

III. Neutrino flavour oscillations

Physics Nobel Prize 2002 to R. Davis Jr., M. Koshiba "detection of cosmic [solar] neutrinos"

Physics Nobel Prize 2015 to A. B. McDonald and T. Kajita *"discovery of neutrino oscillations which show that neutrinos have a mass"*

Neutrinos from the sun

- Nuclear fusion in the solar core (T \approx 14.5 × 10⁶ K)
- Only electron neutrinos are created
- Integral flux \approx 66 billion v /cm² / s on Earth

Experimental test of the solar model

"radiochemical method": extract noble gas argon

and detect its decay ($T_{1/2}$ = 35 d)

low-threshold reaction $u_e + {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar} + e^-$

Ray Davis and John Bahcall 10¹² at the Homestake mine, ca. 1964 рр Bahcall-Serenelli 2005 v-flux (cm⁻² s⁻¹ MeV⁻¹) ±1% ⁷Be ±10.5% 10¹⁰ ⁷Be pep 10⁸ ±10.5% ±2% **8**B ±16% 615 tons of perchloroethylene 10⁶ buried in a gold mine 10⁴ hep ±16% 10² 0.1 10 1 neutrino every 2 days neutrino energy (MeV)

The solar neutrino puzzle

Too few neutrinos detected, consistently!

- Something wrong with all the experiments ?
- Something wrong with the **solar model ?**
- Something going on with the **neutrinos** ??

SNO provides the answer to the problem

The **Sudbury Neutrino Observatory**, Creighton mine, Ontario/Canada (2100 m deep) 1000 tons of heavy water (D_2O) viewed by 9600 PMTs

The SNO idea

Why is this process not observed with μ^{-} and τ^{-} ?

- Scattering via neutral Z-Boson is flavour independent
- This reaction channel measures the entire neutrino flux
- NC detection enhanced by adding ~2 tons of salt (NaCI) to the heavy water (neutron capture on CI nucleus, emitted gamma leads to detected signal)

SNO results

- Results published in 2001 confirm flavour transformation hypothesis
- Neutral current reaction channel measures full neutrino flux expected in the Standard Solar Model
- Solar neutrino problem finally solved after 30 years!
 (Both Davis' experiment and Bahcall's calculations were right, after all ...)

Now that we're sure we see flavour oscillations: How can we explain them?

Neutrino oscillations

v-oscillations are a quantum mechanical interference phenomenon

2-flavour mixing:

close analogy to CKM mixing of the left-handed quarks

Bruno Pontecorvo: concept of $v-\overline{v}$ oscillations

Neutrino oscillations

v-oscillations result from different propagation of mass eigenstates

Neutrino oscillations – formalism

Probability P for the oscillation of a v_{μ} into a v_{e} after time t:

$$P(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e}) = |\cos\theta \cdot \sin\theta \cdot (1 - e^{i\Delta m^{2}t/2E_{v}})|^{2}$$

$$=\sin^2 2\theta \cdot \sin^2 (\Delta m^2 L_v / 4E_v)$$

with $P = |\langle v_e | v_\mu(t) \rangle|^2$

with
$$\Delta m^2 = |m_1^2 - m_2^2|$$

amplitude frequency

Oscillations only occur if at least one neutrino has a mass!

- Periodic decrease/increase of primary neutrino flavour state
- Oscillation length λ_{osc} ~ 2.5 $E_{_{\rm V}}$ / Δm^2
- Choose L and E such that you're sensitive to a given θ and Δm² and measure P(L/E)

The full three-flavour picture

3 x 3 unitary mixing matrix analogous to CKM: "Pontecorvo Maki Nakagawa Sakata" (PMNS)

- 3 mixing angles: θ_{12} , θ_{23} , θ_{13} ,
- 1 CP-violating phase: δ
- two independent Δm^2 scales:

$$\Delta m_{13}^2 = \Delta m_{12}^2 + \Delta m_{23}^2$$

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \cdot \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{-i\delta} & 0 & \cos\theta_{13} \end{pmatrix} \cdot \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \delta: \text{ CP-Phase}$$

→ Structure of leptonic mixing matrix very different from CKM matrix:

	$(0.800 \rightarrow 0.844)$	0.515 ightarrow 0.581	$0.139 \rightarrow 0.155$	
$U_{\text{PMNS}} =$	$0.229 \rightarrow 0.516$	0.438 ightarrow 0.699	0.614 ightarrow 0.790	
	$\left(0.249 \rightarrow 0.528\right)$	$0.462 \rightarrow 0.715$	$0.595 \rightarrow 0.776 /$	

How do we know all this?

