
Physicists in Medicine

Working between patients, physicians and technicians

Anja Teuber Institute of Epidemiology and Social Medicine University Hospital Münster

You need a MRI.

- 1 General overview
 - 1.1 Facts to know about hospitals and the healthcare system
 - 1.2 Fields of activity
- 2 Personal experience
 - 2.1 My everyday work situation
- 2.2 My projects
- Requirements, perspectives and challenges
 - 3.1 Accessing medical physics
 - 3.2 My opinion: Colleagues and supervisors
 - 3.3 Payment and contracts

- 1 General overview
 - 1.1 Facts to know about hospitals and the healthcare system
 - 1.2 Fields of activity
- 2 Personal experience
 - 2.1 My everyday work situation

- 2.2 My projects
- Requirements, perspectives and challenges
 - 3.1 Accessing medical physics
 - 3.2 My opinion: Colleagues and supervisors
 - 3.3 Payment and contracts

federal/state ministries for health and social policy healthcare providers public/private health insurance resident providers hospitals

federal/state ministries for health and social policy

stakeholders

healthcare providers

hospitals

resident physicians

public/private health insurance providers

patients

federal/state ministries for health and social policy

stakeholders

healthcare providers

hospitals

resident physicians public/private health insurance providers

patients

federal/state ministries for health and social policy DAK Gothaer healthcare providers public/private health insurance resident providers hospitals physicians BARMER Allianz (II) **GEK**

federal/state ministries for health and social policy stakeholders healthcare providers public/private health insurance resident providers hospitals physicians

Hospitals in Germany

2,000 hospitals (incl. 34 university hospitals)

- 600 under public ownership
- 700 charitable organizations
- 700 private institutions

Hospitals in Germany

2,000 hospitals (incl. 34 university hospitals)

- 600 under public ownership
- 700 charitable organizations
- 700 private institutions

organizational structure

- management
- specialist departments (inpatients, diagnostic)
- medical institutes

Hospitals in Germany

2,000 hospitals (incl. 34 university hospitals)

- 600 under public ownership
- 700 charitable organizations
- 700 private institutions

organizational structure

- management
- specialist departments (inpatients, diagnostic)
- medical institutes

```
hospital owner = employer
chief of department/institute = supervisor
```

- 1 General overview
 - 1.1 Facts to know about hospitals and the healthcare system
 - 1.2 Fields of activity
- 2 Personal experience
 - 2.1 My everyday work situation

- 2.2 My projects
- Requirements, perspectives and challenges
 - 3.1 Accessing medical physics
 - 3.2 My opinion: Colleagues and supervisors
 - 3.3 Payment and contracts

healthcare engineering

healthcare informatics

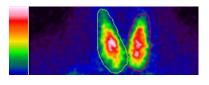
biomedicine

healthcare engineering

medical imaging optical imaging nuclear medicine radiotherapy radiation protection physiological measurements laser medicine clinical audiology guided surgery techniques

healthcare engineering

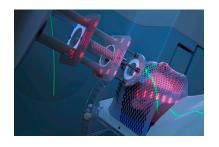
medical imaging optical imaging nuclear medicine radiotherapy radiation protection physiological measurements laser medicine clinical audiology guided surgery techniques



healthcare engineering

medical imaging optical imaging nuclear medicine radiotherapy radiation protection physiological measurements laser medicine clinical audiology

guided surgery techniques



healthcare engineering

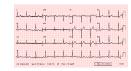
medical imaging optical imaging nuclear medicine radiotherapy

radiation protection
physiological measurements
laser medicine
clinical audiology
guided surgery techniques

healthcare engineering

medical imaging optical imaging nuclear medicine radiotherapy radiation protection physiological measurements laser medicine clinical audiology

guided surgery techniques



healthcare engineering

medical imaging
optical imaging
nuclear medicine
radiotherapy
radiation protection

physiological measurements

laser medicine
clinical audiology
guided surgery techniques

healthcare engineering

medical imaging

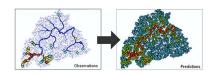
optical imaging nuclear medicine radiotherapy radiation protection physiological measurements laser medicine clinical audiology guided surgery techniques

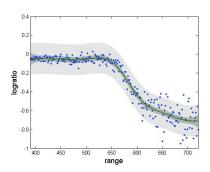
healthcare engineering

medical imaging optical imaging nuclear medicine radiotherapy radiation protection physiological measurements laser medicine clinical audiology guided surgery techniques

healthcare engineering

medical imaging optical imaging nuclear medicine radiotherapy radiation protection physiological measurements laser medicine clinical audiology guided surgery techniques

