Universitat
Miinster

BACHELOR THESIS

Training and Performance Characterization of a
GNN-based Binary Classifier for Noise Cleaning
in IceCube-Gen2

Supervisor: Second examiner:
Prof. Dr. Alexander Kappes Prof. Dr. Anton Andronic

A thesis submitted in fulfilment of the requirements for the degree of
Bachelor of Science ar Universitit Miinster
by
Jonas Selter

AG Kappes
Institute for Nuclear Physics

August 2025

https://www.uni-muenster.de
https://www.uni-muenster.de/Physik.KP/AGKappes/
https://www.uni-muenster.de/Physik.KP/

iii

Declaration of Academic Integrity

I hereby confirm that this thesis on “Training and Performance Characterization of a GNN-based
Binary Classifier for Noise Cleaning in IceCube-Gen2” is solely my own work and that I have used no
sources or aids other than the ones stated. All passages in my thesis for which other sources, including
electronic media, have been used, be it direct quotes or content references, have been acknowledged
as such and the sources cited.

Signature:

Date:

I agree to have my thesis checked in order to rule out potential similarities with other works and to
have my thesis stored in a database for this purpose.

Signature:

Date:

Contents

Declaration of Academic Integrity

1

2

Introduction

Neutrino Astronomy

iii

2.1 Neutrinos and Their Properties
2.2 Principles of Neutrino Detection
2.3 The IceCube and IceCube-Gen2 Detectors
2.4 Background Noise in IceCube and IceCube-Gen2

3 Introduction to Machine Learning
3.1 Neural Networks e
3.2 Training a Neural Network,
3.3 Graph Neural Networks
34 Graphnet e

4 Training a GNN-based model for Noise Cleaning in IceCube-Gen2

4.1 Monte Carlo TrainingData
4.2 Processing the Simulation Files
4.2.1 Preprocessingofi3files
Removing On-board Noise Cleaning

Setting Truth Flags oL

Converting i3 files into ML-Compatible Format

4.2.2 Calculating Range of Input Features

43 TrainingDynEdge

5 Performance

5.1 Model Inference Outputs e
52 ROCCUIVE o i e e e e e e e

5.3 Classical SRT vs GNN Noise Cleaning Comparison
True Positive Rate

False Positive Rate

5.4 Resource Usage and Optimization
54.1 Memoryusage RAM)

542 ComputationTime,

543 Multithreading

6 Summary and Outlook

A Additional Plots to Chapter 5

NP bW W

SO NI

1 Introduction

Astronomy is often described as the oldest science practiced by humans. Long before the develop-
ment of sophisticated scientific methods or mathematical concepts, people looked up at the night sky
and used the stars for timekeeping and navigation. Later, technological advances such as the tele-
scope, which collects more light, and the spectrometer, which analyzes the wavelengths of starlight,
expanded the range of astronomical observations.

It was not until the 20™ century that the era of multi-messenger astronomy began. In contrast to tradi-
tional astronomy, which relies mainly on light as a source of information, multi-messenger astronomy
combines complementary signals — including gravitational waves, cosmic rays, and neutrinos — to
gain a more complete understanding of astrophysical phenomena. Instead of observing only the pho-
tons produced in an event, researchers now search for other messengers that can be traced back to the
same origin. Each messenger has its own advantages and challenges.

This thesis focuses on neutrinos, which interact only via the weak interaction. Unlike photons or
charged particles, they can escape dense astrophysical environments and travel vast distances through
the universe without being absorbed or deflected. While charged particles are bent by magnetic fields
and thus lose directional information, and high-energy photons can be absorbed over long distances,
neutrinos remain largely unaffected — aside from flavor oscillations. Their weak interaction makes
them ideal astrophysical messengers. In particular, high-energy neutrinos are often referred to as a
smoking gun for hadronic processes, because from the standard model it is expected that they are
only produced in significant amounts through interactions involving protons or other hadrons. Unlike
gamma rays, which can also be produced in leptonic processes and are easily absorbed, neutrinos
offer a clearer and more direct link to cosmic ray acceleration.

However, the very property that makes neutrinos so valuable — their low interaction rate — also
makes them incredibly difficult to detect. To overcome this, massive detectors are required. One of
the largest of these is the one-cubic-kilometer IceCube detector [1], located at the South Pole.

IceCube detects neutrinos indirectly by measuring Cherenkov light emitted by secondary charged
particles. This light is observed by photomultiplier tubes (PMTs) enclosed in optical modules and
deployed deep into the Antarctic ice. However, not all detected photons originate from neutrino in-
teractions — a significant portion stems from noise sources, primarily radioactive decays in the glass
of the optical modules. This noise can interfere with tasks such as reconstructing the neutrino’s di-
rection. Therefore, effective noise-cleaning methods are essential.

Although IceCube currently employs well-established algorithms based on time-space cuts to sup-
press noise, these methods face limitations when applied to the upcoming IceCube-Gen?2 detector [2].
IceCube-Gen?2 will have a significantly increased number of optical channels and higher noise rates,
requiring more scalable and adaptable approaches.

This thesis investigates an alternative strategy based on Graph Neural Networks (GNNs). Deep
learning methods, especially those designed to process structured data such as graphs, are promising

2 Chapter 1. Introduction

tools for addressing complex, high-dimensional problems like noise classification in neutrino detec-
tors. The specific goal of this work is to assess the suitability of a GNN-based noise cleaning method
— using the DynEdge architecture — considering only the IceCube-Gen2 optical array, and not con-
sidering the strings of the original IceCube experiment, since the used optical modules are different.
For this purpose, based on a previous work for the IceCube-Upgrade [3], a GNN is trained and its
performance evaluated for the future IceCube-Gen2 detector. This work can be regarded as a proof of
concept, exploring the conditions under which such a model could offer an advantage over classical
cleaning techniques.

This thesis begins with a theoretical introduction to the IceCube and IceCube-Gen?2 detectors, the key
ideas of machine learning, and the GraphNet framework in Chapters 2 and 3. Subsequently, Chapter 4
describes the process of training a GNN-based model for the purpose of noise cleaning. In Chapter 5,
the model’s performance is evaluated and compared to the traditional IceCube noise cleaning method.
The thesis concludes with a summary and outlook in Chapter 6.

2 Neutrino Astronomy

This chapter provides the theoretical foundation for understanding IceCube and the IceCube-Gen2
optical array, offering an introduction to the sources of background noise in their optical modules and
the classical approach to noise cleaning in IceCube.

2.1 Neutrinos and Their Properties

In the Standard Model, neutrinos come in three different flavors: v, v, and v, each one associated
with a corresponding charged lepton: the electron, muon and tau. After the postulation made in 1930
by Wolfgang Pauli [4], the first experimental evidence of neutrinos occurred in the 1956 Poltergeist
experiment [5]. Neutrinos oscillate in flavor as they propagate, a discovery awarded with the 2015
Nobel prize [6]. A direct consequence of this phenomenon is that neutrinos have mass. Still, the
exact mass has not been measured to this day. There is, however, an upper limit for the neutrino mass,
resulting from the KATRIN experiment [7]. For instance, the most recent upper value for the electron
neutrino mass has been set to m,, < 0.45eV at a 90% confidence level [8].

Out of all standard model particles, neutrinos are the second most abundant ones in the universe, being
outnumbered only by photons. The high-energy neutrinos that IceCube aims to detect are believed to
originate mostly from pion and kaon decays, which result from hadronic interactions in some of the
most extreme environments in the universe [1].

One of the main goals of neutrino astronomy, and thus of IceCube, is to trace the sources of high-
energy cosmic rays. These highly energetic particles, most of which are protons, were discovered by
Victor Hess in the early 20" century as a form of ionizing radiation [9]. During a balloon flight, Hess
observed that the ionization rate increases with altitude, indicating that the radiation must originate
from outer space. In a later experiment conducted during a solar eclipse, he demonstrated that this ra-
diation could not be traced back to the Sun, suggesting that it must have galactic or even extragalactic
origins.

However, the precise sources of cosmic rays remain one of the great unsolved mysteries in physics.
Neutrino astronomy offers a promising way to address this question. It is believed that high-energy
cosmic rays are produced in some of the most extreme environments in the universe, such as active
galactic nuclei (AGNSs). Since hadronic interactions are expected to occur in these environments, the
production of high-energy neutrinos is a natural consequence.

While neutrinos are electrically neutral and do not interact via the electromagnetic or strong forces,
and their small mass makes them barely affected by gravity, they do interact through the weak inter-
action. In the context of neutrino detection in high energy ranges, deep inelastic scattering processes
are most relevant, which can occur for both charged and neutral current. A neutrino v, (antineutrino
v,), with £ indicating the corresponding lepton flavor, interacts with a nucleon N upon collision, ex-
changing either a W-boson (Charged Current, CC) or Z-boson (Neutral Current, NC). In the former
case, the interaction yields a lepton ¢~ (antilepton ¢*) and a hadronic cascade X. The lepton £ can be
an electron e, a muon p, or a tau 7, depending on the flavor of the interacting neutrino. In the latter

4 Chapter 2. Neutrino Astronomy

case, the neutrino’s flavor remains unchanged, and the interaction produces a hadronic cascade [10]:

) W:l: [ZO fany
v +N — /T + X (CC), v +N —— 1, + X (NO).

2.2 Principles of Neutrino Detection

While the low interaction rate of high-energy neutrinos is
a major advantage, it also creates significant challenges for
their detection, the reconstruction of their paths, and ulti-
mately the study of their origins. To overcome this, large-
volume detectors are used to observe high-energy neutri-
nos.

Neutrinos are detected indirectly by means of secondary
charged particles produced in neutrino interactions via the
Cherenkov effect [12]: If a charged particle propagates
in a dielectric medium at a speed faster than the speed
of light in this medium, the wavefronts produced by the
rapidly moving particle interact constructively, creating
Cherenkov radiation. The conically shaped waves are car-
ried along the particles path, and the particle’s speed can elling at a speed beyond the speed of light in
be characterized by the angle 6 between the path traveled | oo e o constructively, produc-
and the wavefront of the emitted light. This can be seenin jng Cherenkov radiation. The angle ¢ de-

Figure 2.2.1: Wavefronts of a particle trav-

figure 2.2.1, where the angle 6 is given by: pends on the particle’s velocity. Image taken
from [11].
v,t 1
cosf = — = —,
v 6n

where v, is the velocity of the Cherenkov wavefront, ¢ is the time, v, is the velocity of the particle,
n is the refractive index of the medium, and 8 = v,,/c is the particle’s velocity in units of speed of
light.

