

Probing v mass with lab experiments:

Search for neutrinoless double beta decay

2nd-order weak interaction processes:

 \Leftrightarrow extremely long half-lives: $T_{\frac{1}{2}} \sim 10^{18...21}$ years for $2\nu\beta\beta$, > 10^{25} years for $0\nu\beta\beta$

- 3 2 v β β observed in 13 isotopes (first: $β^-β^-$ in ⁸²Se; recent: double EC in ¹³⁰Ba, ⁸⁷Kr)
- $\Rightarrow 0_{\nu\beta\beta}$ not observed so far

Why study $0\nu\beta\beta?$ — If observed, ...

- ... lepton number violation ($\Delta L = 2$) offers promising scenarios for baryogenesis.
 - → Independent of underlying physics: "Matter-creating" process in the lab.
- ... the neutrino nature will be determined as Majorana type.
 - → Seesaw mechanisms can explain the smallness of neutrino masses.
- ... we can learn about the neutrino mass scale from the observed half-life
 - \Rightarrow "Black-box" theorem: Regardless of decay operator, always get a Majorana v mass.

0νββ & Majorana mass $m_{\beta\beta}$

 $m_{\beta\beta}$ is the **coherent** sum over mass eigenstates m_1 , m_2 , m_3 :

$$\langle m_{\beta\beta} \rangle = \left| \sum_{j=1}^{3} |U_{ej}|^2 m_j e^{i\alpha_j} \right|$$

2 independent Majorana CP-phases α_i \Leftrightarrow cancellations are possible if $\alpha_i \neq n \cdot \pi \rightarrow CP$ violation

Double beta decay: candidate nuclides

Bethe-Weizsäcker mass formula: pairing term difference in isobars with even mass

Double beta decay: candidate nuclides

- 35 naturally occurring nuclides capable of undergoing double beta decay
- Decay rate for 0vββ scales as ~Q⁵; also: copious backgrounds below ~2.6 MeV

11 nuclei for $2v\beta^{-}\beta^{-}$ at Q > 2 MeV:

6 I	nuclei	for	2vβ ⁺	β ⁺ /EC	at	lower	Q:
------------	--------	-----	-------------------------	--------------------	----	-------	----

β ⁻ β ⁻ decay	Q [MeV]	nat. [%]
⁴⁸ Ca → ⁴⁸ Ti	4,274	0,187
$^{76}\text{Ge} ightarrow ^{76}\text{Se}$	2,039	7,8
$^{82}\text{Se} ightarrow ^{82}\text{Kr}$	2,995	9,2
$^{96}Zr ightarrow {}^{96}Mo$	3,348	2,8
$^{100}Mo \rightarrow ^{100}Ru$	3,034	9,6
$^{110}Pd \rightarrow ^{110}Cd$	2,004	11,8
$^{116}Cd \rightarrow ^{116}Sn$	2,809	7,5
$^{124}Sn \rightarrow ^{124}Te$	2,288	5,64
$^{130}\text{Te} ightarrow ^{130}\text{Xe}$	2,527	34,5
136 Xe $ ightarrow$ 136 Ba	2,458	8,9
$^{150}Nd \rightarrow ^{150}Sm$	3,368	5,6

β ⁺ β ⁺ decay	Q [MeV]	nat. [%]
78 Kr \rightarrow 78 Se	0,838	0,35
$^{96}Ru \rightarrow ^{96}Mo$	0,676	5,5
$^{106}Cd \rightarrow ^{106}Pd$	0,738	1,25
$^{124}Xe \rightarrow ^{124}Te$	0,822	0,10
$^{130}\text{Ba} ightarrow ^{130}\text{Xe}$	0,534	0,11
$^{136}Ce \rightarrow ^{136}Ba$	0,362	0,19

 \rightarrow even longer expected T_{1/2}

Double β-decay & Majorana mass m_{ββ}

- experimental observable: T_{1/2}

 \Rightarrow 0vββ event number depending on measuring time, number of target nuclei, experimental efficiency, background