→ collected "world data" from many different experiments

2. & 3. generation	1. & 3. generation	1. & 2. generation
$\Delta m_{23}^{2} = 2.5 \times 10^{-3} \text{ eV}^{2}$	$\Delta m_{13}^2 = 2.5 \times 10^{-3} \text{ eV}^2$	$\Delta m_{12}^2 = 7.6 \times 10^{-5} \text{ eV}^2$
θ ₂₃ ≈ 45° (maximal?)	θ ₁₃ ≈ 8.5° (small)	θ ₂₃ ≈ 34° (large)
atmospheric & long-baseline accelerator exp.	reactor & long-baseline accelerator exp.	solar & reactor exp.
GeV, v_{μ} (\overline{v}_{μ})	MeV, $\overline{\nu}_{e}$ GeV, ν_{μ} ($\overline{\nu}_{\mu}$)	MeV, v_e (\overline{v}_e)
Kamioka 295 km Tokai		
T2K (Tokai-Kamioka)	Daya Bay	SNO KamLAND

The big picture: What have we learned from oscillation data?

- Large neutrino mixing and tiny neutrino masses m(v_i) ≠ 0 established
- Evidence for non-zero θ₁₃
- Hints for non-maximal $\theta_{23} \neq \pi/4$
- Expectation of CP-violating phase δ
- Absolute mass scale cannot be determined from ρ_{sol}^{2} = (2.32^{+0.12})×10⁻³ eV² determined from ρ_{sol}^{2} = (2.32^{+0.12})×10⁻³ eV²
- Expect m_v > 10 meV for normal ordering, m_v > 50 meV for inverted
- Majorana vs Dirac nature of neutrinos?

IV. How can we measure neutrino masses?

Indirect (model-dependent) probes:

- Observational cosmology
- Search for 0νββ

Direct (model-independent) probes:

 Kinematics of weak decays (³H β-decay, ¹⁶³Ho EC)

K. Valerius: Neutrino physics

Neutrino mass from cosmology

- Current observational cosmology offers a wealth of precision data which can be combined to learn about neutrino masses
- Requires interpretation in the framework of the **Standard Model (ΛCDM)** of Cosmology
- CMB measurements only (pre-Planck):
 - probe neutrino mass mainly via Integrated Sachs-Wolfe effect (modified grav. potential seen by photons)
 - neutrinos contribute to radiation density at z_{eq} and to non-rel. matter density today

Post-Planck:

Weak lensing of CMB gives additional information on Σm_ν

• Status 2017:

$$\sum m_{\nu} \lesssim 0.6 \,\mathrm{eV}$$

using only CMB temperature & polarization data

21

Neutrino mass from cosmology: other probes

 $\sum m_{\nu} < 0.72 \text{ eV} \quad Planck \text{TT+lowP};$ $\sum m_{\nu} < 0.21 \text{ eV} \quad Planck \text{TT+lowP+BAO};$ $\sum m_{\nu} < 0.49 \text{ eV} \quad Planck \text{TT}, \text{TE}, \text{EE+lowP};$ $\sum m_{\nu} < 0.17 \text{ eV} \quad Planck \text{TT}, \text{TE}, \text{EE+lowP+BAO}.$

6 + 2 parameter ΛCDM model

Future EUCLID mission (ESA): grav. lensing & galactic power spectrum

"... Euclid will very likely provide a **positive detection** of neutrino mass ..., the exact nature of the neutrino mass spectrum remains out of its reach ..."

[Hamann, Hannestad, & Wong, JCAP 11 (2012) 52]

Search for neutrinoless double beta decay

Are neutrinos Majorana fermions $(\nu = \bar{\nu})$? Is lepton number violated $(\Delta L = 2)$?

Double β -decay: $2\nu\beta\beta \& 0\nu\beta\beta$ modes

Double beta decay with neutrino emission ($2\nu\beta\beta$):

2nd-order weak interaction process

 \Leftrightarrow extremely small transition rates & long half-lives: $T_{1/2} \sim 10^{19} - 10^{21}$ years

 \Leftrightarrow energy E₀ shared by 4 leptons, observed in 12 isotopes so far

Double beta decay: candidate nuclides

35 "energetically" suitable even-even nuclides for double beta decay Decay rates $\sim Q^5 (0_V \beta \beta) \rightarrow$ find suitable isotope for experiment:

β ⁻ β-decay	Q [MeV]	nat. [%]
⁴⁸ Ca → ⁴⁸ Ti	4,274	0,187
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	2,039	7,8
$^{82}\text{Se} ightarrow ^{82}\text{Kr}$	2,995	9,2
$^{96}Zr \rightarrow {}^{96}Mo$	3,348	2,8
$^{100}Mo \rightarrow ^{100}Ru$	3,034	9,6
$^{110}Pd \rightarrow ^{110}Cd$	2,004	11,8
$^{116}Cd \rightarrow ^{116}Sn$	2,809	7,5
$^{124}Sn \rightarrow ^{124}Te$	2,288	5,64
$^{130}\text{Te} ightarrow ^{130}\text{Xe}$	2,527	34,5
136 Xe $ ightarrow$ 136 Ba	2,458	8,9
$^{150}Nd \rightarrow ^{150}Sm$	3,368	5,6

11 nuclei for $2v\beta^{-}\beta^{-}$ at Q > 2 MeV:

6 nuclei for 2v\beta^+\beta^+/EC at lower Q:

β ⁺ β ⁺ decay	Q [MeV]	nat. [%]
⁷⁸ Kr → ⁷⁸ Se	0,838	0,35
$^{96}\text{Ru} ightarrow ^{96}\text{Mo}$	0,676	5,5
$^{106}Cd \rightarrow ^{106}Pd$	0,738	1,25
$^{124}Xe \rightarrow ^{124}Te$	0,822	0,10
¹³⁰ Ba → ¹³⁰ Xe	0,534	0,11
$^{136}\text{Ce} \rightarrow ^{136}\text{Ba}$	0,362	0,19

Coulomb barrier reduces Q → even longer expected T_{1/2}

T_{1/2} (β⁺β⁺) ~ 10²⁶ a

Double β-decay & Majorana mass m_{ββ}

Effective Majorana mass $m_{\beta\beta}$ is <u>not</u> identical with $m(v_e)$ from β -decay **Coherent** sum over three v mass eigenstates m_1 , m_2 , m_3

$$\left\langle m_{\beta\beta} \right\rangle = \left| \sum_{i=1}^{3} \left| U_{e,i} \right|^2 m_i \cdot e^{i\alpha_i} \right|$$

2 independent Majorana CP-phases α_i \Leftrightarrow mutual cancellations are possible if $\alpha_i \neq n \cdot \pi \rightarrow$ CP violation

Double β-decay & Majorana mass m_{ββ}

Determination of effective Majorana mass $m_{\beta\beta}$ from $0\nu\beta\beta$ half-life $T_{\frac{1}{2}}$

- experimental observable: T_{1/2}

Φ 0vββ event number depending on measuring time, number of target nuclei, experimental efficiency, background

- weak interaction (phase space factor): G^{0νββ}
 determined by ββ-endpoint energy; strong dependence ~Q⁵
- nuclear physics (matrix elements): $M^{0_{V}\beta\beta}$

♦ shell model calculations, large uncertainties O(100%)

M_F: Fermi

Sensitivity drivers

$$T_{1/2}^{0\nu}(\text{FOM}) \propto a \cdot \epsilon \cdot \sqrt{\frac{M \cdot t}{b \cdot \Delta E}}$$

Requirements:

- Large isotopical abundance (*a*)
- High efficiency (ϵ)
- Large Mass (M)
- Long counting time (t)
- Low background (b)
- Good energy resolution (ΔE)

→ Many suitable combinations for isotope + detector technology

→ If ROI is background free: linear scaling with *M* and *t* ! $T_{1/2}^{0\nu}(\text{FOM}) \propto a \cdot \epsilon \cdot M \cdot t$

Experimental techniques

Tracker-calorimeter

NEMO

Cryo-bolometer

Liquid noble element TPC

Ge diodes

Liquid scintillator

Many experimental ideas ...

Isotope	past generation	future generation	type
⁷⁶ Ge	GERDA / MAJORANA	LEGEND	semiconductor detectors
⁸² Se	NEMO-3	SuperNEMO	tracking calorimeters
¹³⁰ Te	CUORE	CUPID	bolometers/scintillators (diff isot considerd for CUPID)
¹³⁰ Te		SNO+	liquid scintillator
¹³⁶ Xe	KamLAND-Zen	KamLAND2-Zen	liquid scintillator
¹³⁶ Xe	EXO-200	nEXO	liquid TPC
¹³⁶ Xe		NEXT/PANDA-X III	gas TPC