In addition to requiring a dielectric medium, a neutrino detection medium must also be transparent so
that Cherenkov photons can propagate and be detected. Water in all its forms is an excellent candidate,
as it meets both criteria and occurs naturally in large quantities on Earth, enabling the construction of
kilometer-scale detectors.

2.3 The IceCube and IceCube-Gen2 Detectors

The IceCube Neutrino Observatory [1] is an astrophysical experiment located at the South Pole, aim-
ing to detect cosmic neutrinos. It has been in operation since 2011. The detector consists of 86
strings deployed into the Antarctic ice at depths between 1450 and 2450 meters, with 60 attached
Digital Optical Modules (DOMs) on each string. In total, the instrumented volume of the detector
covers approximately one cubic kilometer. Each DOM contains a large photomultiplier tube (PMT),
making it sensitive enough to detect single photons. In the coming years, several extensions of the
detector are planned, rendering it more sensitive to neutrinos at both the lower and higher energy
regimes. In addition to the IceCube Upgrade [13], which is scheduled for deployment during the
Antarctic summer of 2025/26, one major planned extension is IceCube-Gen2 [2]. Figure 2.3.1 shows
a schematic view of the layout in which the IceCube-Gen2 strings will be deployed.

2.3. The IceCube and IceCube-Gen2 Detectors 5

’ OPTICAL

IceCube:

86 strings of Amundsen-Scott South

IceCube-Gen2: ik optical modules Pole Station, Antarctica
1370 m : 4

120 new strings of | ! (HERE A National Science Foundation-
optical modules | W X managed research facility
i HE I !

IceCube Laboratory

Data is collected here and
sent by satellite to the data
warehouse at UW—Madison

80 optical modules
on each string

Antarctic bedrock S Modules
are spaced
IceCube-Gen2 Optical 3 0/ Es
Module y)\ apart
4x the sensitivity of IceCube's
modules +«—— IceCube —»

9,600 new optical modules in (1 km)
total to be deployed in the ice

+—— IceCube-Gen2 —M >
(5 km)

Figure 2.3.1: Diagram of the string positioning in the IceCube-Gen2 optical array.
The optical module shown on the left-hand side, the Gen2DC-16, is displayed in an
exploded view in Figure 2.3.2. Image courtesy of the IceCube Collaboration.

For the IceCube-Gen2 optical array alone, the detector volume will increase to approximately eight
cubic kilometers. Furthermore, a radio array and a surface air shower array will be added. The main
goals of IceCube-Gen?2 are the following [14]:

* Resolve the high-energy neutrino sky from TeV to EeV energies.

* Investigate cosmic particle acceleration through multi-messenger observations.

* Reveal the sources and propagation of the highest energy particles in the Universe.
* Probe fundamental physics with high-energy neutrinos.

In contrast to the Digital Optical Modules (DOMs) which are already deployed and being used in
IceCube, the IceCube-Gen?2 optical array will be featuring advanced modules containing multiple
PMTs, allowing for at least four times more effective area and intrinsic angular resolution. One
design candidate is the Gen2DC-16. This candidate features 16 4-inch diameter PMTs within an
elongated glass vessel. An exploded view can be seen in Figure 2.3.2. The final module design to be
deployed in the IceCube-Gen2 optical array has not yet been finalized.

6 Chapter 2. Neutrino Astronomy

=

Penetrator Cable

Assembly (PCA) 4 inch PMT

/ /e pa

PMT holder

Pressure vessel

Support structure \

LED flasher /g

s

b

Ten Waveform

ﬁ microBase
J\ Fanout board

Mini-Mainboard /\E ’,_'

Figure 2.3.2: Exploded view of the Gen2DC-16. Image taken from [15].

2.4 Background Noise in IceCube and IceCube-Gen2

The light observed in IceCube-PMTs does not only come indirectly from neutrinos or atmospheric
muons, but there is background light, too, which is traceable to other sources and accounts for noise
in measurements. Since the antarctic ice is very old, it is not a source of background. However, PMT
dark rate and, above all, radioactive decays in the glass vessels surrounding the optical modules are.

There are different types of background noise which are detected in the IceCube experiment, and will
be in the future extensions—including the IceCube-Gen2 optical array. The main source of noise for
the IceCube-Gen?2 optical array is expected to be coming from radioactive decays in the glass of the
optical modules. These originate from different radioactive isotopes in the material, such as 0K or
isotopes from the three natural decay chains 238y, ?%U and **°Th [11]. In the decay, particles are
emitted that can produce Cherenkov radiation, creating noise hits on the PMTs. In addition, the en-
ergy deposited by these particles can induce scintillation and thus generate further background noise.
For IceCube-Gen?2, the described noise is currently modelled using detailed Geant4 simulations [16].

The noise is typically removed because it complicates the directional reconstruction, especially of
low-energy events. The traditional noise-cleaning method used in IceCube is called Seeded RT (SRT)
cleaning [17], where R and T indicate that the cuts are based on spatial and temporal correlations.
The algorithm first selects photon hits that satisfy a preliminary local coincidence condition. Based
on the spatial and temporal distances from these hits—referred to as seed pulses—it then applies cuts
to identify noise. In the current IceCube-Gen2 simulations, two pulses are considered to be in local
coincidence if their time difference is within 0.01 ps for hits in the same optical module but different
PMTs, or within 0.2 us for hits in neighboring optical modules.

3 Introduction to Machine Learning

This chapter gives a general overview of machine learning and explains the general workflow when
working with deep learning models. Moreover, the process of training a Neural Network is explained.

3.1 Neural Networks

A fundamental concept in machine learning is the neuron [18], which is defined as:

Y:f(Zwi-:Eier),

where x; is an input vector, w; a weight vector, and b is a bias term. The weighted sum of inputs
and bias is passed through a non-linear function f, which is commonly referred to as the activation
function in the context of machine learning.

Some commonly used activation functions include:

* ReLU(x) [19]: ReLU = max(0, z).
e Sigmoid [20]: o/(z) = 1/ (1 n e*z) .

Neurons are the basic building blocks of layers. When multiple layers of neurons are stacked, this
forms a Multilayer Perceptron (MLP), as illustrated in Figure 3.1.1. In this figure, each bubble rep-
resents a neuron. All layers between the input and the output are referred to as hidden layers. As the
number of hidden layers increases, the network can learn progressively more complex patterns rele-
vant to the target task: the early layers typically extract fine-grained (local) features, while the deeper
layers capture higher-level (global) structures. The total number of hidden layers is a hyperparameter
of the model and is typically chosen through trial and error.

The figure also depicts that each neuron in one layer is connected to every neuron in the subsequent
layer. These connections, represented by lines, contain the model’s weights which, together with the
bias (there is only one bias per neuron), make up the trainable parameters of the network. In general,
if there is more than one hidden layer, a network of neurons is referred to as a Deep Neural Network.

3.2 Training a Neural Network

In the previous section, neural networks were introduced, which are capable of mapping a given set of
input values to corresponding target outputs. However, in order to produce accurate predictions, the
network’s parameters must be adjusted through an iterative process known as training, during which
the model is exposed to a large number of training samples with known target outputs.

In order to train a model, it is crucial to define a quantity that reflects the inaccuracy of its predictions.
In the context of machine learning, this quantity is known as the /oss, and it is computed by a loss
function that takes the predicted and target outputs as input.

8 Chapter 3. Introduction to Machine Learning

input layer hidden layer 1 hidden layer 2 hidden layer 3

=

y e
LA 7 ES SN
2 03\\'g
y N

4 “‘{\\-

Figure 3.1.1: Visualization of a Deep Neural Network with three hidden layers. Ex-
planation can be found in the text. Image taken from [21].

The choice of loss function depends on the assumed likelihood model for the target varible. In the
case of this thesis—a binary classification task—the predicted values represent scores between 0 and
1, where O indicates a noise-induced hit and 1 indicates a physics-induced hit. The target variable
follows a Bernoulli distribution, and the appropriate loss function is the binary cross-entropy, which
corresponds to the negative log-likelihood of the Bernoulli distribution. This can be written as fol-
lows [22]:

Hp(Q) = -

2=

N
Z [y; - log(p;) + (1 —y;) - log(1 — p;)]
i=1

where N is the total number of training examples, (y; € {0, 1} is the true label of the i-th sample,
and (p; = pg(y; = 1 | x;) marks the predicted probability that the input features x; for the given
node belong to the positive class, given the model parameters 6. The notation p; means that this is an
inferred quantity estimated by the model, rather than the true probability. The factor — % ensures that

the loss is averaged over all samples and remains positive.

To optimize the model toward this minimum, the gradient of the loss can be computed over the entire
training dataset at once. This gradient indicates the direction of steepest descent in the loss landscape.
Updating the weights and biases in the opposite direction of the gradient is known as gradient descent,
with the update rule:

0=6—nVyJ(0),

where 6 denotes the model parameters, J(6) is the loss function (binary cross-entropy in this thesis),
Vy is the gradient with respect to the parameters, and 7 is the learning rate.

The equation can be interpreted as follows: the gradient of the loss function indicates the direction of
steepest ascent, while its negative —V gives the direction of steepest descent used to update the pa-
rameters. Once this direction is determined, the remaining question is how far the parameters should
be adjusted. This step is controlled by the learning rate 7, which is one of the key factors in success-
fully training a deep learning model. If 7 is too small, the model converges very slowly and risks
becoming trapped in a local minimum rather than the global one. Conversely, if 7 is too large, the
parameter updates can overshoot the minimum, leading to unstable or chaotic behavior. In such cases,
the model may fail to converge and oscillate around regions of high loss.

There are, however, several variations of this method. One widely used variant is stochastic gradient
descent (SGD) [23]. Unlike the approach described above—commonly referred to as batch gradient

3.3. Graph Neural Networks 9

descent—SGD does not use the entire dataset to update the model parameters. Instead, it selects
a single minibatch at random for each update step. This enables faster and more computationally
efficient optimization, particularly for large datasets. It can be expressed as:

. ”i'vegL <$<z‘>,y(z’)’9) 7

where g is the gradient vector, m’ is the size of the mini-batch, V, marks the gradient operator with
respect to the model parameters 6, i are the samples in the minibatch, and L <a:(z),y(z), 9) is the

loss for a given training sample (ac(i), y(i)) given the current parameters . By means of the SGD

algorithm, the network parameters are adjusted with the goal of minimizing the loss function of the
model. In this thesis, SGD is used.

To address this, some optimizers incorporate a momentum term that adds a velocity-like component
to the parameter updates. This helps smooth the optimization path and prevents abrupt changes in
direction. The optimizer used in this work is Adam (Adaptive Moment Estimation) [24], which com-
bines momentum with adaptive learning rates for each parameter.