- weak interaction (phase space factor): $G^{0\nu\beta\beta}$

 \Leftrightarrow determined by ββ-endpoint energy; strong dependence $\sim Q^5$

- nuclear physics (matrix elements): $M^{0\nu\beta\beta}$

♦ shell model calculations, difficult to reduce large uncertainties

Sensitivity drivers

$$T_{1/2}^{0\nu}(\text{FOM}) \propto a \cdot \epsilon \cdot \sqrt{\frac{M \cdot t}{b \cdot \Delta E}}$$

Requirements:

- Large isotopical abundance (*a*)
- High efficiency (ϵ)
- Large Mass (M)
- Long counting time (t)
- Low background (b)
- Good energy resolution (ΔE)

→ Many suitable combinations for isotope + detector technology

→ If ROI is background free: linear scaling with *M* and *t* ! $T_{1/2}^{0\nu}(\text{FOM}) \propto a \cdot \epsilon \cdot M \cdot t$

Experimental techniques

Current constraints

Most stringent bounds now approaching inverted hierarchy

Next generation has good discovery potential, even for normal hierarchy:

see

- Agostini, Benato, Detwiler, PRD 2017
- Caldwell, Merle, Schulz, Totzauer, arXiv:1705.01945
- Ge, Rodejohann, Zuber, arXiv:1707.07904

Germanium diodes: MAJORANA and GERDA

Majorana

Conventional design:

Vacuum cryostats in a passive graded shield with ultra-clean materials

Novel design:

Direct immersion in active LAr shield

Alan Poon (LBNL), Erice 2017

SURF (South Dakota, USA)

Gran Sasso (Italy)

Germanium diodes: results

- Combined analysis GERDA phase I + II
- "Background-free" running in phase II
 - Two counts after unblinding
 - No count at $Q_{\beta\beta}$
- T_{1/2} > 8.0 x 10²⁵ yr (90% CL)
- Next-generation project: LEGEND "Large Enriched Germanium Experiment for Neutrinoless ββ Decay"
- Staged approach, starting with ~200 kg in existing GERDA cryostat
- Final goal: 1000 kg-scale detector for sensitivity >10²⁷ yr
- Background improvement required: x30 (x5 for LEGEND-200)

Liquid Scintillator: KamLAND-Zen

Liquid Xenon TPC: EXO-200

- Enriched Xenon Observatory at WIPP/New Mex., running ~175 kg of LXe (80.6% ¹³⁶Xe)
- More than a calorimeter: spatial resolution (x,y,z) and PID allows discrimination of multi-site (bg-like) vs. single-site (0vββ-like) events
- Anticorrelation of charge and light signals (compare DM detectors), tags α events
- Now preparing nEXO: 5-ton monolithic detector (~1 t fiducial),
 1.3 m electron drift length, ~4 m² of SiPM photosensors, option of ¹³⁶Ba tagging

Tracking-Calorimeter: SuperNEMO

- Successor of NEMO-3 at Laboratoire Souterrain de Modane (LSM)
- Baseline isotope: ⁸²Se, foils can be exchanged (high Q-values: ¹⁵⁰Nd, ⁴⁸Ca)
- Unique feature: tracking allows to detect ββ-signature (vertex)
- Demonstrator (= 1st module) currently in commissioning, first data end of 2017
- Design sensitivity: $T_{\frac{1}{2}} > 10^{26}$ a, $m_{\beta\beta} \sim 50-100$ meV

Cryogenic bolometer technique

- Electrons create phonons/heat in absorber (e.g., TeO₂ crystal)
- Heat capacity: \sim (T/T_D) ³ (Debye Law)
- Example:
 - Operating temperature: 10 mK
 - Temperature change per energy: $10 20 \,\mu\text{K/MeV}$
- At $Q_{\beta\beta}$ = 2.5 MeV $\rightarrow \Delta T < 50 \ \mu K$

Cryogenic bolometer: CUORE

- First ton-scale $0\nu\beta\beta$ exp. with thermal detectors; at Gran Sasso underground laboratory
- TeO₂ detectors & cryo-technology piloted by Cuoricino & CUORE-0 (~40 kg)
- Since Feb. 2017: operation of 988 detectors at T ~7 mK
- Total mass: 742 kg of $TeO_2 \rightarrow 206$ kg of ¹³⁰Te