+ further projects in R&D phase

Current constraints

Most stringent bounds now approaching inverted hierarchy

Next generation has good discovery potential, even for normal hierarchy

Germanium diodes: MAJORANA and GERDA

SURF (South Dakota, USA)

Majorana

Conventional design:

Vacuum cryostats in a passive graded shield with ultra-clean materials

Novel design:

Direct immersion in active LAr shield

Alan Poon (LBNL), Erice 2017

Germanium diodes: results

- Combined analysis GERDA phase I + II
- "Background-free" running in phase II
 - Two counts after unblinding
 - No count at $Q_{\beta\beta}$
- T_{1/2} > 8.0 x 10²⁵ yr (90% CL)
- Next-generation project: LEGEND "Large Enriched Germanium Experiment for Neutrinoless ββ Decay"
- Staged approach, starting with ~200 kg in existing GERDA cryostat
- Final goal: 1000 kg-scale detector for sensitivity >10²⁷ yr
- Background improvement required: x30 (x5 for LEGEND-200)

Kamland-Zen at Kamioka (Japan)

Liquid Xenon TPC: EXO-200

- Enriched Xenon Observatory at WIPP/New Mex., running ~175 kg of LXe (80.6% ¹³⁶Xe)
- More than a calorimeter: spatial resolution (x,y,z) and PID allows discrimination of multi-site (bg-like) vs. single-site (0vββ-like) events
- Anticorrelation of charge and light signals (compare DM detectors), tags α events
- Now preparing nEXO: 5-ton monolithic detector (~1 t fiducial),
 1.3 m electron drift length, ~4 m² of SiPM photosensors, option of ¹³⁶Ba tagging

Tracking-Calorimeter: SuperNEMO

- Successor of NEMO-3 at Laboratoire Souterrain de Modane (LSM)
- Baseline isotope: ⁸²Se, foils can be exchanged (high Q-values: ¹⁵⁰Nd, ⁴⁸Ca)
- Unique feature: tracking allows to detect ββ-signature (vertex)
- Demonstrator (= 1st module) currently in commissioning, first data end of 2017
- Design sensitivity: $T_{\frac{1}{2}} > 10^{26}$ a, $m_{\beta\beta} \sim 50-100$ meV

Cryogenic bolometer technique

- Electrons create phonons/heat in absorber (e.g., TeO₂ crystal)
- Heat capacity: \sim (T/T_D) ³ (Debye Law)
- Example:
 - Operating temperature: 10 mK
 - Temperature change per energy: $10 20 \,\mu\text{K/MeV}$
- At $Q_{\beta\beta}$ = 2.5 MeV $\rightarrow \Delta T < 50 \ \mu K$

Cryogenic bolometer: CUORE

- First ton-scale $0\nu\beta\beta$ exp. with thermal detectors; at Gran Sasso underground laboratory
- TeO₂ detectors & cryo-technology piloted by Cuoricino & CUORE-0 (~40 kg)
- Since Feb. 2017: operation of 988 detectors at T ~7 mK
- Total mass: 742 kg of $TeO_2 \rightarrow 206$ kg of ¹³⁰Te

19 towers x 13 planes x 4 crystals = 988 crystals

Cryogenic bolometer: CUORE

The coldest cubic meter in the Universe! CUORE: at ~10 mK Cosmic microwave background: 2.7 K

19 towers x 13 planes x 4 crystals = 988 crystals

Cryogenic bolometer: CUORE

 $m_{_{BB}} < 210 - 590 \text{ meV}$

First CUORE science run, combined with Cuoricino + CUORE-0:

 $\tau_{1/2}^{0\nu} > 6.6 \times 10^{24} \text{ y} (90\% \text{C.L.})$

Summary / Take-away (part I)

- We learned a lot about neutrinos since their "invention" in 1930
- We exploit a large variety of neutrino sources in our experiments!

Summary / Take-away (part I)

- Massive neutrinos ...
 - are evidence for physics beyond the Standard Model
 - are the only currently known form of Dark Matter (their contribution is small, their role not quite fixed yet - what about sterile neutrinos?)
- Neutrinos can point us towards ...
 - novel mass-generating concepts in particle physics (open question regarding Dirac or Majorana nature of neutrinos)
 - lepton flavour violation (oscillations) and lepton number violation ($0\nu\beta\beta$)
 - leptonic CP violation
- We need to understand the mass pattern of neutrinos ... and be open for (more) surprises. :)

dedicated experiments

→ next lecture

Massive neutrinos: connecting the micro- and the macro-cosmos

K. Valerius: Neutrino physics