In addition, whenever the model parameters are updated, it is standard practice to monitor the loss
on a separate, unseen dataset, the so-called validation dataset. During training, the validation loss is
expected to decrease alongside the training loss. However, if the validation loss starts to increase at
some point, training is typically stopped, as this indicates overfitting. Overfitting occurs when the
model stops learning general patterns from the training data and instead begins to memorize the spe-
cific examples. This leads to continued improvement on the training dataset, but reduces the model’s
ability to generalize to unseen data, which is the actual goal of training.

3.3 Graph Neural Networks

When selecting a neural network architecture, it is crucial to consider the symmetries of the input
data. Exploiting such symmetries allows the model to generalize more effectively and to learn rel-
evant features more efficiently. This is because if the symmetries are considered, the model will be
more efficient and will be able to achieve a better performance with a smaller number of parame-
ters, leading to less memory usage and a shorter inference time. A well-known example is the use
of Convolutional Neural Networks (CNNs) for image processing [25]. While a multilayer percep-
tron (MLP) can technically be trained to classify images, its performance is typically poorer because
it does not incorporate translation symmetry. CNNs, by contrast, are designed to be approximately
translation-invariant: they can recognize features regardless of their position in the image, thanks to
their convolutional architecture which exploits the translational structure of image data.

A Graph Neural Network (GNN) can be used to efficiently train on graph-structured data. In general,
a graph consists of nodes connected by edges. In this work, each node contains information about
the PMT which was hit, including its position, direction, time, and charge, while the edges encode
relationships between nodes. An illustration of this representation is shown in Figure 3.3.1.

GNNs apply an idea similar to that of CNNs to graph-structured data rather, than grid-like images.
In some cases, GNNs can also achieve translation invariance if the input features are given in rela-
tive coordinates. In this thesis, however, the absolute positions of PMT hits are used, so the relevant
symmetry is permutation invariance: the network’s output should not depend on the ordering of the

10 Chapter 3. Introduction to Machine Learning

-
.

» "
. - a2
o T i
e i
[N S 4
e = e .
P G Sl
gt T
t i
A SEE s
E L '
t ot TRk ,,:fa.
s % SN
: TEI
k. 4
x HEG - iy
» ' b J i.
= 4
. i -

Figure 3.3.1: Different stages of representing IceCube events as point-cloud graphs.
The image was created for an IceCube simulation but is equally applicable to the
IceCube-Gen?2 optical array. Left: Full detector view showing strings and DOM:s,
with active PMTs highlighted in blue. Center: Only active PMTs are shown. Right:
Schematic graph representation, where hits on active PMTs are modeled as nodes, and
connections between them as edges. Credits: Jan Weldert and Rasmus @rsge.

input nodes. Another motivation for using a GNN in this application is its ability to handle sparse and
variable-sized data. Unlike CNNs, which require a fixed input dimension, GNNs naturally accommo-
date the varying number of pulses in different IceCube-Gen2 events. Since the task here is to classify
individual pulses based on their local neighborhood, the graph-based architecture is a natural fit.

DynEdge

The specific GNN architecture used in this thesis is called DynEdge [3]. It is based on the EdgeConv
convolutional operator. Given a node n; with node features x;, the convolved features z; are com-

J
puted as follows:
N,

neighbors

=1

where the multi-layer perceptron (MLP) processes both the features of node j and the difference be-
tween node j and its neighboring nodes i. The upper limit of the sum, Nciohbors> 1S set to 8 in this
work. A diagram of the DYNEDGE model architecture is shown in Figure 3.3.2.

DynEdge uses a dynamic EdgeConv, meaning that the 8 connections to the nearest neighbors are
recomputed throughout the forward pass of the network. After the first EdgeConv layer, the model
has learned features, which live in an abstract space; then, the connections to the nearest neighbors
are updated based on distance in this learned space, not just physical distance. Every time the model
passes through an EdgeConv, the graph is rebuilt based on the current node features.

3.4 Graphnet

GraphNet [26] is an open-source library designed for deep learning applications in neutrino tele-
scopes. It has been shown that machine learning performs remarkably well in neutrino event recon-
struction and classification—even without explicitly considering detector geometry or the detection
medium [3]. This means that different neutrino observatories produce data of similar structure, mak-
ing it possible to share models and methods across experiments. GraphNet leverages this by offering

3.4. Graphnet 11

Input Graph
[n,6] Global

Statistics! M,51 [1,1029] MLP Prediction
10:6] [1,n_outputs]

State Graph 1

[1,1024]

In, 256] P @
EdgeConv L [n,1030] [n, 256] ww

State Graph 2 Node Aggregation

EdgeConv &

State Graph 3

[n, 256]
EdgeConv

for j in range(num_nodes):

k
_In,h] |k-nny | = Zmlp(zj,zj _ Il)m_,
i

EdgeConv n, 256]

l State Graph 4

EdgeConv é

[n, 256]

Figure 3.3.2: Diagram of the DYNEDGE architecture. n refers to the number of
pulses, and h denotes an arbitrary number of feature columns. Image adapted from [3].

a unified and modular framework that enables collaboration and code sharing between researchers.
It is written in Python, and built on torch [27], specifically on the PyTorch Lightning [28]
framework.

graphnet.deployment

- 1010
Labelled training data Unlabelled data — I —— 9108
N PP leconstruct
% (Experiment-specific files) (Experiment-specific files) 1511
Predictions
graphnet.data graphnet.models graphnet.training
Z o0 28
Convert Read = Configure Build) Train Log | < 2 : E %A
Y %

T | Model
Develop / Experiment

GraphNeT

Figure 3.4.1: Diagram representing the GraphNet workflow. Image taken from [26].

Figure 3.4.1 illustrates the general workflow when using GraphNet. The diagram follows a left-to-
right structure: it starts with labeled training data. In the case of IceCube, this often means i3 files,
which are highly specific to IceCube and require the IceTray [29] environment for processing. This
will be explained in more detail in Chapter 4.2.1. This labelled data contains information about hits
and corresponding truth labels, such as particle type, energy, or direction. The following steps in the
workflow are summarized into groups:

* graphnet.data: This marks the first step when working with labelled data as described
above. First, the raw data must be converted into a format GraphNet can use, which will later
be referred to as ML-compatible format in chapter 4.2.1. In this case, the format used will be
SQlite.

* graphnet .models: This is where the model configuration takes place. Here, a model
architecture—in this case, DynEdge— is chosen, and the model’s hyperparameters can be de-
fined, such as the number of layers. After this step is completed, the actual PyTorch Geometric
model is built based on the configuration.

* graphnet.training: Here, the labelled graphs which are given as an input are used to
actually train the model to do the assigned task (in this case, binary classification). Log refers
to saving the model checkpoints, which are needed for analysis in later steps.

* graphnet.deployment: After the model is successfully trained, it can be applied to un-
seen data, which is unlabelled, and make predictions, which are the model output. This step is
also called inference.

13

4 Training a GNN-based model for Noise
Cleaning in IceCube-Gen2

The use of a Graph Neural Network (GNN) for noise cleaning has been demonstrated in the context of
the IceCube Upgrade [3]. The goal of this thesis is to apply the GNN architecture used in that work,
DynEdge [3], to the optical array of IceCube-Gen2 and to train it for noise cleaning in IceCube-Gen2
simulations with the Gen2-DC16 [15] as the baseline optical module, assuming that Vitrovex [30]
glass will be used for the pressure vessel. The following chapter describes the process of training the
GNN-based model.

4.1 Monte Carlo Training Data

The Monte Carlo simulation used to train the model is taken from IceCube dataset 22830, containing
exclusively v, simulations. This way, the model will see both cascade events and track-like events in
training, since v, produce both neutral and charged current interactions. There are roughly two mil-
lion events in an energy range from 1 TeV to 50 PeV, following a power-law distribution of the form
E™7, where the training dataset is characterized by the spectral index 799830 = 1.5. As explained
in section 2.4, the baseline optical module is the Gen2-DC16, and the noise simulation is based on
detailed Geant4 simulations of radioactive decays in the optical module’s glass [16], considering the
Vitrovex [30] manufacturer.

4.2 Processing the Simulation Files

4.2.1 Preprocessing of i3 files

The Monte Carlo simulations in the 22830 and 22831 datasets are stored in 13 files. The i3 format
was specifically developed for IceCube simulations, and working with it requires the installation of
the TceTray framework [29]. This framework is used for handling simulation data and processing
i3 files. As a result, the preprocessing steps were performed on IceCube’s Condor-based computing
cluster [31], where IceTray is pre-installed.

The i3 files used in this context contain multiple frames, with each frame labeled Q representing one
simulated event. These Q frames follow a dictionary-like structure, where different keys and values
store various types of information about the simulated particles.

Removing On-board Noise Cleaning

The pulses in this script were initially processed with an experimental on-board noise cleaning. This
step was included in the simulations to investigate preliminary noise suppression. However, this on-
board noise cleaning was proven to remove a significant amount of physics pulses, which is why it was
decided not to use it anymore. In addition, all events with all their noise pulses are wanted for training.
Therefore, the reconstructed charge-time-pulses under the key I3RecoPulseSeriesMapExtensions
were reprocessed from the Monte Carlo pulses of the previous step, which can be found under the

14 Chapter 4. Training a GNN-based model for Noise Cleaning in IceCube-Gen2

key I3MCPulseSeriesMapExtensions.

Setting Truth Flags

To understand how the truth flags are set, it is helpful to first examine the simulation chain used
in IceCube simulations. After neutrino interaction, particles propagating through ice are simulated,
including their Cherenkov light. Whenever a photon is detected by a PMT, a Monte Carlo Photo
Electron (MCPE) is generated, which is traceable to the particle it originated from since it carries its
particle ID. In addition, noise hits are added, which are sampled from pre-computed simulations. The
MCPEs associated with noise hits carry the event-ID 0. In the next step, the MCPEs generated in
the simulation are used to simulate so-called MC pulses. This is done by sampling for each MCPE
an expected measured charge by the PMTs from a SPE (single photo electron) template, and also
adding a time jitter, modifying the time of detection, and finally the MC pulses are converted into
so-called reco-pulses by redefining them in the corresponding IceCube dataclass, applying a 0.25
photo-electron (PE) charge threshold on pulses and including a local coincidence flag. At the time
being, given the current status of the IceCube-Gen2 simulation, actual waveform simulation is not
performed. This makes labeling easier, as signal and noise hits can be unequivocally distinguished.
Therefore, the current training allows for perfect labeling: Since each MCPE has its own label, the
corresponding reco-pulse carries the same label, matching it unequivocally to either a physics or noise
hit.