19 towers x 13 planes x 4 crystals = 988 crystals

Cryogenic bolometer: CUORE

The coldest cubic meter in the Universe! CUORE: at ~10 mK Cosmic microwave background: 2.7 K

19 towers x 13 planes x 4 crystals = 988 crystals

Cryogenic bolometer: CUORE

 $m_{_{BB}} < 210 - 590 \text{ meV}$

First CUORE science run, combined with Cuoricino + CUORE-0:

 $\tau_{1/2}^{0\nu} > 6.6 \times 10^{24} \text{ y} (90\% \text{C.L.})$

Probing v mass with lab experiments:

Direct kinematical measurements of weak decays

Direct kinematic determination of m(v_e)

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E} = C F(Z, E) p \left(E + m_{\mathrm{e}}\right) \left(E_0 - E\right) \sum_i |U_{\mathrm{e}i}|^2 \sqrt{(E_0 - E)^2 - m^2(\nu_i)^2}$$

Key requirements:

- Low-endpoint β /EC nuclide: E₀ = 18.6 keV for ³H, 2.8 keV for ¹⁶³Ho
- High-activity source: T_{1/2} = 12.3 yr for ³H, 4.5 kyr for ¹⁶³Ho
- Excellent energy resolution (MAC-E filter or calorimeter)

Kinematic measurement can probe for heavier neutrino states

→ eV-scale and keV-scale sterile v

Spectral distortion measures "effective" mass square:

 $m^2(\nu_{\rm e}) := \sum_i |U_{{\rm e}i}|^2 m_i^2$

Moore's Law of direct neutrino mass searches

High-resolution β spectrometer

Status of the KATRIN source

Transport & pumping sections

- Fully adiabatic, lossless electron transport in 5.6 T magnetic field
- Reduction of T₂ flow rate to spectrometers by factor >10¹⁴: magnetic chicane with differential and cryo-pumping
- Ion diagnostics & ion flux blocking by electrostatic barrier

KATRIN main spectrometer

Magnetic Adiabatic Collimation and Electrostatic Filter

Spectrometer-related backgrounds

- 8 sources of background investigated and understood
- 7 out of 8 avoided or actively eliminated by
 - fine-shaping of special electrodes
 - inner electrode (wire grids on neg. potential)
 - symmetric magnetic fields
 - cold traps (LN₂-cooled baffles to remove ²¹⁹Rn)

- 1 out of 8 remaining:
 ²¹⁰Pb on spectrometer walls (thermal ionisation of neutral H* atoms)
- Countermeasures:
 - extensive bake-out (done)
 - irradiation by strong UV source (ongoing investigation)

KATRIN milestone: gearing up for tritium with ^{83m}Kr

KATRIN krypton campaign: 3-19 July 2017

Hardware readinessDatafrom source to detectordatawith ^{83m}Kr as short-livedpara"tracer"high

Data chain from raw data & slow control parameters to high-level analysis tools **System characterization** with mono-energetic & isotropic CE: sharp transmission of MAC-E filter, detector properties, system alignment, absolute energy scale calibration, ...

Three complementary krypton sources at KATRIN

Line stability & absolute calibration (gaseous Kr source)

- Example runs (two out of many line scans)
- Only central detector ring shown (x30 more statistics available)
- High-resolution scans of narrow N_{2,3}-32 doublet (670 meV hyperfine splitting, sub-eV natural widths, background-free at 32 keV) currently being analyzed

Line stability & absolute calibration (gaseous Kr source)

- Line position stability (L3-32) well within KATRIN goal of ± 60 meV
- Excellent stability of Krypton source and HV system

In cooperation with German national metrology institute

- Absolute calibration of HV divider with nuclear standard
- Line position difference L3-32 K-32
 - \rightarrow source-related systematics cancel

 \rightarrow ~5 ppm preliminary uncertainty on energy scale (very good agreement with 2013 PTB calibration value!)

