCube Upgrade, and the
corresponding neutrino physics will be provided in chapter[2] After that, the basics of neural
networks will be discussed in chapter 3| which are necessary for the description of the neural
network presented later in chapter ] To train and evaluate the neural network, the Geant4
simulation of the mDOM [[7]] described in chapter 5| will be used. Finally, the performance of
the neural network is presented and discussed in chapter [6] which includes the accuracy for
an mDOM with and without harness and the inference time improved by several techniques.






2 Neutrino astronomy & IceCube

The purpose of neutrino astronomy is to search for nearly massless subatomic particles called
neutrinos, which provide useful information on astrophysical sources and phenomena [§].
These particles can be detected with large water- or ice-based Cherenkov detectors, such as
KM3NeT [9], Super-Kamiokande [10] or IceCube [1]], which is the discussed detector of this
thesis. In order to understand the detection mechanism of the IceCube Neutrino Observatory,
it is necessary to get acquainted with the theory of neutrino physics. After a brief introduc-
tion into neutrino properties, the detection and potential sources of high-energy neutrinos,
an outline of IceCube will be given. Special emphasis is placed on its extension IceCube
Upgrade [2], which deploys mDOMs analyzed in this thesis.

2.1 Neutrino properties and interaction with matter

Neutrinos are elementary particles in the Standard Model of particle physics where they are
part of the lepton family. They can appear in three flavors, being the electron neutrino v,
muon neutrino v, and the tauon neutrino v, where each neutrino flavor also has a corre-
sponding antiparticle. After propagation through matter or vacuum their flavor can change
periodically, a phenomenon known as neutrino oscillation [11]], which proves that neutrinos
are not massless. However, this mass is almost negligible, with a reported 90% upper limit
value of 0.45eV/ c? [12]] as measured by the KATRIN experimen [[13]]. Neutrinos are also
uncharged particles. As a result, they do not undergo electromagnetic interactions, while
gravitational interactions are negligible. The most significant interaction of neutrinos is the
weak interaction, which manifests, for example, in 5-decays. In fact, neutrinos were first
postulated by Wolfgang Pauli in 1930 to explain the continuous energy spectrum observed in
these decays [14].

In the context of the IceCube experiment, typical neutrino energies are in the order of 10 GeV
to 10 PeV [15]]. At energies greater than a few GeV [16] neutrinos interact primarily through
deep-inelastic scattering with nucleons, where the scattering process can follow two differ-
ent mechanisms of weak interaction, the charged current and the neutral current [17)]. The
charged current is mediated by the exchange of a W™ or a W™~ boson, whereas the neutral
current is mediated by the exchange of a Z° boson. The two different currents can be de-
scribed as follows, where [ = e, u, T denotes the corresponding flavor, N = p, n the nucleon
and X a hadronic shower:

+
charged current: v; 4+ N Y+ x ,

0
neutral current: v, + N z, v+ X. 2.1.1)

According to eq. (2.1.1), deep-inelastic scattering of neutrinos results in a generation of
hadronic shower consisting of charged particles and a production of a corresponding lep-
ton or neutrino, depending on the current. Furthermore, the above equations are also valid
for antiparticles 7 and [.

"KArlsruhe TRItium Neutrino experiment
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2.2 Neutrino detection through Cherenkov radiation

As mentioned in section 2.1} neutrinos interact
mainly through the weak interaction. Thus, neu-
trinos cannot be detected directly. Neverthe-
less, neutrinos can produce charged secondary
leptons according to eq. (2.1.T)) during their in-
teraction with matter. These particles can, in
turn, emit photons via the Cherenkov effect [19],
which can be detected by optical modules con-
sisting of photomultiplier-tubes (PMTs). When
charged particles with velocity v, travel through
a dielectric medium, for example ice in case of
IceCube, the particles can induce dipoles in the
medium along its trajectory. As the dipoles re-
lax, they emit spherical electromagnetic waves
propagating through the medium with a velocity
¢’ = ¢/n, where cis the speed of light in vacuum
and n the refracti.ve ipdex of the medium. If the structively, forming a wavefront (blue) at the
speed of the particle is lower than the phase ve-  perenkov angle @ with respect to the tra-
locity of the medium (v, < '), the electromag- jectory of the charged particle (black arrow),
netic waves interfere destructively. However, if whose velocity v, exceeds the phase velocity
the particle is faster than the velocity of light in of light in the medium v,,. Taken from [18].
the medium, adjacent spherical waves can inter-

fere constructively forming a conical wavefront with velocity v,, = ¢/n, which is illustrated
in fig. [2.2.1] This effect is called Cherenkov effect and was experimentally verified by Pavel
Cherenkov in 1934 [19].

The shape of the conical wavefront can be characterized by the opening angle ¢ with respect
to the particle trajectory. The opening angle shown in fig. [2.2.1| can be calculated by the
following formula, where (3 is equal to v, /c:

FIGURE 2.2.1: Schematic illustration of the
Cherenkov effect. Spherical electromagnetic
waves (red) are produced and interfere con-

Ul 1
p

2.3 Neutrino sources

Neutrinos detected on Earth originate from a wide variety of sources [20]]. Typical energies
of neutrinos observed by IceCube and its future extensions (see section [2.5) range from a
few GeV to EeV. This implies that IceCube is mostly sensitive to atmospheric and high-
energy astrophysical neutrinos. The lower energies are dominated by atmospheric neutrinos,
which are mainly generated by pion decays resulting from cosmic ray interactions in the
Earth’s atmosphere. In contrast, the flux of high-energy astrophysical neutrinos decreases
less steeply with energy than the atmospheric component and becomes dominant from about
10 to 100 TeV onward. These neutrinos are thought to originate from the same sources that
accelerate cosmic rays, and their identification is therefore of great importance. As of the time
of writing this thesis, the three sources with the highest significance identified by IceCube
are the blazar TXS 0506+056 [21]], the active galaxy NGC 1068 [22], and the Milky Way
galaxy [23]].
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2.4 The IceCube Neutrino Observatory

The AMANDAE| neutrino telescope [24], the predecessor of IceCube, built at the geograph-
ical South Pole in the mid 1990s, demonstrated that the clear Antarctic ice was suitable as
a detection medium for high-energy neutrinos [1]]. Based on its results, IceCube was de-
signed and constructed at the Amundsen-Scott South Pole Station where it was completed in
2011 [235]] as the first cubic-kilometer-scale neutrino detector worldwide. The primary pur-
pose has been the discovery of astrophysical neutrinos and their sources [25]]. Furthermore,
it contributes e.g. to the detection of dark matter, searches for exotic particles, studies of neu-
trino oscillations and also plays a key role in multi-messenger astronomy, collaborating with
optical, X-ray, gamma-ray, radio, and gravitational wave observatories to provide a more
comprehensive view of astrophysical objects.

IceCube Lab

x_r . IceTop

81 stations / 162 tanks
324 optical sensors

50m ——

IceCube In-Ice Array

86 strings including DeepCore
5160 optical sensors

1450m |

H
W
2450 m \

2820 m

DeepCore

8 strings optimized for lower energies +
7 standard central strings

480 + 420 optical sensors

Eiffel Tower
324 m

Bedrock

FIGURE 2.4.1: The IceCube Neutrino Observatory with its in-ice array,
DeepCore sub-array and IceTop air shower array. The colors visualize dif-
ferent deployment seasons of according stations or strings. Taken from [25].

As illustrated in fig. 2.4.1] the IceCube detector consists of four parts, described in the fol-
lowing [25]]. The first part is the in-ice array. It consists of 86 strings, each equipped with
60 Digital Optical Modules (DOMs), each containing a downward-facing 10-inch diameter
PMT housed in a glass vessel [26]]. 78 of the 86 strings form the primary in-ice array, which
is deployed in a hexagonal grid with an average horizontal spacing of 125 m and is opti-
mized to detect neutrinos in the energy range O(TeV)-O(PeV). DeepCore [27] is a denser
sub-array with an average string spacing of 72 m (down to 40 m in the core region). The
depths between 2000 m and 2100 m are not instrumented, as optical scattering and absorption
significantly affect the detection of Cherenkov radiation due to dust in the ice [28]]. In total,
DeepCore consists of 8 specialized strings in addition to 7 strings from the main array and
is optimized for neutrino detection in the energy range O(10 GeV)-O(100 GeV), improving
sensitivity, for example, to atmospheric neutrino oscillations.

The third component is IceTop [29], a surface array consisting of 162 tanks filled with ice,
each instrumented with two IceCube DOMs. IceTop can measure primary cosmic rays in the

2 Antarctic Muon And Neutrino Detector Array
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energy range from 100 TeV to 1 EeV and can also serve as a partial veto for atmospheric
muons and coincident atmospheric neutrinos in astrophysical neutrino searches in the south-
ern sky. Finally, the IceCube Laboratory, also located on the surface, is the central operation
building and responsible for data acquisition.

2.5 IceCube Upgrade

The IceCube Upgrade |2] is a planned extension of IceCube that will be deployed during the
austral summer of 2025/2026 [30]. This new extension is optimized for low energies in the
context of IceCube and will reduce the energy threshold to about 1 GeV. This will provide,
for example, world-leading sensitivity to atmospheric neutrino oscillations [2]. Moreover,
the IceCube Upgrade will allow a more precise measurement of the ice properties by means
of new calibration devices.