For actually setting the truth flags, an i 3-module was written. Inside an 13 file, it iterates over the
I3RecoPulseSeriesMapExtensions, which contains the reco pulses of IceCube-Gen2. It
checks the T3RecoPulseSeriesMapParticleIDMap to see which pulses are linked to a non-
noise particle, which is indicated by a particle ID different to 0. Based on this, a truth_flags
map is generated, where 1 corresponds to a physics hit, and O to a noise hit.

Converting i3 files into ML-Compatible Format

Before the data can be used as an input for machine learning, it must be converted into one of the two
formats suitable for GraphNet, i.e. Parquet or SQLite. In this work, the SQLite format was chosen,
which is a database format structured in tables. From the i3 files, information on PMT position, PMT
direction, charge, time, and the truth flags are included for each reco-pulse. The total size of the
dataset used for training in SQLite format is 1.1 TB.

4.2.2 Calculating Range of Input Features

The input features used for training include the charge, time, and position of each particle. Before they
can be used, the features must be normalized to ensure they lie within a comparable range so that no
single feature biases the model during training. Moreover, in some cases this is crucial for the model
to be able to converge at all. The goal of the normalization is to scale all values into the range (—1, 1).

First, the charge range of the events is evaluated. In the simulation, one Monte Carlo photoelectron
(MCPE) should have an average charge of 1; however, in some cases, charges can reach values of 100
or even 1,000. This is because, in the simulation, MCPEs occurring within 2 ns on the same PMT are
merged. Therefore, instead of using the raw charge, the logarithm of the charge is taken. To fit all
charge values into the range (—1, 1), the data would technically need to be normalized by dividing
by the maximum absolute charge value. However, if outliers are present, it is undesirable for them to
dominate the scaling and compress the majority of values into a narrow range. To avoid this, the 95"
percentile of the charge distribution is calculated, and all values are divided by this percentile. This

4.3. Training DynEdge 15

ensures that 95% of the inputs lie within the normalized range. In this case, the procedure yielded an
upper charge value of approximately 2.76, leading to the choice of dividing the charge by 3.

Next, the time values must be normalized into the same range (—1, 1). For this, the difference between
the earliest and latest pulses in each event is examined. The earliest pulses reach down to —12 500 ns,
while the latest pulses extend up to approximately 55 000 ns, yielding a total span of 67500 ns. To
fit all times into the desired range, they are divided by half of this span and shifted to be symmetric
around zero by subtracting the mean after division:

t

trow = == — 0.63..
new = 3375~ 003

To normalize the PMT positions, each component was divided by 2000 to fit the values into the range
(—1,1). The scaling was performed globally, i.e. applied to z, y, and z together rather than scaling
each axis separately. This preserves the Euclidean distances between PMTs in 3D space, which would
be distorted if the coordinates were scaled with individual factors.

The PMT direction is provided in vector form (dz, dy, dz) by default. As these values are already
bounded within (—1, 1), no further normalization is required.

4.3 Training DynEdge

After the preprocessing of the input data, the training of the model was performed on the PALMA
cluster [32], a HPC system with more than 3000 processor cores and a computing power of 30 Ter-
aflops.

With regard to computational resources, limitations were made in the training process. Since it was
observed that events containing a very large number of pulses require great amounts of memory in
training, a cut was performed to train only on events containing 1 X 10° pulses or less. Since the
average number of noise pulses per event is expected to be in the range of 3000, events with more
than 10° pulses have already a relatively high signal-to-noise ratio; still, the possibility to perform
inferences on events with more pulses will be discussed in Chapter 5.

As described previously, the loss on the validation dataset is monitored throughout training after
each epoch. An epoch corresponds to one complete pass through the training data. If the validation
loss does not decrease for several consecutive epochs, training is stopped to prevent overfitting and
save computation time. This is implemented using the early stopping technique, which is assigned a
patience value. In this work, the patience was set to 5, meaning the model stops training if no im-
provement is observed for five epochs.

The training was performed on an H200 SXM GPU with 141 GB of VRAM and HBM3e mem-
ory [33]. For training, a batch size of 8 and a learning rate of 10~* were used. The training stopped
after 23 epochs because the early stopping condition was satisfied. The entire training process, in-
cluding data loading, all training epochs, validation, and model saving, took 161.13 h wall-clock
time.

17

5 Performance

After noise cleaning has been applied, its performance is evaluated in this chapter. An ideal classifier
would remove all noise pulses while retaining all physics pulses. By comparing the predictions g
with the ground-truth labels y, each hit can be assigned to one of four categories:

* True Positive (TP): A physics hit correctly classified as physics, § = 1, y = 1.
* True Negative (TN): A noise hit correctly classified as noise, § = 0, y = 0.

* False Positive (FP): A noise hit incorrectly classified as physics, § = 1, y = 0.
* False Negative (FN): A physics hit incorrectly classified as noise, y = 0, y = 1.
To characterize the performance of the classifier, the following rates are computed:
* True Positive Rate (TPR): TPR = TP /(TP + FN)

* False Positive Rate (FPR): FPR = FP/(FP + TN)

The denominators in these expressions correspond to the total number of actual physics hits (y = 1)
and actual noise hits (y = 0), respectively. The behavior of an ideal classifier described above corre-
sponds to a TPR of 1, and an FPR of 0.

For testing the trained model, IceCube dataset 22831 is used. Like dataset 22830, it consists of v,
simulations within the same energy range, but with a higher proportion of high-energy events, since
it has a spectral index of 1.1. To ensure comparability, once again only events with up to 10° pulses
were considered, both for GNN and SRT. For testing, not the entire dataset with two million pulses
was used, but rather about 10 % of the total dataset with a size of 107 GB in the SQLite format.

5.1 Model Inference Outputs

The final deployment of the model was not performed within IceTray. Instead, the inference results
are stored provisionally in a CSV file containing three columns:

* event_no: Indicates the event number and can be used to group all lines belonging to the
same event. This allows retrieval of the number of pulses per event and matching the corre-
sponding entries accordingly.

* truth_flag: Denotes whether the corresponding hit is caused by a physics particle (1) or a
noise particle (0). This information is based on the truth labels, as described in Section 4.2.1.

* target_pred: Contains floating-point values in the range (0, 1), representing the model’s
prediction for the corresponding hit. Values closer to 0 indicate a higher confidence that the hit
is noise, while values closer to 1 suggest a physics hit.

As a first step, the truth_flag and target_pred columns are used to generate one histogram
for physics and noise hits each, which are normalized independently, which can be seen in Fig-
ure 5.1.1. It provides an overview of the model’s output, revealing that the model classifies physics

18 Chapter 5. Performance

hits and noise hits with high confidence. A logarithmic y-axis is used to enhance visibility across
several orders of magnitude.

As expected for a well-trained model, most hits accumulate in the outermost bins (0-0.1 and 0.9-1),
corresponding to predictions where the model is very confident that a hit is noise (0) or physics (1).
Notably, the number of correctly identified noise hits in the lowest bin exceeds that in the highest bin
by a factor of roughly 10%, with an even stronger ratio for physics hits in the opposite bins.

10" 4

Noise (Actual Negative)
[Physics (Actual Positive)

10° 4

Normalized counts
-
o
|
\

1072 4

0.0 0.2 0.4 0.6 0.8 1.0
Score

Figure 5.1.1: Comparison of the model output during inference for physics and noise
pulses (binned). The two histograms were normalized independently. The model’s
output values range from O to 1, where 0 corresponds to a confident noise classifica-
tion and 1 to a confident physics classification. Note that the y-axis is shown on a
logarithmic scale.

5.2 ROC Curve

A common way to assess the performance of a classifier is with the Receiver Operator Characteristic
(ROC) curve. In this plot, the true positive rate (TPR) is shown on the y-axis and the false positive
rate (FPR) on the x-axis. Each point on the curve corresponds to a different classification threshold.
Since the predictions made by the GNN are continuous values between 0 and 1, the final classification
depends on the chosen threshold. For example, a hit may be classified as physics (1) if the prediction
exceeds 0.5, or a stricter threshold such as 0.9 can be applied.

A perfect classifier would always assign a value of 1 to physics hits and 0 to noise hits, resulting in
a TPR of 1 and a FPR of 0 for all possible thresholds. In this case, the ROC curve would reach the
top-left corner of the plot shown in Figure 5.2.1. In contrast, a random classifier would have the same
probability of classifying hits correctly or incorrectly, leading to equal TPR and FPR values across all
thresholds. This results in a diagonal ROC curve.

The ROC curve of the GNN trained in this thesis is shown in Figure 5.2.1. Additionally, a zoomed-in
version is presented in Figure 5.2.2. In this version, the curve is divided into three categories: events
with a pulse count between the average number of noise pulses and one standard deviation above
(blue), events below this range (orange), and events above one standard deviation (green).

5.2. ROC Curve 19

1.0 . 05 ///
rd
/,/,
© 0.8 4 //,
2 -
o' /z’
.g 0.6 4 /,’
= -7
:
- P d
g 0.4 /,/
— P d
= g —— GNN: ROC curve
0.2 7 ,’/ —== Random
rd
/z’ ® Threshold = 0.5
0.0 2
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 5.2.1: Receiver Operator Characteristic (ROC) curve of the trained GNN
model. For better visibility, a zoomed-in version is shown in Figure 5.2.2. The di-
agonal line represents a random classifier, which corresponds to the line of equality.

A common way to quantify classifier performance from a ROC curve is by computing the area under
the curve (AUC), where a value of 1 corresponds to perfect classification. The AUC values for the
three pulse-count ranges shown in Figure 5.2.2 are listed in the legend. In addition to serving as a
performance metric, the ROC curve can also guide the choice of a classification threshold. As illus-
trated in the figure, a threshold of 0.5 appears at different positions on the ROC curve depending on
the pulse range.

For this plot, three pulse ranges were chosen: 0-2,900 pulses, 2,900-3,300 pulses, and 3,300-100,000
pulses. This choice is motivated by the fact that the average number of noise pulses per event in the
training dataset is approximately p =~ 2,940 with a standard deviation of o ~ 406. Events with very
low pulse counts are shown in blue, those in the noise-dominated region near p £+ o in orange, and
events with pulse counts above i + o in green.