Integration of Calibration and Monitoring System

"Rear Section": major importance for systematics control

Integration of Calibration and Monitoring System

"Rear Section": major importance for systematics control

[see Behrens *et al.*, EPJ **C**77 (2017) 410; PhD theses Behrens, Erhardt, Barrett, Wierman, Kraus]

35

Towards tritium data-taking with KATRIN

Tritium data-taking: start in 2018

KATRIN inauguration ceremony: June 11, 2018 (after NEUTRINO'18 at Heidelberg)

KATRIN: neutrino mass analysis & sensitivity

• Relative **shape** measurement of **integrated** β **spectrum**

3 yrs (5 cal. yrs) to balance statistics and systematics

at design parameters:

Future prospects in direct neutrino mass search

Challenges for further improvement:

- Opacity of gaseous T₂ source (already optimised for KATRIN, ~40% no-loss e⁻)
- MAC-E filter measures integral beta spectrum
- Molecular final state excitations (vib: \sim 100 meV) as ultimate limitation for T₂

Frequency-based approach

Cyclotron Radiation Emission Spectroscopy (CRES)

UW Seattle, MIT, UCSB, Pacific NW, CfA, Yale, Livermore, KIT, U Mainz

Non-destructive measurement of electron energy via cyclotron frequency:

$$\omega(\gamma) = rac{\omega_{
m c}}{\gamma} = rac{eB}{E_{
m kin} + m_{
m e}}$$

40

uniform B-field, magnetic trap low-pressure gas cell

antenna array

Phase I system

→ Proof of principle of CRES technique

Project 8: phase I results

First observation of cyclotron radiation from single keV electrons

Project 8: staged approach

- Phase I (2010-2016): proof of principle
 Single-electron CRES demonstrated
 - with conversion electron lines from ^{83m}Kr
- Phase II (2015-2017): tritium demonstrator
 - Improved waveguide, read-out, energy resolution, systematics study
 - Continuous T₂ β -spectrum, m(v_e) ~ 100 ...10 eV
- Phase III (2016-2020): large volume demonstrator
 - Conceptual design for "open" receiver array, MRI magnet
 - 10⁵ Bq in 200 cm³ volume (10 cm³ effective)
 - Tritium data competitive with $m(v_e) \sim 2 eV (1 yr)$
- Phase IV (2017+): atomic tritium source
 - R&D for large-volume (200 m³) atomic tritium source (< 1 K), magnetic confinement
 - goal: sub-eV sensitivity at inverted hierarchy scale

Phase II

Calorimetric approach using ¹⁶³Ho

$= R(t)^{C(t')} = \lim_{T_{W} \to 0} \int_{0}^{1} \int_{$

Challenges:

[De Rujula & Lusignoli 1982]

- Production & purification of isotope ¹⁶³Ho
- Incorporation of ¹⁶³Ho into high-resolution detectors
- Operation & readout of large calorimeter arrays
- Understanding of calorimetric spectrum (nuclear & atomic physics + detector response)

Er166

Ho165

7/2-

Ho164

Ho162 15.0 m

EC

Temperature sensors — technologies

World-wide efforts in ¹⁶³Ho-based v-mass search

- Metallic Magnetic Calorimeters
- $\Delta E < 5 \text{ eV}$ achieved
- m(v) sensitivity:
 10 eV with ECHo-1k (2015-18)
 sub-eV with ECHo-10M

- Transition Edge Sensors
- \rightarrow detectors from NIST
- \rightarrow implanting at Genoa
- \rightarrow cryostat at Milano
- $\Delta E \sim 1 \text{ eV}$ design
- sensitivity: m(v) ~ 1 eV
 2018-20

- Testing concepts of
 ¹⁶³Ho-incorporation
 and TES read-out
- $\Delta E \sim 35 \text{ eV}$ achieved
- sensitivity: mostly R&D up to now, maybe large array?