1000m

e .0 .
® L ...o
0...
9 9 @ 1 i

1450m  2100m  2150m
2450m 2450m 2425m
Instrumented Depth

IceCube DeepCore  Upgrade

(a)

FIGURE 2.5.1: (a): Schematic illustration of IceCube Upgrade. Taken from
[2]. (b): Exploded view of an mDOM with 24 PMTs embedded in a support
structure and encapsulated by a pressure vessel. Taken from []E[]

As illustrated in fig. 2.5.1] (a), IceCube Upgrade will consist of seven
new strings with nearly 700 optical modules in total, embedded in-
side the already existing DeepCore. They will be placed at depths
between 2150 m and 2425 m, referred to as the physics region, in or-
der to take advantage of the high clarity of the glacial ice and the low
atmospheric muon background. Furthermore, the spacing between
two modules measures approximately 20 m in horizontal and 3 m in F
vertical direction, which results in a higher sensitivity to lower ener-
getic events. In contrast to the original IceCube array, the extension
incorporates mainly two new optical modules with improved photon
detection efficiencies and calibration capabilities, being the mDOM !
gnll;ltl—PMT Digital Optical Module) shown.ln fig. @ and the FIGURE 2.5.9: mDOM
-Egg [32]. The mDOM consists of 24 PMTs with 80 mm diameter, . .

: . . . . with harness consisting
whose orientations cover the entire solid angle and are fixedina 3D . 51 pvTs.  Taken
printed support structure, where surrounding reflectors around the ¢4 31).

PMTs increase the sensitivity. This design depicted in fig. [2.5.1] (b)
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provides an almost homogeneous angular coverage and an effective photosensitive area that
is more than twice that of a DOM [3]l. Moreover, a pressure vessel secures and encloses the
various components. By using a silicon-based gel layer between vessel, PMTs and support
structure, the module gains increased mechanical stability and improved coupling between
the glass pressure vessel and the PMTs. Deploying the modules on the strings requires a
harness, which is shown in fig.






3 Theory of neural networks (NN)

This chapter provides the fundamental knowledge of deep learning, neural networks, and
their training, as well as quantization techniques, in order to understand the subsequent chap-
ters where these concepts are applied to the neural networks studied in this thesis.

3.1 Machine learning and deep learning

Classical programming follows the principle that data are processed according to pre-defined
rules in programs. However, sometimes it is difficult or even impossible to figure out these
rules for complex problems, making it necessary to find new approaches. Machine learning
[33]] has led to a paradigm shift in which instead of data and rules, data and answers are used
to learn mappings between so-called input data (features) and output data (labels/answers).
These rules can then be applied to new data in order to predict the corresponding answers.
In this approach, the learning process consists of automatically finding suitable transforma-
tions that turn the input data into more useful representations which can lead to an as high
percentage of right answers as possible.

A specific subfield of machine learning is deep learning 33|, in which the model learns
successive layers of increasingly meaningful representations. In this context, the term “deep”
comes from the fact that modern deep learning can contain tens or even hundreds of layers
of representations (deep hierarchy). These layered representations are learned via models
called neural networks which are structured as a series of layers each consisting of neurons.
The next two sections explain two common examples of deep learning models, being the
Multilayer Perceptron |33, 34] and the Convolutional Neural Network [33]].

3.2 Multilayer Perceptrons (MLP)

Multilayer Perceptrons are feedforward

neural networks and consist of an input npuTLAYER HIDDEN LAYER SUTRUT LAVER
layer, one or more hidden layers and an out-
put layer each composed of neurons (also
known as units). This structure is illustrated
in fig. [3.2.1] where units are symbolized by
circles. Each hidden layer and the output
layer use linear tensor operations combined
with a nonlinear activation function to cap-
ture non-linear features in the data. The out-
put y of each layer will be calculated as fol-
lows, where W describes the weight matrix, FIGURE 3.2.1: Schematic representation of a fully
x the input data of a sampleﬂ b the bias vec- connected MLP consisting of three layers with a

tor, and @ the non-linear activation function different number of neurons, represented by cir-
of a specific layer: cles. Taken from [34].

3e.g. an image (sample) with several bits (features)
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y =a(W - -x+b). (3.2.1)

The output vector y of a layer has a length equal to the number of units Ny,js. Consequently,
the weight matrix W has dimensions (Npeurons X length(x)), and each unit has a correspond-
ing bias term. The output of a layer is used as the input of the next layer, so that each layer
transforms the input data from the network to a more abstract representation. Layers with
such characteristics are referred to as Dense Layers, which means that each unit on a layer
takes as input the output of every unit in the previous layer. This is symbolized in fig.
by arrows that connect neurons of different layers.

3.3 Convolutional Neural Network (CNN)

While multilayer perceptrons learn global
patterns in their input data, convolutional Wi~

neural networks [33]] are able to learn lo- Input .
i i i : depm nput feature map
cal and translation-invariant patterns in so-
i This

called feature maps, such as images.

means that convolutional layers can recog- /

nize patterns anywhere in a feature map, @ @ @ 3 x 3 input patches
whereas dense layers have to learn patterns

repeatedly, if they change their location. it kamel f f
As a result, convolutional layers are data-
efficient, because they need less training Od“;g::l @
data to learn the same pattern, regardless

of its location in the feature map. More- \ | /
over, convolutional layers can learn spatial
hierarchies of patterns. A well-known ex-

ample for this characteristic is the identifi- O
cation of objects, like a cat, in a picture,

in which the first convolutional layer recog-

nizes small edges, whereas subsequent lay-

ers combine these patterns to more complex

Transformed patches

Output feature map

FIGURE 3.3.1: Mechanism of a convolutional
ones, such as an ear or an eye of a cat. Thus, layer in case of a 3D feature map with 3 kernels.
they are widely used in image recognition.  Taken from [33].

The extraction of these patterns is done by

means of different filters called kernels, which contain weights. In case of 3-dimensional
input data, such as images (height x width x input depth) the mechanism of one convolutional
layer is depicted in fig.[3.3.1|for three different kernels of size 3 x 3 sliding over a 3D tensor.
Every time, when the kernel is shifted one step forward in a certain direction (height, width),
the convolutional operation extracts (3 x 3 X input depth) patches from the input feature map.
In case of fig. this results in nine patches. Subsequently, each filter is applied to each of
these patches by dot products. Hence, all 3 x 3 X input depth patches are mappedto 1 x 1 x 3
patches, where the output depth is equal to the number of kernels. In the end, the transformed
patches are compressed to a new feature map of size 3 x 3 x 3, which builds the output of
the convolutional layer.

In CNN:gs, the final tensor feature map is usually flattened and fed as input to an MLP, which
produces the target output.
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3.4 Training of a Neural Network

At the beginning, neural network param-

eters are initialized randomly. If a batch Input X
of input samples is passed through a net-
work with these initialized configurations, —={_Weignts |~ (data treli_:syfz:mation)

the corresponding representations are mean- !}

: : N Layer
ingless. To approximate the target values, .
these parameters must be tuned through an !

iterative process known as training [33]]. A Wtzig:ﬂ
. .. .. . update '
schematic training structure is illustrated in

fig. 3.4.1, where the neural network con-
sists of an input layer, a hidden layer and an

output layer. In this thesis, the neural net-

work training is carried out using the mini-

batch stochastic gradient descent algorithm FIGURE 3.4.1: Schematic representation of the
(SGD) [33]]. First, a mini-batch of n random training of a neural network consisting of one in-
samples is drawn from the training dataset, Put layer, one hidden layer and one output layer
which consists of pairs of input features X (€Xplanation in text). Taken from [33].

and corresponding true targets Y. The prop-

agation of the input features through the network is calculated for this batch (also known as
forward pass), and as a result, the predicted targets Y’ can be obtained. After that, the dif-
ference between the predictions Y’ and the corresponding true target Y can be calculated by
a loss function that provides a loss score which quantifies the mismatch between predictions
and true targets. The choice of an appropriate loss function is critical and depends on both the
assumed likelihood distribution of the target variable and the nature of the task - for example,
mean squared error usually corresponds to Gaussian regression tasks. In the next step, the
loss gradient with respect to the weights and biases of & different layers, can be computed
using backpropagation [33|]. This procedure is based on the well-known chain rule from
calculus. Applying this rule, backpropagation starts from the final loss score and propagates
derivatives backward through the network to the first layer, as the name suggests.

The resulting gradients are then used by an optimizer to adjust the weights wy, and biases by,
of the kth layer in the opposite direction of the gradient, as shown in eq. (3.4.1)), where « is
the learning rate, m the number of mini-batches and L B; the loss of a specific mini-batch
B; [35]:

07 m 8LB o m .
wﬁczwk—%z 6wa and V] :bk—gz abk]' (3.4.1)
J

By updating the parameters according to the above equation, the optimizer minimizes the
loss score, which consequently leads to a better approximation of the target values. If the
parameters are updated for all mini-batches B; available in the training dataset, a so-called
epoch is finished and the calculation continues for further iterations or epochs, which result
in further descents of the loss.

The choice of optimization parameters strongly affects training. Larger batch sizes gener-
ally yield more stable updates but require more memory and training time, while smaller
batches are faster but noisier. Similarly, the learning rate must balance convergence speed
and stability: values that are too small slow down training, while values that are too large
risk overshooting the minimum. In both cases, a compromise is required. Often, SGD is
used with so-called momentum [33|], which incorporates previous updates when calculating
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the next one. This reduces the effect of noisy gradients and help the optimizer escape local
minima.

During training, the loss on the training dataset is monitored together with that of a sample
of events unseen by the network, the so-called validation set. This is done to avoid overfit-
ting [33]], which occurs when the network stops learning general features and instead begins
to memorize the training dataset. Overfitting manifests itself as an increase in the loss of the
validation set over successive epochs, in contrast to the continuously decreasing loss curve
of the training dataset. Training is often stopped at this turning point, a technique known as
early stopping. In order to avoid overfitting and to improve the generalization [33] of the
model, the easiest way is to increase the number of training data or to reduce the network’s
capacity, particularly the number of layers and the number of units/filters per layer. Another
solution is weight regularization. This approach put constraints on the network by forcing
the weight to be small, so that the distribution is regular. It is done by adding a cost C' to
the loss function, which is proportional to the absolute value (LI regularization) or squared
value (L2 regularization also called weight decay) of the weight coefficients wy; of k layers.
The costs can be calculated with the following equations, which in addition to the weights
contain a fixed regularization factor \:

CLi=A-) |wp| or Cra=XA->_ |wkl*. (3.4.2)
ki ki

Consequently, according to eq. (3.4.2), a large weight increases the loss score, which will be
penalized in subsequent iterations.