Even though the GNN performs well in all three categories—as also emphasized by the combined
ROC curve of all pulse counts in Figure 5.2.1—the zoomed-in version reveals that the model’s TPR
is slightly lower in the region of very low pulse counts. This behavior is reasonable: when the number
of physics pulses is small compared to the average number of noise pulses, it becomes inherently more
challenging for the model to correctly identify the few physics hits.

Ideally, one would aim for a threshold corresponding to a point near the upper left corner of the curve
to balance true positive and false positive rates. However, no single threshold achieves an optimal
trade-off across all pulse ranges. It is also important to note that Figure 5.2.2 is significantly zoomed
in; while the points do not lie exactly in the upper left corner, they are extremely close. For context,
the full ROC curve with axes ranging from O to 1 is shown in Figure 5.2.1, where it becomes clear that
the AUC approaches that of an ideal classifier. This renders the exact threshold choice less critical
overall. As seen earlier in Figure 5.1.1, the model is highly confident in its predictions. Considering
all these factors, a classification threshold of 0.5 was chosen for characterizing the performance in
this work.

For SRT cleaning, it is not possible to present a ROC curve, since it is not a classifier that produces
continuous predictions. Instead, it applies fixed cuts based on temporal and spatial distances. Because
of this, there is no adjustable threshold, and therefore no ROC curve can be created.

20 Chapter 5. Performance

1.000
0.995
]]
&£ 0.990 1
.]
2]
= 0.985 1
] J
~]
£ 0.980 1
=] —— 0-2900 Pulses (AUC = 0.99990)
0.975 2900-3300 Pulses (AUC = 0.99993)
] —— 3300-100000 Pulses (AUC = 0.99993)
0.970-""I""I""I""I""
0.000 0.001 0.002 0.003 0.004 0.005

False Positive Rate

Figure 5.2.2: ROC curves for different ranges of the number of pulses per event
(zoomed in). The dots on each curve mark the chosen threshold value 0.5. Each point
on a curve corresponds to a different threshold, representing the trade-off between a
low False Positive Rate (FPR) and a high True Positive Rate (TPR). When choosing a
threshold, the goal is to approach the upper left corner of the plot, representing the best
balance between retaining physics hits and rejecting noise hits. In this case, however,
trade-offs had to be made depending on the pulse count, which led to this conservative
threshold choice. The area under the curve (AUC) serves as a performance metric for
the classifier; perfect classification corresponds to an AUC of 1.

5.3 Classical SRT vs GNN Noise Cleaning Comparison

The rates introduced at the beginning of this chapter have been calculated for both models, with a
focus on the True Positive Rate (TPR) and False Positive Rate (FPR). Note that TPR and the False
Negative Rate (FNR) are complementary, meaning they sum to one, as do FPR and the True Negative
Rate (TNR). This relationship allows the difference to 1 to be visualized more clearly.

To apply SRT cleaning to IceCube-Gen2 events, the temporal and spatial cuts from IceCube must be
scaled to the larger average inter-string spacing of the IceCube-Gen2 optical array, as described in
Section 2.4.

True Positive Rate

Since physics pulses that remain after cleaning correspond to physics correctly identified as such,
and physics pulses before cleaning represent the actual positives, the True Positive Rate (TPR) is
calculated as the number of physics pulses after cleaning divided by the number of physics pulses
before cleaning. Achieving a TPR as close to one as possible is crucial, as a low TPR means that
physics hits are misclassified as noise and consequently discarded.

Figure 5.3.1 compares the TPRs achieved by SRT and GNN cleaning as a function of the total
number of pulses per event. For both models, the 10th, 50th, and 90th percentiles are plotted to visu-
alize not only the median performance but also the spread, with 80% of the data points lying between
the upper and lower bounds. In addition, the mean number of noise pulses per event, as well as one
standard deviation +o, is indicated by vertical lines. This highlights that both algorithms—especially
at their lower-performing end, shown by the 10th percentile—struggle in this noise-dominated regime

5.3. Classical SRT vs GNN Noise Cleaning Comparison

21

and achieve very high TPRs once the number of pulses in an event exceeds a standard deviation over
the mean number of expected noise pulses.

o xaaa_ay |

1.0 5 g
Q] T o —== SRT - 10%
< 0.8 I/’ v 1
~] ,'/ /, H —— SRT - 50%
4 (] 1
2 06 v e SRT - 90%
g] /s i - -
2 047 A : SR
o] /S 4 : —— GNN - 50%
-~ 1 1
5 0.2 . R GNN - 90%
] Pl 1 1 + .
0.01 =7 I I —— W = 0 noise |
T 1
% 107" 4
e 72 :&‘ R .
c% 10 3‘ - - v : A
= 10_4-
g 10 . 1
2 x 10® 3 x 10® 4 % 10° 5 x 103

Number of Pulses

Figure 5.3.1: True positive rate (TPR) of the GNN model compared to SRT cleaning
as a function of the number of pulses per event. Vertical lines indicate the mean
number of noise pulses per event and the one-sigma interval. The False Negative
Rates (FNRs) of the median bin centers are shown in the lower plot, highlighting the

difference to a TPR of 1, which is closely approached but not reached.

1.0 qeememmeeneeneee ey
9]
S 0.84
o 08: P —==- SRT - 10%
s 061 rd —— SRT - 50%
Z] A N R SRT - 90%
SRR ~—- GNN - 10%
q)] U - 0
5 0244 —— GNN - 50%

ool e GNN - 90%

T 1
z
& 10~ A ’\\L o
g _9 i \ 4 ‘V_+ : : U W
= 10
T 10
< 10 T 1
10" 10 10°
Number of Physics Pulses
Figure 5.3.2: True positive rate (TPR) of the GNN model compared to SRT cleaning,

shown as a function of the number of physics pulses per event.

The plot shows that for

high pulse counts, both models converge towards a TPR of nearly 1. More-

over, the FNRs are plotted in the bottom plot of Figure 5.3.1, which clarifies that the TPR does not
actually reach a value of 1. Differences become more apparent in the regime of lower pulse counts,
where SRT cleaning appears to slightly outperform the GNN.

In addition, the TPR is plotted as a function of the number of physics pulses per event in Figure 5.3.2.

It can be seen that the

performance difference between the two algorithms is small even for low

numbers of physics pulses. While there is a noticeable but small performance gap at 11 pulses,

22 Chapter 5. Performance

the GNN quickly catches up, and from around 30 physics pulses onward, both algorithms perform
comparably.

False Positive Rate

The False Positive Rate (FPR) reflects the model’s ability to correctly identify noise hits. An ideal
classifier that removes all noise would achieve an FPR of 0. Conversely, a higher FPR indicates that
more noise hits remain in the dataset after cleaning, which can negatively impact subsequent steps
such as event reconstruction. Therefore, comparing the FPRs of the SRT and GNN methods is es-
sential for evaluating their effectiveness in future applications. Since noise pulses that remain after
cleaning correspond to noise that was misidentified as physics, and noise pulses before cleaning rep-
resent the actual negatives, the False Positive Rate (FPR) can be calculated as the number of noise
pulses after cleaning divided by the number of noise pulses before cleaning.

The results are shown in Figure 5.3.3. As before, the spread is visualized by plotting the 10th, 50th,
and 90th percentiles, representing the central 80% of the data, symmetrically distributed around the
median. The figure clearly highlights the superior performance of the GNN model: its ability to
correctly classify noise hits significantly exceeds that of SRT cleaning. In the regime of small pulse
counts up to 10,000 pulses, GNN cleaning retains a median of less than 0.5% of noise hits, while SRT
cleaning retains a median of approximately 30%.

While both models show an upward trend in FPR with increasing pulse count, the GNN median re-
mains low, between 1% and 2%. A larger view of the GNN alone is provided in Figure 5.3.4. In
contrast, the median FPR of SRT cleaning rises to roughly 35% for events with 100,000 pulses.

.....

0.4 e
E e e AN
<

A / -

ﬁ 0.3 I - vl .
= T ~-
Z 0.2 1
o —== SRT - 10% GNN - 10%
g 0] —— SRT - 50% GNN - 50%
e I R SRT - 90% GNN - 90%

0.0 -

104 10°

Number of Pulses

Figure 5.3.3: Comparison of the False Positive Rate of the two models as a function
of the number of input pulses. The 10th, 50th, and 90th percentiles are shown, rep-
resenting the central 80% of the data. The x-axis uses a logarithmic scale to enhance
readability across multiple orders of magnitude.

The general upward trend observed in the false positive rate (FPR) for both GNN and SRT cleaning
can be attributed to the increasing likelihood that noise pulses lie very close to physics pulses in space
and time as the total number of pulses grows. In such cases, separating noise from signal becomes
difficult or impossible. This effect becomes more pronounced with a higher number of physics pulses
and applies to both SRT and GNN cleaning.

5.4. Resource Usage and Optimization 23

Furthermore, when examining the rise of the GNN curves in Figure 5.3.4, it is important to consider
the chosen classification threshold. As shown in Figure 5.2.2, the threshold of 0.5 is suboptimal
for events with high pulse counts; the corresponding green point on the ROC curve is shifted to the
right relative to the optimal top-left corner. Consequently, for these events, the FPR is higher than
it would be with a stricter threshold, such as 0.9. This trade-off was made consciously in the case
of this thesis, prioritizing noise cleaning in events with lower pulse counts, where it has the greatest
impact. Therefore, the rising FPR at high pulse counts is consistent with expectations. Nevertheless,
for future applications, this should be kept in mind: if noise cleaning is to be applied to events with
very high pulse counts, a stricter threshold may be appropriate to reduce the FPR.

0.025 -
] GNN - 10%
2 0.020 1 GNN - 50%
& ; GNN - 90%
£ 0.015
& 0.010 1
2]
= 0.005
0.000 1
10* 10°

Number of Pulses

Figure 5.3.4: False Positive Rate (FPR) of the GNN only. The x-axis uses a logarith-
mic scale to enhance readability across multiple orders of magnitude.

5.4 Resource Usage and Optimization

To assess the benefits of using a GNN-based model compared to SRT cleaning, it is important to
consider not only accuracy but also the computational resources required during inference. Even
the most effective noise-cleaning model is of little use if its resource requirements cannot be met in
practice. Therefore, this chapter examines the computation time and memory usage of GNN inference
in comparison to SRT cleaning.

5.4.1 Memory usage (RAM)

The memory usage is also an important limiting factor in the performance of a model. Especially with
regard to high-energy events which will be detected by the IceCube-Gen?2 optical array, containing a
large number of pulses, it is crucial to be aware of the model’s behavior for large inputs. The RAM
needed to perform inference is plotted as a function of the number of pulses per event in figure 5.4.1.