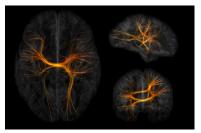



healthcare informatics

statistical methods

distant monitoring

image processing, visualization computer-aided diagnosis hospital information systems telemedicine,

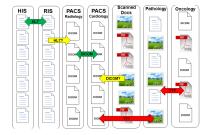


healthcare informatics

statistical methods image processing, visualization computer-aided diagnosis hospital information systems telemedicine, distant monitoring

healthcare informatics

statistical methods image processing, visualization computer-aided diagnosis hospital information systems telemedicine, distant monitoring


healthcare informatics

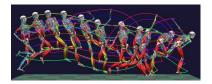
statistical methods image processing, visualization computer-aided diagnosis

hospital information systems telemedicine,

telemedicine, distant monitoring

healthcare informatics

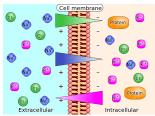
statistical methods image processing, visualization computer-aided diagnosis hospital information systems telemedicine, distant monitoring


biomedicine

biomechanics

bioelectromagnetism

biomaterials


biomedicine

biomechanics

bioelectromagnetism

biomaterials

biomedicine

biomechanics

bioelectromagnetism

biomaterials

Areas of application

patient care

medical research healthcare science

department

legal regulations, strict protocols

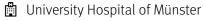
24/7 operation

operating expenses of the hospital

radiation protection

Areas of application

patient care	medical research	healthcare science
department	institute/dept.	
legal regulations, strict protocols 24/7 operation operating expenses of the hospital radiation protection	interdisciplinary project-based grands (e.g. pharma- ceutical industry) animal testing	


Areas of application

patient care	medical research	healthcare science
department legal regulations, strict protocols 24/7 operation	institute/dept. interdisciplinary project-based grands (e.g. pharmaceutical industry) animal testing	institute technical, epidemio- logical research project-based
operating expenses of the hospital radiation protection		grands (e.g. DFG, BMBF) data protection

- 1 General overview
 - 1.1 Facts to know about hospitals and the healthcare system
 - 1.2 Fields of activity
- 2 Personal experience
 - 2.1 My everyday work situation

- 2.2 My projects
- Requirements, perspectives and challenges
 - 3.1 Accessing medical physics
 - 3.2 My opinion: Colleagues and supervisors
 - 3.3 Payment and contracts

The institute

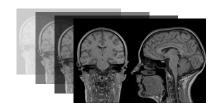
institute of Epidemiology and Social Medicine

epidemiology

study and analysis of patterns, causes and consequences of health and disease conditions in certain populations

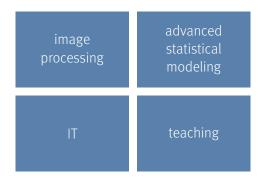
The institute

institute of Epidemiology and Social Medicine

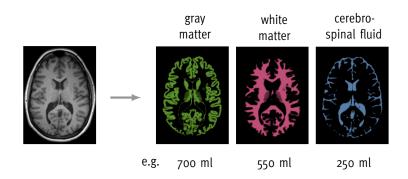

epidemiology

study and analysis of patterns, causes and consequences of health and disease conditions in certain populations

challenges


- self-willed individuals
- quantization of 'fuzzy' characteristics
- non-mechanistic relationships

Population Imaging


Areas of responsibility

- 1 General overview
 - 1.1 Facts to know about hospitals and the healthcare system
 - 1.2 Fields of activity
- 2 Personal experience
 - 2.1 My everyday work situation

- 2.2 My projects
- 3 Requirements, perspectives and challenges
 - 3.1 Accessing medical physics
 - 3.2 My opinion: Colleagues and supervisors
 - 3.3 Payment and contracts

Image segmentation

Reliability of brain tissue quantification

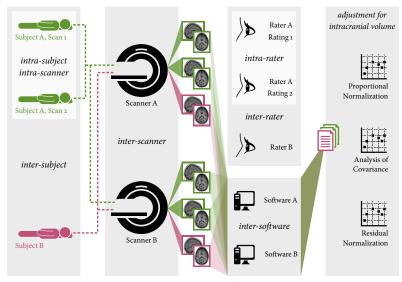
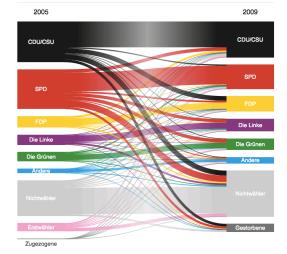