3.5 Quantization of Neural Networks

Quantization [36] is a special neural network technique, which allows faster inference of
neural networks by changing the datatype used for calculations from float32 to int8. This
reduces the memory requirements during computations significantly and the inference time.
Unlike what one might expect, quantization does not simply round floating-point data di-
rectly to integers, but rather transforms the data by so-called mapping functions, which map
an input € [a, (] to a quantized value & € [&, ).

The quantization of an input x follows a linear transformation given by eq. (3.5.1), where s
and z are quantization parameters:

T = round (% + z) . (3.5.1)

The scaling factor s in eq. is the ratio of the input range [«, 3] to the quantized
range [&, B], while the zero point z describes the position of the zero value in the quantized
interval. Since the data are transformed into 8-bit integers, the quantized range is chosen as
[&, 5] = [0,2% — 1] = [0,255]. The corresponding formulas for the quantization parameters
are shown in the following:

08—«

=F 352

o (352)
« -

r=— (g _ a) . (3.5.3)

It is important to note that although the inputs to the matrix multiplications are intS8, the
intermediate results are accumulated in inf32. After the matrix calculations, the output is
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rescaled and quantized back to int8 before being passed to subsequent layers. This is known
as integer-arithmetic-only inference [37].

In order to dequantize (convert back) the data into normal values, the quantized value has to
be mapped back by the rearranged formula from eq. (3.5.1)):

¥ =(T—2)s. (3.5.4)

However, the dequantized value 2’ is not exactly identical to the input x due to the rounding
operation in eq. (3.5.1). The difference between the value x’ and x constitutes the quantiza-
tion error.

In addition to asymmetric quantization explained above, it is also possible to use symmetric
quantization which maps an interval [—«, o] to a quantized interval [—&, &] = [—127,127]
without using a zero point z. Which quantization method is the best, depends on the range of
values used in each layer of a network and can be specified for the weights of a layer and the
output of a activation function separately. The process of estimating this input range [, 3] is
known as calibration and can be done by various observers, which collects statistics on the
input values of each layer, in order to enable the calculation of quantization parameters.
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4 Neural network implementation

The goal of this thesis is to predict the PMT hit probabilities for incident photons in mDOMs.
Initial efforts toward a similar task were presented in [5]] for the case of the IceCube-Gen2DC-
16 optical module, where the OMNNSim project [38]] was implemented using the deep learn-
ing library PyTorch [39]] of Python to build, train, and test a neural network for this task. The
present work takes that study as a starting point and extends the OMNNSim framework to
include the mDOM. In this chapter, the task of the neural network will first be outlined and
explained in depth. In the next step, the network used in [5]] together with the modifications
introduced for the inclusion of the mDOM will be described. Finally, the focus is placed on
an adaptation of the neural network to include quantization techniques.

4.1 Neural Network task

Before discussing the neural network architecture used in this
thesis, it is important to clarify the following aspects: The main
goal of the networks trained in this work, beyond the scope
of this thesis itself, is their deployment within the IceCube-
Upgrade simulation chain, more precisely after photons pro-
duced by charged particles are propagated through the ice and
arrive at any of the mDOMs. As suggested in [5]], the approach
explored here is to propagate photons only up to spherical sur-
faces representing the mDOM, and then map the photon wave-
length, landing position, and landing direction into detection
probabilities for each PMT. From these probabilities, Monte
Carlo photoelectrons can be sampled. The task presented to the .
neural network can therefore be summarized as follows: given F.I.GURE 4.1.1: Spherl.c al sen-
o o ] sitive volume enclosing the
the description of a photon on a sphere, predict its detection  \hOM used in Geantd (see
probability for each PMT. One of the spheres considered in  chapter B). PMTs can be de-
this thesis is shown in green in fig. [4.1.1} enclosing the mDOM vided into polar (orange) and
in the visualization of the Geant4 simulation used for training. equatorial PMTs (red).
Further details about this simulation can be found in chapter[3]

4.2 Neural network architecture

One of the main breakthroughs in neutrino astronomy in recent years was the discovery of
neutrinos from the galactic plane of our galaxy [23[]. This was made possible by new machine
learning techniques that directly incorporate the symmetries of the IceCube detector. The
OMNNSim project was inspired by these techniques to approximate the task described above
for the case of the IceCube-Gen2DC-16 optical module, by exploiting the fact that all PMTs
of the same type — polar or equatorial — within an optical module are equivalent.

A schematic view of the neural network for the mDOM is provided in fig. .2.1] where the
data transformation follows a top-down flow. It can be divided into three parts each serving
a different function. The most important part is the CNN branch, which calculates relative



16 Chapter 4. Neural network implementation

inputs, in order to exploit the symmetry of the mDOM. If features that induce asymmetries are
considered, such as the harness, it is also possible to include the MLP branch, which works
directly on the absolute inputs. In the third part, the prediction head, the outputs of both
branches are concatenated and mapped to PMT hit probabilities. For a better understanding
of the different parts, each part will be described in the corresponding subsection.

5 relative inputs + wavelength + 6 absolute inputs:
polar/eq PMT identifier Directions and Positions
5 1 g
% | | o
g . CNN layer [batch, filters, 24] [ Dense layer [batch, 24, 5] ] - g
3
3 | 5
Relu (nonlinear function) [ Relu (nonlinear function) ]

) i u:L]—l -

Dense layer [batch, 24, units]

Relu (nonlinear function)

peay uondipaid

Dense layer [batch, 25]
|

[ logsoftmax (nonlinear function) ]

FIGURE 4.2.1: Schematic representation of the neural network used in this
thesis and presented in [5].

TABLE 4.2.1: Input features used for the network, consisting of relative
inputs describing symmetries and absolute inputs which consider symmetry-
breaking features

relative inputs absolute inputs

1. Wavelength A 1. Photon position s
2. Relative z position Az 2. Photon position ¥/,
3. Absolute photon z-direction zgihrown 3. Photon position zpos
4. Relative azimuthal position cos(Agpes) 4. Photon direction 24,
5. Relative azimuthal direction cos(Apgir) 5. Photon direction yg;,
6. Convergence (binary value) 6. Photon direction zg;,
7. Polar/Equatorial (binary value)

4.2.1 CNN branch

The aim of this branch is to exploit the fact that all PMTs of the same type — polar or equato-
rial — are equivalent. This is achieved by using a stack of four 1D convolutional layers with
kernel size 1 x 1 on an input tensor of shape (batch size X relative-input features x 24), where
24 is the number of PMTs in the mDOM. With kernel size 1 x 1, the convolution is applied
independently at each PMT position and the same weights are shared across all 24 positions,
so an identical set of relative inputs is processed identically at every PMT index. In this way,
by carefully selecting a relative description of the photon for each PMT, the symmetries can
be encoded in the network.

To decide how to define the relative inputs, they should be based on the symmetries of the
PMT angular acceptance within the mDOM. Unlike the IceCube-Gen2DC-16 optical mod-
ule, the mDOM is approximately spherical, so a test was performed to determine whether a



4.2. Neural network architecture 17

spherical symmetry description of the photons would be suitable. In the end, it was found
that the mDOM PMTs do not conform well to this approximation, which would negatively
affect the accuracy. Therefore, the same inputs as in [5]] were used, describing the photons
based on cylindrical coordinates. Further details about these tests can be found in Appendix
section [A.Tl

The relative inputs are listed in the left part of tab. (a detailed description is given in
Appendix section[A.2). They describe the photon position and direction based on cylindri-
cal coordinates and include a polar/equatorial PMT label to distinguish the two PMT types.
These relative inputs are computed dynamically by this branch from the absolute true inputs
of the network, that can be found in the right column of the same table tab. The po-
sitions and orientations of the PMTs within an mDOM were included in the framework to
enable this.

Overall, seven relative inputs, including wavelength, are used to form an input tensor of shape
(batch size, 7, 24). Two inputs, being the wavelength and the relative z-position, have to be
normalized before entering the network. In case of the relative z-position, the corresponding
values were scaled to the range [—1, 1] by division through the radius of the spherical volume,
while the wavelengths were normalized to the range [0, 1]. In contrast to these two inputs,
the cosine-based features and the binary ones are already in the correct range. The ReLU
activations between layers are used to learn non-linear patterns. They can be written as [33]]:

0, ifz<0
z, ifx>0

ReLU(z) = {

4.2.2 MLP branch

Under certain circumstances, such as the presence of the harness, the PMT-equivalence sym-
metry is partially broken. In such cases, an additional MLP branch is included. This branch
consists of a dense layer that maps the six normalized absolute photon inputs on the sphere
(right column of tab.4.2.T)) to a five-dimensional representation, followed by a ReLU activa-
tion. The output of this branch, with shape (batch size, 24, 5), is concatenated with the output
of the CNN branch and fed into the prediction head.