24 Chapter 5. Performance

87 @ Mean RAM
- —— Linear Fit
I +SEm
@ 67
O,
S 5-
<
[a'd
4 -
3 a=>571.7(2.2) x 1077
b = 2294.2(3.7) x 1073

T T T
0.0 0.2 0.4 0.6 0.8 1.0
Number of Pulses x10°

Figure 5.4.1: RAM usage required by the GNN model during inference as a function
of the number of input pulses. The data is fitted with a linear function y = a - + b,
where y is the RAM usage in gigabytes (GB) and z is the number of pulses. The fit
parameter a has units of GB/pulse, and b has units of GB. The parameter values are
shown in the bottom right corner of the plot. SEM refers to the standard error of the
mean.

For SRT cleaning, accurately measuring the RAM usage per event is more challenging. This com-
putation cannot be performed natively within the module-based IceTray software, and substantial
modifications to the C++ code would be required—changes that are beyond the scope of this the-
sis. Nevertheless, an upper limit of 4 GB is estimated based on the peak memory usage observed in
dataset 23170, where SRT noise cleaning was applied to PeV events containing up to several million
pulses.

In comparison, GNN cleaning requires more memory, particularly for high-energy events with pulse
counts exceeding 10°. The linear fit indicates that at 10° pulses, the GNN uses roughly twice the
memory defined as the upper limit for SRT cleaning, with usage increasing linearly beyond that point.
In its current form, GNN noise cleaning therefore becomes computationally expensive at high pulse
counts. However, the most critical regime for noise cleaning is at low energies with fewer pulses,
where noise has a stronger impact on directional reconstruction. In this range, the GNN’s memory
usage remains reasonable, staying below 4 GB for pulse counts under 30,000.

5.4.2 Computation Time

Running inference with the GNN has been shown to require computation time that scales quadrat-
ically with the number of input pulses. This is shown for CPU in Figure 5.4.2, and for GPU in
Figure 5.4.3. For tracking the inference time, in both cases the batch size was changed to 1, since
a deployment without batching in IceTray is planned. A quadratic fit was performed to enable ex-
trapolation of the computation time for events exceeding 100,000 pulses. Comparing the behavior
of computation time between CPU and GPU shows that while the GPU does offer a faster inference
time, the advantage is not as large as it might be expected, with CPU requiring roughly 69s for 10°
pulses, and GPU requiring 51 s. One possible explanation for this is the batch size of 1: A single graph
with 10° pulses may not supply enough parallel work to fully take advantage of the GPU’s computa-
tional power. This is an indication that batching should be considered an option for the deployment
in IceTray.

5.4. Resource Usage and Optimization

25

70 - :
® Mean Time

—— Quadratic Fit
I +sem

> (SN (=]
o o o
| | |

w
o
|

inference time [s]

a = 642.5(3.1) x 107!
b = 44.6(2.3) x 1076
c = 33.2(1.6) x 1072

0.0 0.2

Figure 5.4.2: Quadratic fit to the inference time required by the GNN on a CPU as
a function of the number of pulses per event (binned). The fit was performed using
y=a- x? +b-x + ¢, where y is the inference time in s, and « is the number of pulses.
To ensure consistent units, the fit parameter a has units of s/pulsez, while b is given
in s/pulse and c is given in s. The values of the fit parameters are shown in the bottom
right corner. SEM is the standard error of the mean.

number of pulses

T
0.8 1.0

x10°

507 @ Mean Time
—— Quadratic Fit
_ 40 T +SEM
M,
()
E 30+
)
[0
[9)
c
L 20+
Q
=
10
0 -

a = 340.2(1.6) x 10~
b=167.2(1.2) x 1076
c = 98.5(8.5) x 1073

0.0 0.2

Figure 5.4.3: Inference time required by an H200 SXM GPU with 141 GB of VRAM
as a function of the number of pulses per event. A quadratic fity = a - > +b-x+c
was applied to the data, where y is the inference time in s, and x is the number of
pulses. The fit parameter a has units of s/pulsez, while b is given in s/pulse and c is
given in s. The values of the fit parameters are shown in the bottom right corner. SEM

is the standard error of the mean.

number of pulses

T
0.8 1.0

x10°

The apparent trend of computation time scaling quadratically with the number of pulses per input
event is supported by findings in other scientific publications. In [34], it is stated that for a graph with
n nodes and the feature dimension is d, the computation of the matrix multiplication AX requires
O(n?d) time, where A € R™*" is the adjacency matrix, and X € R"*% is the data matrix. Since
each hit on a PMT is represented as a node n in this case, it is reasonable to assume a quadratic

26 Chapter 5. Performance

dependence of inference time on the number of pulses.

SRT cleaning, on the other hand, shows a different behavior. As shown in Figure 5.4.4, the execution
time scales linearly with the number of input pulses, and a linear fit was applied to the data. This
behavior arises from the fixed algorithmic structure of SRT cleaning: for each hit, neighboring PMTs
are always scanned for additional hits. Consequently, more pulses directly translate to more compu-
tations, resulting in an overall linear scaling.

Due to the different scaling of both algorithms, their time requirements are on a comparable scale for
a small input size corresponding to small numbers of pulses, but already at 10° pulses, GNN cleaning
requires more than double the time of SRT cleaning when run on a CPU, and roughly two thirds more
than SRT when run on the used GPU. Since SRT computation time scales linearly with the input size,
while GNN cleaning scales quadratically, it is expected that this difference will increase with even
larger numbers of pulses. Extrapolation of the fit parameters shows that for 10° pulses, SRT requires
(343.79 £ 219.99) s, whereas the GNN, when performed on a CPU, requires (6441.02 + 308.53) s.
One attempt to address this is discussed in the following section.

35 A
® Mean Time
30 7" —— Linear Fit
K +
Z 95 - I +sEm
E
— 20 1
<
.
S 15 -
3
e 10+
S
O
°7 a = 3447.3(2.2) x 107
04 b = —940.7(3.5) x 1073
0.0 0.2 0.4 0.6 0.8 1.0
Number of Pulses x10°

Figure 5.4.4: Computation time required to perform SRT cleaning as a function of
the number of input pulses per event. A linear fit y = a - © 4+ b was applied to the data,
where y is the inference time in s, @ has units of s/pulse, and b of s. The values of the
fit parameters are shown in the lower right corner.

5.4.3 Multithreading

To reduce the inference time of the GNN model, the use of multithreading was investigated. Multi-
threading allows multiple threads of a program to be executed concurrently on different CPU cores.
In general, this parallelization can significantly speed up inference when properly configured. For
instance, if the code is manually set to use a multithreading factor of five threads, the job submission
must explicitly request five CPU cores to make sure that the available resources are used effectively.

The number of threads was varied between 2 and 10. All computations were performed on CPUs of
the PALMA cluster, equipped with AMD EPYC 7343 processors based on the Zen 3 microarchitec-
ture. Similar as above, we fitted the inference time as a function of the number of pulses for each
thread configuration. The parameter fits can be found in the Appendix in Figure A.0.1.

5.4. Resource Usage and Optimization 27

70%] Number of Pulses
] ® 5.10t
] 1-10°
65% ® 2.10°

"t :

50%

Relative Inference Time
o o —
——— —
— —— —

— ——t —

45%

— —a— —
— - o——

40% LN I S R S I S S R B R R L R L R R B L B R
2 3 4 5 6 7
Threads

oo -
©
—_
==}

Figure 5.4.5: Relative inference time for different input pulse counts, expressed in
units of the inference time without multithreading (Threads = 1), as a function of the
number of threads used. The data points and uncertainties are derived from the fits
shown in Figure A.0.1, and the corresponding fit parameters are listed in Table A.0.1.

For comparability, the inference time required to process 5 - 10%, 10° and 2 - 10° pulses was calculated
from each quadratic fit and plotted as a function of the number of threads in Figure 5.4.5, as a fraction
of the inference time required without multithreading. While the overall trend shows decreasing in-
ference time with an increasing number of threads, the performance gain diminishes rapidly. The plot
shows that if two threads are used, this reduces the time required for inference significantly, and the
advantage gained through this is relatively higher for a larger number of pulses, e.g. in this case, for
2.10° pulses, the inference time when using two threads is roughly 55% that of using only one thread,
whereas for 5 - 10* pulses, the advantage gained is smaller, requiring roughly 65% of the inference
time without threading. For all numbers of pulses, the general trend that the inference time can be
reduced even further by adding more threads, but with diminishing return. From 6 threads onward, a
plateau is reached, suggesting that beyond this point—where inference time across all pulse ranges is
reduced to slightly less than half of that without multithreading—no significant additional speedup is
achieved by adding more threads.

Using 10 threads instead of 2 reduces the inference time for 10° pulses by about one fourth but
increases CPU usage by a factor of five. Due to this diminishing return, arbitrarily increasing the
number of threads is not recommended. However, using just two threads already yields a significant
reduction in computation time—for example, to (65.6 £+ 5.1)% of the time required without multi-
threading at 50,000 pulses. This is a substantial improvement, especially for relatively high-energy
events with a large number of pulses.

With this optimization, using only two threads allows GNN noise cleaning in the examined regime

5 . . .
up to 10° pulses to operate on a comparable timescale to SRT cleaning. Extrapolation of the fits
suggests that even with multiple threads, GNN noise cleaning will still require more time at very
high pulse counts due to its quadratic scaling with input size, in contrast to the linear scaling of SRT
cleaning: For example, at 10° pulses, the fit parameters suggest that GNN inference with two threads
will require (3266.3 4= 152.8) s, whereas SRT cleaning, at (343.79 £ 219.99) s, requires roughly a
tenth of this time.

29

6 Summary and Outlook

The goal of this thesis was to provide a proof of concept for applying GNN-based noise cleaning
to simulations for the IceCube-Gen2 optical array. The noise expected in the IceCube-Gen?2 optical
array will originate mainly from radioactive decays inside the glass vessels of the optical modules,
currently simulated using Geant4, considering Vitrovex glass in this work. Removing this noise is
crucial, as it can complicate the directional reconstruction, especially for low-energy events where an
average of roughly 3000 noise pulses per event can have a significant impact.

Noise cleaning was performed using the DynEdge GNN architecture, which had previously shown
strong performance in binary classification for IceCube Upgrade [3]. For comparison, the results were
evaluated against the traditional SRT cleaning used in IceCube. Training data were preprocessed with
IceTray and GraphNeT, equipping i3 files with truth flags and converting them into SQLite format.
These were then used to train the model to make predictions on an unseen dataset.