-separator ion implanter at Genova

HOLMES design & timeline:

- 6.5 x 10¹³ nuclei ¹⁶³Ho (~300 Bq) per pixel
- ΔE ~ 1 eV, τ_{rise}~ 1 µs;
 1000-pix array (1 eV goal) expected for 2018
- TES array + DAQ ready, first implant. coming up
- Spectrum measurements to begin in late 2017
- + 32 pixels for 1 month $\rightarrow m_{\nu}$ sensitivity ~10 eV

MMC technology: ECHo

Metallic Magnetic Calorimeters (MMC) with paramagnetic Au:Er sensor read out by SQUID

 δT in absorber from EC-decay \Rightarrow change in magnetization M of sensor

signal:
$$\delta \Phi_{S} \sim \frac{\partial M}{\partial T} \cdot \Delta T \sim \frac{\partial M}{\partial T} \cdot \frac{1}{C_{tot}} \cdot \delta E$$

- Fast rise time (~130 ns) and excellent linearity & resolution (ΔE_{FWHM} < 5 eV)
- Production: ¹⁶²Er(n,γ)¹⁶³Ho at ILL/Grenoble implantation at ISOLDE-CERN & RISIKO
- Multiplexed readout of MMC arrays

MMC technology: ECHo

Precision ¹⁶³Ho spectrum

first calorimetric measurement of OI-line

Ranitzsch *et al*., PRL 119 (2017) 122501

• ECHo-1k (2015-2018)

- prove scalability with medium-sized array:
 100 detectors x 10 Bq
- 1 yr meas. time for $N_{event} \sim 10^{10}$:

→ m(v_e) < 10 eV

Next step: ECHo-1M

- large-scale experiment for sub-eV sensitivity 100 arrays of 1000 detectors, at 10 Bq each

- sterile neutrino search at eV and keV scale

Chip fabrication for multiplexed MMC arrays

50

Direct v-mass determination: status and outlook

Full beamline commissioning with ^{83m} Kr; start of T ₂ data in 2018	KATRIN	Long-term data-taking (5 yrs) for full sensitivity (0.2 eV)		
CRES proof of principle with 83m Kr, testing new cell for T ₂	Project 8	Develop CRES for $10 \rightarrow 2 \text{ eV}$, and towards IH (atomic source)		
R&D for atomic source concept, MAC-E + calorimeter	PTOLEMY	Devise large-scale experiment to tackle $m(v)$ and CvB		
current achievements	³ He ⁺	next goals		
	Ho			
 Advanced detector development (MMC and TES technologies) 		Operate medium-size arrays		
 Test of scalable arrays 	ECHo	(~10 ¹⁰ counts) for 10 eV sens.		
 High-purity ¹⁶³Ho production and implantation 	HOLMES NuMECS	 Prepare large arrays (~10¹⁴ counts) for sub-eV sens. 		

Summary / Take-away

- We learned a lot about neutrinos since their "invention" in 1930
- We exploit a large variety of neutrino sources in our experiments.

Summary / Take-away

- Massive neutrinos ...
 - are evidence for physics beyond the Standard Model
 - are the only currently known form of Dark Matter (their contribution is small, their role not quite fixed yet - what about sterile neutrinos?)
- Neutrinos can point us towards ...
 - novel mass-generating concepts in particle physics (open question regarding Dirac or Majorana nature of neutrinos)
 - lepton flavour violation (oscillations) and lepton number violation ($0\nu\beta\beta$)
 - leptonic CP violation
- We need to understand the mass pattern of neutrinos ... and be open for (more) surprises. :)

Complementary paths to the v mass scale

	Cosmology	Search for 0vββ	β-decay & EC
Observable	$M_{\nu} = \sum_{i} m_{i}$	$m_{\beta\beta}^2 = \left \sum_i U_{ei}^2 m_i\right ^2$	$m_{\beta}^2 = \sum_i U_{ei} ^2 m_i^2$
Present upper limit	~0.2 – 0.6 eV	~0.1 – 0.4 eV	2 eV
Potential: near-term (long-term)	60 meV (15 meV)	50 – 200 meV (20 – 40 meV)	200 meV (40 – 100 meV)
Model dependence	Multi-parameter cosmological model	 Majorana v: LNV BSM contributions other than m(v)? Nuclear matrix elements 	Direct, only kinematics; no cancellations in incoherent sum

Massive neutrinos: connecting the micro- and the macro-cosmos