4.2.3 Prediction head

The outputs of the two preceding branches are concatenated (the CNN output is reshaped
accordingly) and fed into a stack of two dense layers, interleaved with ReLU activations.
After flattening, a final dense layer maps the features to shape (batch size, 25) to include the
non-detection class as an additional index. Finally, a log-softmax activation is applied along
the last dimension. This can be written as [40]:

LogSoftmax(z;) = log _ow(z) . (4.2.1)
>_; exp(z;)

Here, the bracketed term denotes the softmax, which ensures the 25 outputs sum to one and

can therefore be interpreted as a probability mass function over the 25 outcomes. By using

logsoftmax instead of softmax a higher training stability can be achieved. Exponentiating the

result of eq. (4.2.1)) after training yields the detection probability for each PMT and for a

failed detection.
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4.2.4 Training

The training of the neural network requires the definition of a suitable loss function and opti-
mizer. An appropriate loss function for comparing probability distributions is the Kullback-
Leibler divergence [41] consisting of a real discrete probability mass function p;(x) and a
predicted one ¢; () of a sample (photon) i for different PMTs x:

25
KLD _ () 1o pi(z)
L; ;pz( )log (qi(x)) (4.2.2)

In case of this network, the real probability distribution p;(x) refers to the training data
generated by the Geant4 simulation explained in chapter([5} while the predicted one log(g;(z))
refers to the output of the logsoftmax activation function. In order to get a scalar for the
loss score, the losses computed for each sample in a batch according to eq. (#.2.2)) will be
averaged. Moreover, the loss is complemented by the mean squared error [42] multiplied
by a factor of 0.1, which contributes to a higher stability. According to its name, this error,
depending on the predicted probability ¢;(x) and the real probability p;(z) of a batch sample
1, can be calculated as follows:

1 25
L = 2 pile) — ()] (4.2.3)
rx=1

Thus, the whole loss score for a set of all probabilities P = {p;(z)} and @ = {q¢;(x)} within
a batch can be computed with the following equation:

1 ¢~ ;KD 1 ¢~ MSE

L(P,Q) = - ;L +0.1-~ ;L . (4.2.4)
The AdamW [43]] optimizer is used to update the trainable parameters of the network. It
uses momentum and L2 regularization with weight decay, as explained in section The
learning rate was set to 0.0001, and a batch size of 10,000 was used. The models considered
in this thesis use the same number [V of filters in the CNN layers and hidden units in the dense
layers, with a total of about 90,000 parameters for N = 85 and about 200,000 parameters
for N = 150. The models were trained for 8 epochs on an NVIDIA Geforce RTX 4090
GPU, which took about 3 to 4 days, depending on the size of the model. Given that the total
training set consists of 20 billion photon samples, overfitting is very unlikely. The production
of these training samples will be explained in chapter 5]

4.3 Quantization with PyTorch

The previously discussed network was adapted in this work to use quantization techniques,
implemented through the PyTorch quantization extension [36[]. It is based on the theory
described in section [3.5] and provides several types of quantization, which are explained in
[36, 44]]. In particular, post-training static quantization was employed in this work to the
network trained for the mDOM without harness.

The implementation of the quantization approach was carried out according to [44] and fol-
lows the steps illustrated in fig. [4.3.1] The starting point of this approach is the code of the
pre-trained model presented in section .2] Initially, the code was modified by fusing dense
layers and convolutional layers with their respective ReLU activations into fixed modules.
This leads to improved accuracy, as the fusion avoids inefficient dequantization and quanti-
zation steps between layers, which could otherwise increase the quantization error.
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Subsequently, quantization and dequantiza-
tion operations, so-called stubs, were inserted
in the code to define the quantized domain
in int8. Specifically, QuantStubs were placed
immediately before the first layer of both the
CNN branch and the MLP branch described
in section 4.2 while the DequantStub was in-
serted prior to the logsoftmax activation.

For calibration, a dataset consisting of 10,000
photons, sampled from the original train-
ing data of the corresponding model, was
used. A MinMaxObserver, which assigns
the recorded minimum and maximum val-
ues of each module during calibration, uses
the recorded values to define the input range
[, B].  Furthermore, per-channel quanti-
zation was activated that allows indepen-
dent quantization parameters (scaling factors
and zero points) for each filter in a CNN
layer.

[ Pre-trained model

\|l
\J

Fuse modules )

\

¥

Insert stubs & observers

[ Calibration data J

2

=
[ Calibration j
L Quantization j

\l/

[ PTQ Model ]

FIGURE 4.3.1: Steps in static Post-Training
Quantization (explanation in text). Taken from
[136].

After loading the weights and biases of the model, calibration is performed using the pre-
viously described calibration dataset and observer, resulting in quantization parameters. Fi-
nally, these parameters can be loaded to perform faster inference for calculating PMT hit

probabilities.
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S Training & benchmark simulations

In this thesis, detailed Geant4 simulations of the mDOM are used both to train the neural
network model that predicts the PMT hit probabilities and to benchmark its performance.
For this purpose, the implementation of the mDOM within the Geant4 framework is first
described. In order to evaluate the accuracy of different simulations, the concept of the effec-
tive area will be introduced. Subsequently, the generation of training data will be explained,
including an analysis of a simplified harness. After a brief description into training data pro-
cessing, the current simulation of the mDOM in IceCube will be discussed at the end of this
chapter.

5.1 mDOM simulation in OMSim using Geant4

Geant4 [45]] is a simulation toolkit, developed at CERN, that simulates the trajectory of parti-
cles through matter by means of Monte Carlo methods. It is based on the object-oriented pro-
gramming language C++ and provides many different classes that enable, among other tasks,
the definition of detector geometries and materials, as well as particle generation, interactions
and tracking. Moreover, it allows the visualization of objects and particle trajectories.

Given the accuracy and success of the Geant4 toolkit, the IceCube

Miinster group developed the OMSim framework [7] in Geant4 for

the simulation of different optical modules of IceCube and its fu- [

ture extensions. The framework enables a variety of studies, such |
as background estimation induced by radioactive decays, super-
nova detection, and assessments of optical module sensitivity via
effective area.

One of these implemented modules is the mDOM, which was orig-
inally developed as part of two doctoral thesis [46, 47| and has
since been refined by several subsequent theses [18|, 48]]. The re-
alistically implemented mDOM consists of a pressure vessel filled
with a gel. Inside of the vessel, the support structure is formed
analogously and embeds 24 PMTs with conical reflectors, which
are distributed over four rows in the module. If applicable, a har- ‘
ness encompassing the mDOM also can be placed. It consists of S
multiple bands, clamps, ropes, taps and the PCA cable including .|| - ropes
the plug. A screenshot of an mDOM with harness in OMSim is \ 1
depicted in fig. [5.1.1] |
In OMSim it is possible to simulate photons which undergo ab- |l /
sorption as they propagate and boundary processes at interfaces \|/
between objects with different materials such as reflection and !
transmission. In order to characterize their interaction with the
mDOM, all materials are specified by wavelength-dependent opti-
cal properties.

For transparent materials, these include the refractive index and the
absorption length, while for other components, reflectivity is used.
The crucial components for detecting photons within the mDOM

PCA cable

‘ bands

belt

l(
B bridges

FIGURE 5.1.1: Visualiza-
tion of the mDOM with
harness in OMSim.
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are the PMTs, or more specifically their photocathodes, which are simulated using thin-layers
physics and a complex refractive index [49]. Every time a photon reaches the photocathode,
the probabilities of reflection, transmission and absorption are computed. The absorption of
a photon is treated as a detection. If a photon transmits through the photocathode, it can be
reflected by internal PMT components and return to the photocathode, where a new detection
probability is applied. Finally, the overall detection probabilities are calibrated via 2D scan
measurements across the photosensitive region [[18]].

Furthermore, the environment outside the mDOM is set to ice, which accounts for a wavelength-
dependent refractive index, while ignoring photon scattering and absorption.

Throughout this thesis, mentions of the Geant4 simulation refer exclusively to the mDOM
simulation previously described within OMSim.

5.2 Effective Area

The effective area [50] is a suitable parameter for characteriz-
ing the sensitivity of the module as well as its angular accep-
tance. Therefore, it will be used to benchmark the performance
of the neural network trained in this thesis.

A plane wave of uniformly distributed mono-energetic photons
within a disk with a diameter larger than that of an mDOM
is directed towards the center of the mDOM, as illustrated in
fig.[5.2.1} The corresponding effective area A.g for a particular
incident direction described by 6 and ¢ with wavelength A is
defined as

FIGURE 5.2.1: Effective area

Niet(\, ¢, 0) simulation for a certain direc-
Act( N, 0,0) = 4eN . - Apeam » (52.1)  tion (8, ). Taken from .
emi

where Nem;it describes the number of emitted photons within a beam with area Apgam, while
Nget corresponds to the number of detected photons in dependence of wavelength \ and
direction (¢, ).

In order to illustrate the effective area for differ-
ent directions, the values will be plotted in moll-
weide projections using HEALPixﬂ pixelization,
which can be implemented with the Python
package healpy [51]. In this package, a spher-
ical surface is discretized into equal-sized pixels,
which can be used to calculate the effective area
isotropically. An exemplary mollweide projec-
tion is illustrated in fig. [5.2.2] where each pixel e —
represents a direction and their color the corre- ~ 103.25 116.22
sponding value of the effective area. The reso-

lution of the map can be defined by the NSIDE FIGURE 5.2.2: Exemplary mollweide projec-
parameter, which is a power of 2. Commonly tion of the effective area as a function of the
used NSIDEs in this thesis are 16 or occasionally ~incident direction used throughout this thesis
32 with Npixel = 3072 or Nyjye = 12288 pix- (Cxplanation in text)

els (directions), respectively. Unless stated oth-

erwise, the used NSIDE is 16 throughout the following sections, while NSIDE = 32 will be

zenith 6

azimuth ¢

Aesr (cm?)

*Hierarchical Equal Area isoLatitude Pixelization
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indicated accordingly. Given the directions (6, ) and the number of directions Npixe| pro-
vided by healpy, the mean effective area (over solid angle) for a specific wavelength A can

be calculated as:

—_ Z Aeff(Aa @, 9)
A () = =22 N .

pixel

5.3 Producing training data

The training data for the neural network was generated by a mod-
ification of the effective area simulation in OMSim that was orig-
inally used to produce training data for a neural network which
calculates the detection probabilities of photons for an IceCube-
Gen2DC-16 optical module [5]. By adapting this simulation to
the structure and geometry of the mDOM, it also can be used to
generate training data for the neural network of this thesis by the
following mechanism.