The performance comparison showed that both GNN and SRT cleaning achieve a comparable true
positive rate (TPR) across different pulse counts per event. Both struggle more with events contain-
ing few pulses but reach very high true positive rates of roughly 0.999 at about 5,000 pulses. Although
SRT cleaning appears to perform slightly better than the GNN in low-pulse events, this becomes less
significant when viewing the TPR as a function of physics pulses. At 11 physics pulses per event, SRT
cleaning achieves a median TPR of 87.5%, compared to 66.7% for the GNN; at 30 physics pulses
per event, their median TPR is almost identical, with 97.3% for SRT and 96.3% for GNN, and both
continue to rise beyond this point.

The false positive rate (FPR), however, is where the GNN clearly outperforms SRT cleaning: across
all pulse ranges, the fraction of noise misclassified as physics is significantly lower for the GNN. SRT
cleaning maintains a median FPR of approximately 30% for events with fewer than 10,000 pulses,
which increases to roughly 35% at 100,000 pulses. In contrast, GNN noise cleaning produces a me-
dian FPR below 0.5 % at 10,000 pulses, which also rises with the number of pulses, but reaches a
peak median of 1.5% at 100,000 pulses.

Considering the small difference in retained physics hits compared to the much larger difference in
false positive rate—where SRT retains about one third of noise pulses while the GNN removes nearly
all—it is likely that the overall sensitivity, even in the low-pulse regime, is significantly higher for the
GNN.

This improvement comes at a cost, as GNN inference requires more computational resources than the
classical SRT cleaning. In the examined range (up to 10° pulses), inference time scales quadratically
with pulse count, while RAM usage scales linearly. For very high-energy events with 10° pulses
or more, this scaling challenges the practicality of GNN cleaning. However, for such events, noise
removal is considered less critical since the average noise level of roughly 3,000 pulses per event
becomes less relevant compared to the total signal.

The increasing inference time was addressed with multithreading: it was shown that using just two
threads already reduced runtime significantly compared to one thread, with further gains possible
when more resources are available. At 50,000 pulses, two threads require only (65.6 4+ 5.1) % of

30 Chapter 6. Summary and Outlook

the inference time compared to no multithreading, which drops to (46.3 + 5.0) % for ten threads. At
2,000,000 pulses, the times for two and ten threads are (54.2 + 2.6) % and (47.3 £ 2.6) %, respec-
tively, of the single-thread runtime. It was also shown that running inference on a GPU offers faster
computation. However the time difference could likely be improved by using batching, which is why
this should be investigated further.

Given the success of the GNN in cleaning events with low pulse counts, it offers a promising way
to improve IceCube-Gen2 reconstruction at lower energies, where noise cleaning is most impor-
tant. Several aspects remain for future work. The model will need retraining once a more detailed
PMT electronics simulation becomes available and must handle potential overlaps between noise and
physics waveforms. Moreover, the current training relied on pulse-level features, which are known to
yield limited data—Monte Carlo agreement in IceCube. Improving this agreement will be crucial for
future deployment. The upcoming IceCube Upgrade, which is expected to use similar algorithms [3],
will provide valuable insights. Alternatively, future models could explore using summary statistics of
the PMT pulse lists, a method widely applied in neural-network-based algorithms in IceCube [35].
This reduces dimensionality, improves data—Monte Carlo agreement, and can help address the re-
source limitations observed at the highest energies.

31

Bibliography

[1]

(2]

(3]

(4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

IceCube — icecube.wisc.edu. https://icecube.wisc.edu/science/icecube/.

[Accessed 04-06-2025].

TDR — IceCube-Gen2 — icecube-gen2.wisc.edu. https://icecube-gen2.wisc.edu
/science/publications/tdr/. [Accessed 02-07-2025].

R. Abbasi et al. “Graph Neural Networks for low-energy event classification amp; reconstruc-
tion in IceCube”. In: Journal of Instrumentation 17.11 (Nov. 2022), P11003. po1: 10.1088
/1748-0221/17/11/P11003. URL: https://dx.doi.org/10.1088/1748-02
21/17/11/P11003.

Fermi National Accelerator Laboratory. All Things Neutrino. Accessed: 2025-06-27. URL: ht
tps://neutrinos.fnal.gov/history/.

lan Laird. Frederick Reines won a Nobel Prize for detecting the neutrino. | LANL — lanl.gov.
https://www.lanl.gov/media/publications/national-security-scie
nce/0325-project-poltergeist. [Accessed 25-07-2025].

The Nobel Prize in Physics 2015 - Scientific Background: Neutrino Oscillations - Nobel-
Prize.org — nobelprize.org. https ://www.nobelprize.org/prizes/physics
/2015/advanced—-information/. [Accessed 10-07-2025].

M. Aker et al. “The design, construction, and commissioning of the KATRIN experiment”. In:
Journal of Instrumentation 16.08 (Aug. 2021), T0O8015. 1SSN: 1748-0221. DOI: 10.1088/1
748-0221/16/08/t08015. URL: http://dx.doi.org/10.1088/1748-0221
/16/08/T08015.

Direct neutrino-mass measurement based on 259 days of KATRIN data — arxiv.org. https:
//arxiv.org/abs/2406.13516.[Accessed 01-07-2025].

Victor Hess discovers cosmic rays | timeline.web.cern.ch — timeline.web.cern.ch. https :
//timeline.web.cern.ch/victor-hess-discovers—-cosmic—-rays—0.
[Accessed 21-07-2025].

U.F. Katz and Ch. Spiering. “High-energy neutrino astrophysics: Status and perspectives”. In:
Progress in Particle and Nuclear Physics 67.3 (2012), pp. 651-704. 1SSN: 0146-6410. DOTI:
https://doi.org/10.1016/j.ppnp.2011.12.001. URL: https://www.scie
ncedirect.com/science/article/pii/S0146641011001189.

Martin Antonio Unland Elorrieta. Development, simulation, and characterisation of a novel
multi-PMT optical module for IceCube Upgrade with emphasis on detailed understanding of
photomultiplier performance parameters. July 2023. DOI: 10.5281 /zenodo.8121321.
URL: https://doi.org/10.5281/zenodo.8121321.

R. E. JENNINGS. “CERENKOV RADIATION”. In: Science Progress (1933-) 50.199 (1962),
pp- 364-375. 1SSN: 00368504, 20477163. URL: http://www. jstor.org/stable/43
425324 (visited on 06/16/2025).

Aya Ishihara. The IceCube Upgrade — Design and Science Goals. 2019. arXiv: 1908.09441
[astro-ph.HE].URL: https://arxiv.org/abs/1908.09441.

https://icecube.wisc.edu/science/icecube/
https://icecube-gen2.wisc.edu/science/publications/tdr/
https://icecube-gen2.wisc.edu/science/publications/tdr/
https://doi.org/10.1088/1748-0221/17/11/P11003
https://doi.org/10.1088/1748-0221/17/11/P11003
https://dx.doi.org/10.1088/1748-0221/17/11/P11003
https://dx.doi.org/10.1088/1748-0221/17/11/P11003
https://neutrinos.fnal.gov/history/
https://neutrinos.fnal.gov/history/
https://www.lanl.gov/media/publications/national-security-science/0325-project-poltergeist
https://www.lanl.gov/media/publications/national-security-science/0325-project-poltergeist
https://www.nobelprize.org/prizes/physics/2015/advanced-information/
https://www.nobelprize.org/prizes/physics/2015/advanced-information/
https://doi.org/10.1088/1748-0221/16/08/t08015
https://doi.org/10.1088/1748-0221/16/08/t08015
http://dx.doi.org/10.1088/1748-0221/16/08/T08015
http://dx.doi.org/10.1088/1748-0221/16/08/T08015
https://arxiv.org/abs/2406.13516
https://arxiv.org/abs/2406.13516
https://timeline.web.cern.ch/victor-hess-discovers-cosmic-rays-0
https://timeline.web.cern.ch/victor-hess-discovers-cosmic-rays-0
https://doi.org/https://doi.org/10.1016/j.ppnp.2011.12.001
https://www.sciencedirect.com/science/article/pii/S0146641011001189
https://www.sciencedirect.com/science/article/pii/S0146641011001189
https://doi.org/10.5281/zenodo.8121321
https://doi.org/10.5281/zenodo.8121321
http://www.jstor.org/stable/43425324
http://www.jstor.org/stable/43425324
https://arxiv.org/abs/1908.09441
https://arxiv.org/abs/1908.09441
https://arxiv.org/abs/1908.09441

32

Bibliography

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

M G Aartsen et al. “IceCube-Gen2: the window to the extreme Universe”. In: Journal of
Physics G: Nuclear and Particle Physics 48.6 (Apr. 2021), p. 060501. 1SSN: 1361-6471. DOT:
10.1088/1361-6471/abbd48. URL: http://dx.doi.org/10.1088/1361-64
71/abbd4s.

Alexander Kappes. The Optical Sensor for IceCube-Gen2. 2025. arXiv: 2507 .08415. URL:
https://arxiv.org/abs/2507.08415.

IceCube Collaboration. OMSim: Optical Module Simulator. https://github.com/ice
cube/0OMSim. Accessed: 2025-07-29. 2025.

IceCube Collaboration. SLC Hit Cleaning. Access restricted; login required. [Accessed 17-07-
2025]. URL: https://wiki.icecube.wisc.edu/index.php/SLC_hit_cleani
ng.

What is a Perceptron: Components, Characteristics, and Types — simplilearn.com. https :

//www.simplilearn.com/tutorials/deep—-learning-tutorial/percept
ron. [Accessed 01-07-2025].

ReLU &x2014; PyTorch 2.7 documentation — docs.pytorch.org. https://docs.pytorc
h.org/docs/stable/generated/torch.nn.ReLU.html. [Accessed 20-07-2025].

Sigmoid &x2014; PyTorch 2.7 documentation — docs.pytorch.org. https://docs.pyt
orch.org/docs/stable/generated/torch.nn.Sigmoid. html. [Accessed
26-07-2025].

Deep Neural Networks: Concepts and History Overview — botpenguin.com. https://bot
penguin.com/glossary/deep—-neural-network. [Accessed 15-07-2025].

Daniel Godoy. Understanding binary cross-entropy / log loss: a visual explanation. Accessed:
2025-06-25. 2021. URL: https://towardsdatascience.com/understanding-b
inary-cross—entropy-log-loss—a-visual-explanation—-a3ac602518la

/.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http://www.deep
learningbook.org. MIT Press, 2016.

Intro to optimization in deep learning: Momentum, RMSProp and Adam | DigitalOcean —
digitalocean.com. https://www.digitalocean.com/community/tutorials/1i
ntro-to-optimization-momentum—-rmsprop—adam. [Accessed 15-07-2025].