The simulated geometry consists of a spherical sensitive volume
with radius Rgphere = 20.8 cm that encloses the mDOM and the
surrounding ice environment as shown in fig. [5.3.1] Photons are
simulated independently, following the same procedure as in the
effective area simulation from section [5.2] where each photon
is generated uniformly over the surface of a disk, whose normal
vector is sampled uniformly over the unit sphere. In addition, the
wavelength of each photon is drawn from a uniform distribution

(5.2.2)

FIGURE 5.3.1: Geant4 vi-
sualization of the spherical
sensitive volume (green) en-
closing the mDOM, used to
record photon properties at
its surface.

in the range of 270 nm to 700 nm, where the quantum efficiency of the embedded PMTs is
different from zero [I8]. When a photon enters the sensitive spherical volume, its position,
direction, and wavelength are recorded, thereby serving as inputs to the neural network. On
the other hand, the true labels consist of the detection probabilities provided by OMSim for
the different PMTs in a single-photon simulation.

5.4 Training data for mDOM with harness

In IceCube-Upgrade, once deployed, the mDOM will be sur-
rounded by several components, such as a harness and the PCA
cable, as shown in fig. [5.1.1] These elements can absorb or re-
flect photons, and it is therefore important to include their impact
in the neural network. To capture the full influence of the har-
ness, one would need to create a spherical sensitive volume that
encompasses it and simulate photons throughout the entire vol-
ume. However, given the size of the harness, this is not feasible,
since only a tiny fraction of photons would be detected by any of
the PMTs, which make the inference of their probabilities chal-
lenging. To address this, only the most relevant part of the har-
ness is considered, namely the section surrounding the mDOM.
Specifically, all components within a radius of Rgphere = 24.9cm
from the center of the mDOM, corresponding to the radius of the
new spherical sensitive detector, were kept there, while the rest
were removed. The simplified version of the harness is shown in

fig.5-4.1]

FIGURE 5.4.1: Geant4 vi-
sualization of a simplified
version of the harness con-
sidered for the neural net-
work training inside the
spherical sensitive volume.



24 Chapter 5. Training & benchmark simulations

5.4.1 Influence of a simplified harness

In order to check whether the mDOM with a simplified harness provides a suitable approx-
imation for the mDOM with the entire harness, effective area differences will be compared
using Geant4 simulations. The effective areas for an mDOM without harness will also be pro-
vided for comparison. In contrast to all other sections, this section uses an NSIDE parameter
of 32, which corresponds to Npixel = 12288 directions.

Entire harness Simplified harness Without harness
Zeff=101.25 CIIl2 Zeff=102.14 sz Zeff=110.9 CIIl2

=

I e T R

il

E
ki

.
k: i

w W W o

88.22 116.54
Effective Area A (cm?)

FIGURE 5.4.2: Effective area A g for different directions and harness con-
figurations at a wavelength of A = 400 nm for the whole detector.

The effective areas as a function of the incident direction at a wavelength of A = 400 nm for
different harness configurations is shown in fig.[5.4.2] A comparison between the simplified
harness and the entire harness shows, that both effective areas are distributed similarly. In
order to compare the different versions in detail, the relative differences will be calculated
using the following formula:

Abamess()\ 9, o) — AP (N 0, )
Zzgrness ( )\)

Ag‘gmess()\, 0, ) is defined as the effective area of the mDOM with the entire harness for
a certain wavelength \ and direction (6, @), while A *Y(\ 6, o) refers to the mDOM
with a simplified harness or without harness. After applying eq. (5.4.1) on the mean effective
areas provided by fig. the overall difference between an mDOM with a simplified and
an entire harness yields AZeﬁ,rel = —0.88%, whereas the difference between an mDOM
with and without an entire harness is AAcf ye1 = —9.53%.

The relative differences for various directions, calculated by eq. (5.4.1) are illustrated in
fig. [5.4.3 (a) for a comparison with an mDOM with a simplified harness and in (b) for a
comparison with an mDOM without harness.

According to fig. [5.4.3] (a), the maximum differences are on the order to 8% and occur only
in a small region in the upper-left part of the plot. This can be mainly attributed to the PCA
cable simplification, which strongly affects those directions. However, in the most directions
the differences are small and about 1%.

By contrast, when comparing a model without a harness to one with the full harness, much
larger differences can be observed, with values up to 19% in the upper-left region. This
indicates that the simplified harness captures most of the full-harness shadowing and is a rea-
sonable approximation, while enabling training within a moderately sized sensitive spherical
volume.

AAAeff,rel()‘a 0, 90) = . (54.1)
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simplified harness without harness
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FIGURE 5.4.3: Relative difference of the effective area AAcg ro1 for dif-
ferent directions based on the effective area illustrated in fig. [5.4.2] for (a)
mDOM with simplified harness and (b) mDOM without harness.

5.5 Processing of training data

Overall, 20 billion photons were produced for training using the Geant4 simulation for an
mDOM with and without harness, respectively. The stored values for each photon consists
of one wavelength, three position coordinates, three direction coordinates and 24 detection
probabilities, one for each PMT. The default output file format of OMSim is “.dat”; however,
this is not ideal for machine-learning training. Therefore, using the OMNNSim framework,
the simulation results were converted to the *.hdf5” format, which is more suitable and offers
better compression, reducing disk usage.

5.6 Current mDOM simulation in IceCube

Currently, the mDOM simulation is implemented in the context of IceCube simulations in
the PPC E| framework . Simplified, this approach parametrizes the relative angular accep-
tance of each PMT by a function f (3, m-7i), where 1 denotes the PMT axis, 7 the photon
direction, and [ a shape parameter of the PMT’s sensitive area (in the case of the mDOM,
accounting for both the photocathode and the surrounding reflector). The current value is
B = 0.95, where 8 = 1 would correspond to a flat surface.

If f is normalize (e.g., to unit integral or unit maximum), it can be regarded as an angu-
lar probability density. The absolute angular acceptance at wavelength A is then given by
Aett(N, 7)) = Aegr(A) f(B, 11-7), where Aege()) is the mean effective area determined from
the previous Geant4 simulations.

This analytical approximation preserves an expected solid-angle average effective area, which
characterizes the angular acceptance of the mDOM. However, it neglects some aspects of ge-
ometry and the optical properties of the mDOM. For example, it enforces a response that is
symmetric with respect to the PMT axis despite the lack of alignment between the PMT axes
and the normal vector of the pressure vessel. Moreover, it ignores the wavelength-dependent
optical properties of the glass, gel and reflector cones, which are specifically the reflectivity,
absorption length and refractive index. The corresponding effective area simulations using
this method for benchmark were produced by [53].

SPhoton Propagation Code






27

6 Neural network performance

In this chapter, the performance of neural networks with the architecture described in chap-
ter @ for mDOMs with and without harness, is presented. Given that the long-term goal
of this tool is the deployment on IceCube-Upgrade simulations, the network must be not
only accurate but also fast enough for large-scale simulation production. For this reason, the
effective areas and computing times of OMSim simulations (Geant4), the neural networks
(NN) trained in this work, and the current IceCube analytical approximation (PPC) will be
compared. In addition, the performance of a test model without a harness using quantization
methods, a promising technique for reducing the inference time of neural networks, will be
discussed.

6.1 Effective area performance

The accuracy of the neural network, based on the effective area of the mDOM it provides, will
be discussed in this section. To this end, it will be compared to that of Geant4 (the baseline)
and, where applicable, to the analytical approximation. The performance of a model without
the harness, with the harness, and with quantization techniques will be presented.

6.1.1 Accuracy for the mDOM without harness

The effective area of a trained neural network model, as a function of wavelength and incident
direction, can be computed with the OMNNSim simulation, which includes a function that
samples photons on the network’s input sphere according to the spatial distribution obtained
by projecting a plane wave of photons onto the sphere.

100 -
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FIGURE 6.1.1: Mean effective area A.g for different simulations and wave-
—-geant

lengths together with the ratio a(\) = Ay /ZI:HN, which constitutes the
scaling factor.
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The mean effective area over 3072 incident directions of a neural network with 85 units
per dense layer and the same number of filters per CNN layer including the MLP branch
is plotted as a function of wavelength, together with the corresponding Geant4 values in
fig.[6.1.1] Although the overall trend is similar, the neural network slightly underestimated
the mean effective area with a difference of about 5%. This can be explained by the fact that
the non-detection probability (index 25 of the true target) always has a non-zero value, at least
around 0.7, whereas the other PMT indices are zero most of the time, and only occasionally
does one of them take a modest value between approximately 0.2 and 0.3. This induces
a small bias toward predicting relatively larger values for the last index, because doing so
reduces the loss in most cases. This bias can be corrected by scaling the network outputs
by the factor a(\) = fofam /ZGNHN, which corresponds to the bottom plot of fig. m This
scaling is applied to the detection probabilities of every network in this chapter. As mentioned
in section [5.6] the analytical approach is designed to reproduce the expected mean effective
area and is therefore not shown in the plot.

Geant4 Neural Network  Analytical Approximation

bl

102.63 117.37
(a) Effective Area Acsr (cm?)

: o e | e T

C

Neural Network  Analytical Approximation

48.44 54.64
(b) Effective Area A (cm?)

FIGURE 6.1.2: Effective area A.g for the mDOM as a function of the di-
rection for two different wavelengths (a) A = 400 nm and (b) A = 550 nm
and from left to right for the Geant4 simulation, the neural network and the
analytical approximation.

After scaling the effective areas for different directions provided by healpy, the values are
visualized using mollweide projections, as shown in fig. [6.1.2] The effective area is illus-
trated for wavelengths of A = 400 nm in fig. [6.1.2] (a) and for A = 550 nm in fig. [6.1.2]
(b). In both cases, the pattern obtained with the neural network approach matches the one
from Geant4 very closely and, as expected, it is able to adapt to different patterns at differ-
ent wavelengths. This behavior reflects the wavelength-dependent optical properties of the
various components of the mDOM, such as the glass, gel, and conical reflectors. In contrast,
the analytical approximation always produces the same pattern that clearly differs from the
others. These differences are illustrated more clearly in fig.[6.1.3] which displays the relative
deviations in the effective area for the neural network (a) and the analytical approximation
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FIGURE 6.1.3: Effective area differences A Aqg o1 according to eq.
at directions provided by healpy for A = 400 nm between Geant4 and (a):
neural network or (b): analytical approximation; blue color means overesti-
mation, while red color means underestimation.

(b) calculated by the following equation:

Ag;ant(A, 97 S0) Aapprox ()\ 97 S0)
Ageant()\)

AAeff,rel()\aev(P) = (6.1.1)

AZR(N, 0, ) and A5 () define the effective area and the mean effective area provided
by the Geant4 simulation, respectively, while A" (X, 0, ) denotes either the effective
area approximated by the neural network or the analytical approximation.

From the plots shown in fig.[6.1.3] it is evident that the main discrepancies in the analytical
approximation appear in the equatorial and polar directions, while the neural network shows
smaller deviations, primarily in the mid-latitudes.

The case of the single polar PMT is shown in fig. [6.1.4] Once again, a closer agreement
between Geant4 and the neural network can be observed, which is even able to capture a
ring-like feature at longer wavelengths around the central maximum, as well as the correct
extension of the pattern across different wavelengths. Analogous results for an equatorial
PMT are provided in Appendix section[A.3]

To quantify performance across all wavelengths, percentiles of the distribution of absolute
relative differences in effective area A Aqpq o1 evaluated at 3072 sky directions from Healpy
are calculated according to eq. (6.1.1). The 50th percentile (median) and the 90th percentile
for both the neural network and the analytical approximation as a function of the wavelength
are illustrated in fig. @for three cases, namely, the entire module, a single polar PMT and
an equtorial PMT, where the denominator in eq. (6.1.1) corresponds to the mean effective
area of the respective case (corresponding distributions for this neural network configuration
are provided in Appendix section [A.4). Throughout this thesis, these percentiles will be
denoted as performance percentiles.

In case of the full optical module shown in fig.[6.1.3] the neural network performs better than
the analytical approximation, since its differences are always smaller than 1% (except for
300 nm), while the 90th percentile of the analytical approximation yields values between 1%
and 2%. The highest differences result for the wavelength of A = 300 nm, where a large
amount of photons is absorbed before reaching the PMTs as a result of the short absorption
lengths of the glass (pressure vessel) and the gel at this wavelength. Therefore, the PMT hit
probabilities in the training dataset mainly contain zeros, which are insufficiently informative
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FIGURE 6.1.4: Effective area A.g for a single polar PMT as a function of the
direction for two different wavelengths (a) A = 400 nm and (b) A = 550 nm
and from left to right for the Geant4 simulation, the neural network and
the analytical approximation. Dots represent the calculated values and are
connected with lines for better visibility.
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FIGURE 6.1.5: 50th (solid) and 90th (dashed) percentiles of the relative dif-
ferences |A At rol| (in %) across 3072 isotropic directions, plotted versus
wavelength. Absolute difference |A Acg ye1| illustrated by the 50th and 90th
percentile (pct) for different wavelengths and simulations (NN: neural net-
work; PPC: analytical approximation).
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for training. Despite twice as many photons are produced by the Cherenkov effect at A =
300 nm than at A = 400 nm (Nppoton ~ 1/ A2 [54]]), the mean effective area at A = 400 nm
is about 20 times bigger than at A = 300 nm. Moreover, the absorption length of the ice
at A = 300 nm is also significantly shorter than for longer wavelengths in the IceCube
simulation. As a result, the impact of photons with a wavelength of 300 nm is expected to be
low and thus acceptable.

The most significant improvement, however, can be observed for single PMTs, as the medians
of the neural network is about 1% and one order of magnitude lower than in case of the
analytical approximation.

6.1.2 Influence of different neural network parameters

As explained in section .2} the neural network can be configured by several parameters,
such as the number N of units (filters) per dense (CNN) layer and the consideration of the
MLP branch. Moreover, it is possible to vary the amount of training data. The impact of
these parameters on the accuracy of the corresponding models is depicted in fig.[6.1.6] where
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FIGURE 6.1.6: Performance percentiles plotted versus wavelength and for
different neural network configurations: (a): small (85 units and filters) or
large model (150 units and filters) without MLP branch trained on 10 billion
samples; (b) small model including MLP branch trained on 10 or 20 billion
samples.
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(a) illustrates the influence of the model size, comparing models trained with N = 85 or
N = 150 units and filter, and (b) the amount of training data between 10 and 20 billion.

The influence of the model size, depicted in fig. [6.1.6] (a), demonstrates that a larger model
yields slightly higher accuracy in all cases, since more parameters improve the model’s ability
to learn new and more complex representations. However, this improvement on accuracy is
very subtle, being about 0.1 percentage points in the case of the entire optical module and
even lower for single PMTs, which does not justify the increased inference time observed in
section [6.2] (see tab. [6.2.1). Therefore, the focus will be placed on the smaller model with
N = 85 units and filters.

In fig. [6.1.6] (b), the impact of the amount of training data is examined. A higher accuracy
would generally be expected with a larger training dataset, since the model can learn ad-
ditional cases of incident photons. However, no significant improvements were observed,
suggesting that 10-20 billion training samples are sufficient. Further increasing the size of
the training dataset is unlikely to yield better performance.

The impact of adding the MLP branch to this model that does not consider the harness can be
observed by comparing the green lines between plot (a) and (b), as both use the same number
of units, filters, and training data. As can be observed, this branch does not provide any
improvement in performance for a model without symmetry-breaking features. Nevertheless,
it was kept, since it adds only a negligible number of extra parameters and allows for a unified
model throughout this thesis.

The standardized model for subsequent analyses consists of 85 units and filters including
the MLP branch and is trained on 20 billion training data for 8 epochs. If other model
configurations are used, this will be mentioned at the corresponding point.

Geant4: A.=102.14 cm? NN: Ae=102.14 cm?

g N

91.40 115.69
(a) Effective Area Aes (cm?)

Geant4: Ae¢=4.36 cm? NN: Aesr=4.37 cm?

0.00 19.80
(b) Effective Area Aqs (cm?)

FIGURE 6.1.7: Mean effective area A.g and effective area A.g (6, ) at
A = 400 nm for a (a) whole detector and (b) polar PMT.
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FIGURE 6.1.8: Performance percentiles plotted versus wavelength for
mDOM without harness (green) and mDOM with simplified harness (or-
ange). In case of single PMTs, one representative polar and equatorial PMT
were analyzed, which are affected by the shadowing of the harness.

6.1.3 Accuracy for mDOM with harness

In section [5.4.1] it was shown that simulating the full harness is not feasible for training the
neural network, and therefore a simplified version that reproduces most of the shadowing
effect was considered. Given that the harness introduces asymmetries, the MLP branch ex-
plained in section 4.2 was used for this task. On the other hand, the analytical approximation
does not take the effect of the harness into account and is therefore not discussed in this
section.

A comparison between the Geant4 simulation and the neural network with respect to the
mean effective area A g and the effective areas A.g for different directions at a wavelength
of A = 400 nm are illustrated in fig. (a) for the whole detector and in (b) for a polar
PMT. According to these plots, the patterns and mean effective areas of both simulations
have a good agreement.

Moreover, it becomes clear that the neural network can capture the shadowing of the new
components as in the upper left part of plot (b).

To quantify the accuracy, the performance percentiles are provided in fig.[6.1.8] overlaid with
the differences previously obtained for the model without harness in fig. as a reference.
The results show that the accuracy for an mDOM with harness is comparable to the values
reported previously in the absence of the harness, with notable differences only at 300 nm,
where the median of the model with the harness is 2 percentage points higher.

6.1.4 Accuracy of a neural Network with quantization

As explained in section [3.5|quantization can minimize the inference time of a neural network
in a CPU. However, quantization introduces an approximation due to reduced numerical
precision, which may affect accuracy.

It was observed that, in cases where a photon was expected to be detected by a single
PMT, the quantized network assigned a non-zero detection probability at the correct PMT
index. However, this probability consistently collapsed to 0.5, with the complementary non-
detection probability also fixed at 0.5. This behavior can be explained by quantization re-
ducing the differences between layer outputs. When these nearly identical values are passed
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through the logsoftmax activation, the resulting probabilities become indistinguishable, lead-
ing to the observed 0.5/0.5 split. As a direct consequence, the calculated mean effective
areas, without the appropriate scaling, failed to reflect the actual behavior. Furthermore, the
logsoftmax activation function is inherently sensitive to small numerical deviations, which
can further degrade overall performance. The mean effective areas and scaling factors can
be found in the Appendix section[A.5] A mollweide projection for the scaled effective area
Aese(0, @) is depicted in fig. together with the effective area provided by Geant4 for a
wavelength of A = 400 nm.

Comparing both plots, the patterns look overall similar, but a clear pixelization—absent in
previous results such as fig. [6.1.2}—is visible as a result of the quantization approximation.
Again, to quantify the accuracy, the performance percentiles for the quantized model, the
non-quantized (normal) model and the analytical approximation are collected in fig.

Geant4: Ae=110.9 cm? NN: Aer=110.9 cm?

103.25 116.93
Effective Area Aes (cm?)

FIGURE 6.1.9: Effective area Aq(6, ) at A = 400 nm as a function of
incident direction for the entire mDOM. Left: Geant4. Right: Quantized
neural network.
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FIGURE 6.1.10: Performance percentiles plotted versus wavelength for

the analytical approximation (blue), a neural network without quantization
(green) and with quantization (orange).
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Compared to the normal neural network, the quantized model shows lower accuracy in all
cases, with the largest difference at 300 nm for single polar PMTs (about 70 percentage
points). At other wavelengths, the differences remain below 6 percentage points. Regarding
the analytical approach, except at 300 nm, the performance of the quantized model is com-
parable for the entire module and even better for single PMTs, with improvements of 3 to
6 percentage points for the median, demonstrating that the quantization approach can be a
more accurate alternative to the analytical method.