Farhana Sultana, Abu Sufian, and Paramartha Dutta. “Advancements in Image Classification
using Convolutional Neural Network”. In: 2018 Fourth International Conference on Research
in Computational Intelligence and Communication Networks (ICRCICN). IEEE, Nov. 2018,
pp- 122-129. p0OI1: 10.1109/icrcicn.2018.8718718. URL: http://dx.doi.org
/10.1109/ICRCICN.2018.8718718.

Rasmus F. Orsge, Aske Rosted, and GraphNeT Team. GraphNeT 2.0 — A Deep Learning Li-
brary for Neutrino Telescopes. 2025. arXiv: 2501.03817 [hep—ex].URL: https://ar
xiv.org/abs/2501.03817.

Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Li-
brary”. In: Advances in Neural Information Processing Systems 32 (NeurIPS 2019). 2019,
pp. 8024-8035.

William Falcon and the PyTorch Lightning team. PyTorch Lightning. Version 2.0.2. 2023. DOI:
10.5281/zenodo.3530844.

IceCube Collaboration. IceTray Public. GitHub repository, accessed July 27, 2025. 2025. URL:
https://github.com/icecube/icetray—-public.

Home | Vitrovex — vitrovex.com. https://vitrovex.com/. [Accessed 25-07-2025].

https://doi.org/10.1088/1361-6471/abbd48
http://dx.doi.org/10.1088/1361-6471/abbd48
http://dx.doi.org/10.1088/1361-6471/abbd48
https://arxiv.org/abs/2507.08415
https://arxiv.org/abs/2507.08415
https://github.com/icecube/OMSim
https://github.com/icecube/OMSim
https://wiki.icecube.wisc.edu/index.php/SLC_hit_cleaning
https://wiki.icecube.wisc.edu/index.php/SLC_hit_cleaning
https://www.simplilearn.com/tutorials/deep-learning-tutorial/perceptron
https://www.simplilearn.com/tutorials/deep-learning-tutorial/perceptron
https://www.simplilearn.com/tutorials/deep-learning-tutorial/perceptron
https://docs.pytorch.org/docs/stable/generated/torch.nn.ReLU.html
https://docs.pytorch.org/docs/stable/generated/torch.nn.ReLU.html
https://docs.pytorch.org/docs/stable/generated/torch.nn.Sigmoid.html
https://docs.pytorch.org/docs/stable/generated/torch.nn.Sigmoid.html
https://botpenguin.com/glossary/deep-neural-network
https://botpenguin.com/glossary/deep-neural-network
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a/
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a/
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a/
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.digitalocean.com/community/tutorials/intro-to-optimization-momentum-rmsprop-adam
https://www.digitalocean.com/community/tutorials/intro-to-optimization-momentum-rmsprop-adam
https://doi.org/10.1109/icrcicn.2018.8718718
http://dx.doi.org/10.1109/ICRCICN.2018.8718718
http://dx.doi.org/10.1109/ICRCICN.2018.8718718
https://arxiv.org/abs/2501.03817
https://arxiv.org/abs/2501.03817
https://arxiv.org/abs/2501.03817
https://doi.org/10.5281/zenodo.3530844
https://github.com/icecube/icetray-public
https://vitrovex.com/

Bibliography 33

(31]
(32]

[33]

[34]

[35]

htcondor.org. https://htcondor.org/. [Accessed 27-07-2025].

Competence for Computing in Science Universitit Miinster. PALMA — uni-muenster.de. h
ttps://www.uni-muenster.de/CoCoS/Systeme/PALMA . html. [Accessed
15-07-2025].

GPUs - HPC Documentation - University of Miinster — palma.uni-muenster.de. https://p
alma.uni-muenster.de/documentation/hardware/gpus/. [Accessed 03-08-
2025].

Seiyun Shin, Ilan Shomorony, and Han Zhao. “Efficient Learning of Linear Graph Neural
Networks via Node Subsampling”. In: Advances in Neural Information Processing Systems.
Ed. by A. Oh et al. Vol. 36. Curran Associates, Inc., 2023, pp. 55479-55501. URL: https:
//proceedings.neurips.cc/paper_files/paper/2023/file/adadl8ae9
b6677dcda32d9dcalf7441f-Paper-Conference.pdf.

The IceCube collaboration et al. “A convolutional neural network based cascade reconstruc-
tion for the IceCube Neutrino Observatory”. In: Journal of Instrumentation 16.07 (July 2021),
P07041. pOI: 10.1088/1748-0221/16/07/P07041. URL: https://dx.doi.org
/10.1088/1748-0221/16/07/P07041.

https://htcondor.org/
https://www.uni-muenster.de/CoCoS/Systeme/PALMA.html
https://www.uni-muenster.de/CoCoS/Systeme/PALMA.html
https://palma.uni-muenster.de/documentation/hardware/gpus/
https://palma.uni-muenster.de/documentation/hardware/gpus/
https://proceedings.neurips.cc/paper_files/paper/2023/file/ada418ae9b6677dcda32d9dca0f7441f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/ada418ae9b6677dcda32d9dca0f7441f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/ada418ae9b6677dcda32d9dca0f7441f-Paper-Conference.pdf
https://doi.org/10.1088/1748-0221/16/07/P07041
https://dx.doi.org/10.1088/1748-0221/16/07/P07041
https://dx.doi.org/10.1088/1748-0221/16/07/P07041

A Additional Plots to Chapter 5

Table A.0.1: Fit parameters of the fits presented in Figure A.0.1. A quadratic fit
y=a- z? + b - = 4 c was applied to the data, where y is the inference time in s, and
x is the number of pulses. The fit parameter a has units of s/pulseg, while b is given
in s/pulse and c is given in s.

Threads a[10 Us/pulse’] b[10 °s/pulse] c[10 ']

1 63.9(3.1) 513.2) 1.4(7.1)
2 31.8(1.5) 8.4(1.6) 0.9(3.5)
3 31.3(1.5) 7.9(1.6) 1.0(3.5)
4 31.3(1.4) 5.6(1.5) 1.3(3.3)
5 31.2(1.4) 3.7(1.4) 1.4(3.2)
6 31.1(1.4) 2.4(1.5) 2.0(3.3)
7 31.0(1.4) 2.3(1.5) 1.93.2)
8 30.8(1.4) 2.2(1.5) 2.0(3.3)
9 31.1(1.4) 2.2(1.5) 2.5(3.3)
10 30.7(1.5) 1.5(1.6) 2.5(3.5)

36

Appendix A. Additional Plots to Chapter 5

Inference Time [s] Inference Time [s] Inference Time s Inference Time [s]

Inference Time [s]

Threads: 1 Threads: 2

T
60 1 —— Quadratic fit “EJ —— Quadratic fit
40 - Mean + SEM & ¢ Mean + SEM
o 20 A
Q
20 g
—
8
0 - T T T T T HC: 0 - T T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Number of Pulses x10° Number of Pulses x10°
Threads: 3 Threads: 4
40 =
—— Quadratic fit g ——— Quadratic fit
Mean + SEM & ¢ Mean + SEM
20 _ [<b} 20 T
Q
=
[}
—
&
0 B T T T T T E 0 B T T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Number of Pulses x10° Number of Pulses x10°
Threads: 5 Threads: 6
)
30 4+ —— Quadratic fit QEJ 30 11 —— Quadratic fit
20 - ¢ Mean + SEM £ o0 4 ¢ Mean + SEM
8
10 - g 10 -
3
i = i
0 T T T T T — 0 T T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Number of Pulses x10° Number of Pulses x10°
Threads: 7 Threads: 8
2y
30 7] —— Quadratic fit GEJ 30 7' —— Quadratic fit
20 - ¢ Mean + SEM £ 20 - ¢ Mean + SEM
g
10 Z 10 1
3
2
0 - T T T T T E 0 - T T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Number of Pulses x10° Number of Pulses x10°
Threads: 9 Threads: 10
)
30 71 —— Quadratic fit GEJ 309 — Quadratic fit
204 ¢ Mean + SEM £ 204 ¢ Mean £ SEM
S
10 £ 10
3
<
0 B T T T T T H:: 0 B T T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Number of Pulses x10° Number of Pulses x10°

Figure A.0.1: Inference time for different thread counts as a function of input size,
arranged from 1 thread (top left) to 10 threads (bottom right). The plots should be read
row-wise, from left to right and top to bottom. A quadratic fity = a - P 4b-z+ec
was applied to the data, where y is the inference time in s, and z is the number of
pulses. The fit parameter a has units of s/pulse2, while b is given in s/pulse and c is
given in s. The values of the fit parameters are shown in the bottom right corner. SEM
is the standard error of the mean.

37

Acknowledgement

First of all, I would like to express my gratitude to Prof. Kappes for giving me the opportunity to
write my thesis within this amazing group.

I am also thankful to Prof. Andronic for agreeing to serve as my second examiner.
My deepest thanks go to Javier Vara Carbonell, whose patience and guidance exceeded anything I
could have hoped for in a supervisor. In addition, his encouragement to apply for the Double Master

in Sevilla has had a big impact on me.

I am grateful to the entire working group for the support and the fun; in particular, I want to thank Fia
Tenbruck, Berit Schliiter and Dr. Waleed Esmail for their invaluable help with proofreading.

Heartfelt thanks also go to all my friends and flatmates for their unwavering emotional support during
the past months.

Last but certainly not least, I owe endless gratitude to my parents, Maria and Dirk, as well as to my
siblings for their constant encouragement and unfailing support.

	Declaration of Academic Integrity
	Introduction
	Neutrino Astronomy
	Neutrinos and Their Properties
	Principles of Neutrino Detection
	The IceCube and IceCube-Gen2 Detectors
	Background Noise in IceCube and IceCube-Gen2

	Introduction to Machine Learning
	Neural Networks
	Training a Neural Network
	Graph Neural Networks
	Graphnet

	Training a GNN-based model for Noise Cleaning in IceCube-Gen2
	Monte Carlo Training Data
	Processing the Simulation Files
	Preprocessing of i3 files
	Removing On-board Noise Cleaning
	Setting Truth Flags
	Converting i3 files into ML-Compatible Format

	Calculating Range of Input Features

	Training DynEdge

	Performance
	Model Inference Outputs
	ROC Curve
	Classical SRT vs GNN Noise Cleaning Comparison
	True Positive Rate
	False Positive Rate

	Resource Usage and Optimization
	Memory usage (RAM)
	Computation Time
	Multithreading

	Summary and Outlook
	Additional Plots to Chapter 5