In the future, different quantization techniques, such as quantization aware-training (QAT)
presented in 36 [44], could be investigated to improve the accuracy. In contrast to the current
technique, this approach quantizes the model during its training. This allows a minimization
of the loss by adjusting the weights to compensate the quantization errors caused by the
quantization steps.

6.2 Inference time

The neural networks trained in this thesis are intended to serve as a more accurate alternative
to the current analytical approximation used in the IceCube-Upgrade simulations, while at
the same time providing fast inference times and a simple deployment suitable for large-scale
IceCube-Upgrade simulation production.

The higher accuracy of the neural network has already been demonstrated in section [6.1.1]
Therefore, the inference time will be discussed in the following. To this end, several scenar-
ios, such as GPU execution, multi-threaded CPU processing, and quantization techniques,
will be compared to the estimated runtimes of the current analytical approximation and
Geant4 simulations.

Both the neural network running on the CPU and Geant4 can speed up their inference through
multi-threading, in which computations are parallelized across different CPU threads. The
influence of multithreading on the inference time of the Geant4 simulation, the neural net-
work and the quantized network both running on CPU is depicted in fig. where the
number of threads 7' was gradually increased from 1 to 10. To obtain the value and the
standard error the inferences were performed 1000 times.

As shown in the figure, the inference times
significantly decrease with more threads,

—_
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where significantly reduced runtimes can al- 2 L —&— Geant4

ready be observed at four threads. The < 8- \ NN normal
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The table shown in tab. contains the 2 4 6 8 10
inference time for several processor config- number of threads T

urations and for a small (85 units and filters)

and a large neural network (150 units and FIGURE 6.2.1: Multithreading on CPU: Inference
filters). The times were recorded for 30720 time ¢ (in s) for processing 100,000 photons in
mini-batches, each consisting of 100,000 case Qf Qeant4 (blue), the neural netyvork without
photons and subsequently averaged. A gen- quantization (orapge) and the quantized network
eral behavior observed in the table is that the (green) as a function of number of threads 7
large model increases the run-time by twice

(or even more). This agrees with the increased number of trainable parameters (80,000 vs.
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200,000). As already observed in section the larger model only improves the accu-
racy by less than 1 percentage point. Therefore, this large increase in inference time is not
justified. The focus is therefore placed on the smaller model, where more threads and espe-
cially quantization techniques decreases the inference time on a CPU (Intel Xeon Gold 6140)
substantially. The shortest time on a CPU can be observed for the quantized model with 10
threads, where the time yields ¢ = (0.4759 £ 0.0019) s. In addition to different CPU con-
figurations, the non-quantized neural network was run on GPUs (Geforce RTX 4090) which
parallelize matrix-tensor operations across thousands of lightweight threads. Due to this
property, the GPU provides the shortest inference time with ¢ = (0.0412 + 0.0016) s, which
is in the same order as the run-time of the analytical approximation with an estimated time
of t = 0.02 s [[55]] on a CPU.

TABLE 6.2.1: Average runtime (in s) for various configurations when pro-
cessing 20 billion photons across 85 and 150 nodes.

Device and configuration 85 nodes 150 nodes

Intel Xeon Gold 6140, 1 thread (8.58 +£0.74) s (148 £2.3)s

Intel Xeon Gold 6140, 10 threads (1.251 +0.040) s (2.28 £0.19) s
Intel Xeon Gold 6140, quantization, 1 thread (4.09 +£0.34) s (7.63 £ 0.69) s
Intel Xeon Gold 6140, quantization, 10 threads (0.4759 4+ 0.0019) s  (0.987 £ 0.020) s
NVIDIA Geforce RTX 4090 (0.0412 £ 0.0016) s (0.2066 %+ 0.0018) s

Overall, the best configuration is to run the smaller neural network on a GPU, which is much
more accurate than the analytical approximation while maintaining a similar runtime. If
CPUs are preferable due to resource constraints, the quantized model is the fastest alternative,
at the cost of accuracy, whereas the non-quantized model on the CPU is about 400 times
slower than the analytical approach with 1 thread (60 times slower with 10 threads), and about
three times slower than the quantized model. Although the runtime of the non-quantized
neural network on the CPU is similar to that of Geant4, the neural network may still be
preferable because it is easier to deploy — the saved model can simply be loaded in Python
or C++ — whereas incorporating Geant4 into the IceCube-Upgrade simulation chain is more
complex and may add additional runtime overhead.
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7 Summary & Outlook

The main goal of this thesis was to train and characterize neutral networks that estimate
PMT hit probabilities for incident photons in newly developed multi-PMT optical modules
(mDOMs) for the upcoming IceCube-Upgrade, with the aim of replacing the simulation cur-
rently used in the IceCube Upgrade. The existing simulation assumes a wavelength indepen-
dent and symmetric relative angular acceptance for each PMT within the mDOM. However,
due to wavelength-dependent optical properties of the different materials in the mDOM such
as absorption length, refractive index and reflectivity, resulting in asymmetric angular accep-
tance for PMTs, these assumptions provide an inaccurate representation of the actual detector
response. As presented in [S]] for the case of the IceCube-Gen2DC-16 optical module, the
corresponding neural network represent a strong candidate for this task, given its fast infer-
ence time and ability to excel in high-dimensional problems. It combines convolutional and
dense layers to capture inherent symmetries of the optical module, namely the equivalence of
PMTs of the same type within the module, while also capturing symmetry-breaking features,
such as those caused by the harness shadowing. Due to its advantages, the neural network
was adapted for the mDOM and trained on detailed Geant4 simulations in two configura-
tions: with and without the harness.

The accuracy of an mDOM without harness showed that the predictions of the neural network
are clearly closer to that of the Geant4 simulation than those of the analytical approximation,
especially regarding patterns observed in mollweide projections of the effective area. Relative
effective-area differences, expressed with respect to the Geant4 mean effective area, in case of
the neural network for the full optical module are often less than 1%, except at 300 nm, while
in case of the analytical approximation the difference reaches values up to 2%. Generally, the
highest deviations can be observed at wavelengths of A = 300 nm. As explained, this can be
attributed to increased photon absorption (by glass and gel) at that wavelength, which yields
less informative training data and thus poorer predictions. Nevertheless, the discrepancies are
acceptable and, given the low effective area and strong ice absorption at this wavelength, their
impact is not expected to be significant. For single PMTs the accuracy of the neural network
is one order of magnitude higher than in case of the analytical approximation with a general
median difference over the full solid angle of below 1%, which underlines the improvement
achieved by the neural network.

In order to determine the best settings for the neural network, the influence of the number
of units and filters, the inclusion of the symmetry breaking MLP branch and the amount
of training data was examined. The investigations indicate that a model with around 80,000
parameters achieves accuracy comparable to a model with approximately 200,000 parameter,
while the former offers much faster inference. Moreover, the additional MLP branch has
negligible effect for the mDOM without a harness, and increasing the dataset beyond 10
billion samples is not expected to improve accuracy.

To train the mDOM with harness, it was necessary to simplify the harness by truncating it.
This simplification captures most of the shadowing and yields an approximated 1% difference
in the mean effective area at 400 nm. The neural network model reproduces the harness
shadowing, achieving accuracy comparable to that obtained for an mDOM without a harness.
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Quantization techniques were applied in this thesis to reduce the neural network’s CPU infer-
ence time. The quantized model provided a reduced accuracy compared to the neural network
without quantization by up to one percentage point for the full module but at the same time
a similar or a slightly better accuracy compared to the analytical approximation, specifically
with respect to the observed directional effective area patterns. Only for wavelengths of
A = 300 nm the performance of the quantized model is clearly worse than both simula-
tions, where the median reaches differences up to 10 percentage points. On the other hand,
the accuracy of the quantized model for single PMTs is higher by three to six percentage
points compared to the analytical approach. The worse performance can be explained by the
logsoftmax activation, which is sensitive to small numerical deviations caused by quantiza-
tion errors. Implementing other quantization techniques, such as quantization aware-training
could result in higher accuracies, which should be evaluated in the future. Nevertheless, the
inference time could be reduced by 66% compared to the neural network without quantiza-
tion running on CPU.

The estimated processing time for 100,000 photons for the analytical approximation is ¢ =
0.02 s [55]]. The closer running times are for the neural network model on GPU which is
t = (0.0412 &+ 0.0016) s. On the contrary, the inference times of the model in CPU was
t = (0.4759 £ 0.0019) s in case of the quantized model executed with 10 threads, while
the corresponding time of the non-quantized model with 1 thread was ¢ = (8.58 £+ 0.74) s.
Moreover, regardless of the number of threads, the neural network without quantization in
CPU has similar runtimes to the Geant4 simulation. However, independent from the infer-
ence time, the neural network might be more preferable than the Geant4 simulation due to its
simple deployment in the IceCube simulation.

In the future, the neural networks need to be deployed in IceCube-Upgrade simulations, and
the fraction of overhead time contributed by different CPU and GPU configurations relative
to the total neutrino or muon simulation time should be estimated. This will provide a clearer
picture of the best settings to use. In addition, the impact of hole ice [28] needs to be consid-
ered. This ice forms around the drill hole from refrozen water and exhibits higher scattering
and absorption. It is particularly important for the mDOM with harness, where the sensitive
spherical volume extends well above and below the module. As a result, hole ice can alter
the angular acceptance and may introduce non-negligible photon arrival-time-delays due to
scattering that was neglected in this work following [5]].
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A Appendix

A.1 Additional sanity checks for single PMTs

We performed a sanity check to better understand the symmetry of the PMT angular ac-
ceptance to photons and how it is modeled by the network. The motivation was to explore
whether the PMT-relative inputs could be expressed more compactly using only the opening
angle between the photon position vector and the PMT axis, rather than the current cylindri-
cal description, which could result in a shorter inference time, or otherwise to confirm the
agreement achieved with the present approach.

(a) (b)

FIGURE A.l.1: Sanity checks for a polar PMT: Measurement of the ef-
fective area a) in zenith direction 0,y = 6 — Opy7 for a fixed azimuth
@ = wpmt (side view) and b) in azimuth direction @] = ¢ — @pnmT for a
fixed zenith 6 = fppr7 (top view).

The configuration for this study was the following: First the azimuth angle of the analyzed
PMT ppnt Was fixed, while the relative zenith angle 6., = 6 — OpyT between the PMT
angle fpyt and the zenith angle 6 of the beam measured from the positive z-axes were
changed by 0, as illustrated in fig. For the PMT analyses, only angles between —90° <
fre1 < 90° were considered, since the effective area on the opposite side of the PMT is most
of the cases zero (some reflections in the pressure vessel can lead to small effective areas).
Second, the effective area was measured for the fixed zenith angle of the PMT fpyr in
dependence of the relative azimuth angle ¢, = ¢ — @pyT. For a better evaluation of the
symmetry, negative angles 6, were mirrored to the positive x-axes, so two curves can be
compared. This PMT analysis was applied to the Geant4 simulation to examine the PMT
symmetry and in addition to the neural network approach, in order to check, if the network
was able to learn symmetry properties of PMTs. The resulting plots for an equatorial PMT
hit by photons with a wavelength of A = 550 nm are depicted in fig. [A.1.2] where the rings
observed in previous sections can be identified.
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FIGURE A.1.2: (Mirrored) Effective area A.g of an equatorial PMT simu-
lated by the Geant4 simulation (points) and the neural network (crosses) for a
wavelength of A = 550 nm and (a) a fixed azimuth angle @pyT = 247.5° as
a function of the relative zenith |0, |; (b) a fixed azimuth angle fpyT = 72°
as a function of the relative azimuth |¢,¢1|; the red box highlights a disconti-
nuity in case of the neural network.

In case of the zenith direction, shown in fig. (a), the Geant4 simulation proves that
equatorial PMTs are not zenith-symmetric, as the orange and blue dotted curves deviate
from each other, especially for small incident angles up to 25°. This is a result of a lack
of alignment between the normal vector of the pressure vessel and the equatorial PMT axis,
which consequently means a asymmetric filling of the gel between the PMT and the glass
vessel. A similar behavior can be observed for the neural network, which also shows a devia-
tion between the orange and blue crossed curves. This means that the neural network learned
the asymmetry in zenith direction. However, the neural network slightly underestimates the
effective area for angles up to 25° despite scaling with a percentage up to approximately
10% for the normal direction of the PMT. Possible reasons could be the same as explained
in section [6.1.1] for the mean effective area shown in fig. [6.1.1] For shorter wavelengths at
which the observed ring structure fades, these differences decrease significantly as shown in
section[A.1] Therefore, in the most cases these differences are negligibly small. Another dis-
crepancy can be observed at an angle of 0, = —72°, where the blue crossed curve exhibits a
discontinuity. The origin lies in the relative input variables explained in section4.2.1] specif-
ically in the cosinus of the relative azimuth cos (Agq;; ) between photon direction and PMT
axis. With the current configuration, this parameter shows a discontinuity around a relative
zenith angle of 72°, which corresponds to a zenith beam angle of § = 0°. At this position,
the parameter takes the value +1 for a slightly higher “positive” zenith and —1 for a slightly
higher “negative” zenith due to an azimuth shifting of Ay = 180°.

The effective area in azimuth direction is illustrated in fig. (b) and indicates, that equa-
torial PMTs are symmetric in azimuth direction (dotted curve). A similar behavior can be
observed for the neural network, except for a slight underestimation within the ring with the
same deviation as seen before in zenith direction. In contrast to the zenith direction, there is
no discontinuity.

The corresponding plots for a polar PMT are illustrated in fig. [A.1.3] and prove that polar
PMTs are both zenith-symmetric and azimuth-symmetric. Moreover, the discontinuity ob-
served for the equatorial PMT also occurs for polar PMTs in zenith direction. However,
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FIGURE A.1.3: (Mirrored) Effective area A.g of an polar PMT simulated
by the Geant4 simulation (points) and the neural network (crosses) for a
wavelength of A = 550 nm and (a) a fixed azimuth angle ¢pyT = 0° as
a function of the relative zenith |0,¢|; (b) a fixed azimuth angle OpyT =
33° as a function of the relative azimuth |p,e|; the red box highlights a
discontinuity in case of the neural network.

the gap appears at a different angle of 6..; = —33° due to a different zenith of the PMT at
GPMT = 33°.

In conclusion, the sanity checks disprove the zenith-symmetry of the mDOM, especially for
equatorial PMTs. However, in order to reduce the PMT-relative inputs to the opening angle
between the photon vector and the PMT axis, it is necessary that the module is both zenith
and azimuth symmetric. Therefore, this approach cannot be applied to the mDOM. Other
techniques for a reduction of the inference time are presented in section [6.2] Nevertheless,
it can be confirmed that the neural network captures these symmetry properties except for
small deviations at small relative angles up to 25° and at beam angles of 0°.
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A.2 Explanation of the relative neural network inputs

The neural network uses relative inputs for the symmetric description of the mDOM and ab-
solute input for symmetry breaking features of the mDOM, e.g. the harness. The relative

inputs are presented in the following:

Relative z-coordinate Az,
One input is the relative z-coordinate of the position Azps,

which is calculated by the z-coordinate of the PMT 2562 and

the z-coordinate of the photon zggé’ ton

mula:

with the following for-

__ .pmt _ _photon
- Zpos Zpos

Azpos (A2.1)

As shown in fig.[A.2.1] the distance between the orange pho-
ton and the top PMT is equal to the distance between the blue
photon and the bottom PMT, except for the sign. Because the
situation is symmetric, the z-sign of the bottom PMT will be
reverted. This will be done by multiplying a “1” or a “-1” de-
pending on the upper/bottom binary value of the correspond-
ing PMT.

Absolute z-coordinate of photon zgi}f’ton

The first input described the position in z orientation. How-
ever, a desciption for the direction in z orientation is missing.
Due to the fact, that the PMTs might not have a symmetry in
zenith direction (angle measured from the z-axis) because of
the oval form of the mDOM, a relative description does not
make sense. Instead, the absolute z-coordinate of the photon

direction z,°"" is used, which is, according to trigonome-
try, equal to:
photon __ photon
234y = cos Vg, (A2.2)

As illustrated in fig. [A.2.7] there is the same symmetry as in
the previous input. Therefore, the bottom PMTs are reverted
analogously.

Relative azimuth Ay,

After the description of photons in z orientation, a descrip-
tion in the z-y-plane is needed. If the mDOM is viewed
from the z-direction, the module seems to be a circle, so the
mDOM has a azimuth symmetry. This allows a relative de-
scription of the photon position to each PMT axis, which has
the following form:

__ ,.pmt _ _photon
ASOPOS - (ppos (ppos

As shown in fig. [A.2.3] the relative positions of the blue
and orange photons are symmetric. Thus, both photons
should be associated with the same value. This can be
achieved by using the cosinus of the azimuth difference

(A.2.3)

Z

Top PMT

Tk

FIGURE A.2.1: Symmetric situ-
ation between the upper and bot-
tom part of the module. Taken
from [53]].

Bottom PMT

Nl

Top PMT

Bottom PMT

FIGURE A.2.2: Symmetry re-
garding to the absolute zenith of
the photon direction. Modified
and taken from [53]].

PMT symmetry axis

FIGURE A.2.3: Symmetry re-
garding to the relative azimuth
angle of the positions. Modified
and taken from [53]].
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cos A@pos.

Relative azimuth Apg;, + convergence check Ay,
In addition to the position, the direction in the x-y-plane has PMT symmetry axis
to be characterized. The symmetry is analogously described
to the relative azimuth of the position through cos Apg;;.
However, as depicted in fig. [A.2.4] the direction is a vector,
which could be located everywhere. This leads to the issue,
that the same directions 1 and 3 are one time directed to the
PMT and one time not. For the directions 2 and 4 it is similar.
In order to find out, whether the photon points to a PMT, the
difference in the y position between photon and PMT will
be analyzed for two different time steps. First, the difference
will be calculated as before for other parameters, according
to this equation: FIGURE A.2.4: Symmetry re-
garding to the relative azimuth
Aypos(to) = ygg;t — yppggton (A.2.4) angle of the direction. Modified
and taken from [53]].

After that, this distance will be computed for a later time ¢;, which can be imitated by a step
(such as 0.1) of the photon in its direction ygﬁomn. According to this convergence strategy,

the difference can be calculated as follows:

Aypos(t1) = yBme — (yRhoton 4 (.1 . yphotony (A2.5)

Consequently, the convergence can be checked by the inequation |Aypos(to)| > |Aypos(t1)],
which returns a binary value as an input for the network.
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A.3 Effective area of an equatorial PMT

Geant4d Neural Network  Analytical Approximation

(a) Effective Area Aes (cm?)

Geant4 Neural Network  Analytical Approximation

-
mr
i

8.
(b) Effective Area Aqfr (cm?)

FIGURE A.3.1: Effective area A.g for a single equatorial PMT at different
directions and wavelengths: (a) A = 400 nm, (b) A = 550 nm.
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A.4 Distribution of effective area difference between Geant4d/NN

absolute frequency N
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FIGURE A.4.1: Distribution of the relative effective area difference
AAcg rel (in %) for the whole optical module.
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FIGURE A.4.2: Distribution of the relative effective area difference
AAeg re1 (in %) for a) a polar PMT and an b) equatorial PMT. Colors are

explained in fig. [A.4.T]
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A.5 Mean effective area of the neural network with quantization

—0— Geant4 NN quantized NN

300 350 400 450 500 550
wavelength A (nm)

FIGURE A.5.1: mean effective area A.g for different simulations and wave-
. . —geant ,—quant . .
lengths together with the ratio a(\) = Ay /Acs -, which constitutes the

scaling factor.
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