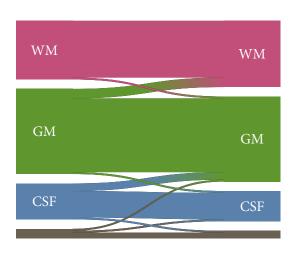
IMAGE ACQUSITION

IMAGE PROCESSING

Data Processing


Voter transitions

Voter transitions



Wählerwanderung bei der Bundestagswahl 2009

Voter transitions

The reproducibility problem

The reproducibility problem

Study delivers bleak verdict on validity of psychology experiment results

Of 100 studies published in top-ranking journals in 2008, 75% of social psychology experiments and half of cognitive studies failed the replication test

Essay

Why Most Published Research Findings Are False

John P. A. Ioannidis

The reproducibility problem

Study delivers bleak verdict on validity of psychology experiment results

Of 100 studies published in top-ranking journals in 2008, 75% of social psychology experiments and half of cognitive studies failed the replication test

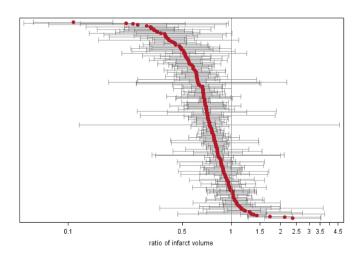
Essay

Why Most Published Research Findings Are False

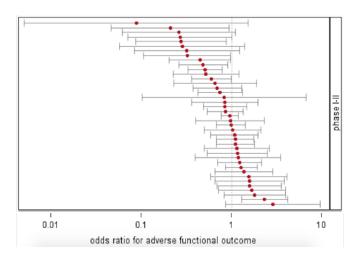
John P. A. Ioannidis

It can be proven that most claimed research findings are false. [...] Simulations show that for most study designs and settings, it is more likely for a research claim to be false than true.

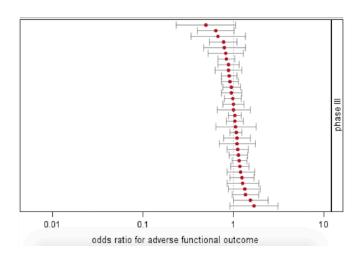
Meta-Research

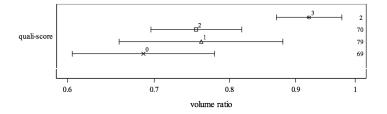


Meta-Research is known as 'research on research' as it uses research methods to study how research is done and where improvements can be made.


Neuro-protective substances

- 35 substances presumed to protect brain from cell loss after stroke
- 🗂 1984 2017
- 330 studies
 - 208 preclinical animal experiments
 - 75 early clinical trials
 - 47 phase-III studies
- † → 50,000 human subjects


Effect sizes of preclinical animal experiments


Effect sizes of early clinical trails

Effect sizes of phase-III trails

Pooled effects for different quality scores

- 1 General overview
 - 1.1 Facts to know about hospitals and the healthcare system
 - 1.2 Fields of activity
- 2 Personal experience
 - 2.1 My everyday work situation

- 2.2 My projects
- Requirements, perspectives and challenges
 - 3.1 Accessing medical physics
 - 3.2 My opinion: Colleagues and supervisors
 - 3.3 Payment and contracts

Requirements

Medical physics might be an option if you...

- enjoy engineering, coding/informatics
- are willing to learn 'medical language'
- are willing to acquire knowledge of anatomy, physiology and some clinical basics
- are prepared for interdisciplinary teamwork (with all pros and cons)
- like to work independently
- can cope with working in a hospital

Education und training

degree programs

- BSc/MSc at universities of applied science
- MSc via distant learning
- PhD programs

training courses

- professional societies
- manufacturer
- summer schools

self-study

- textbooks / internet
- dialogues with other scientists

- 1 General overview
 - 1.1 Facts to know about hospitals and the healthcare system
 - 1.2 Fields of activity
- 2 Personal experience
 - 2.1 My everyday work situation

- 2.2 My projects
- Requirements, perspectives and challenges
 - 3.1 Accessing medical physics
 - 3.2 My opinion: Colleagues and supervisors
 - 3.3 Payment and contracts

My opinion: Colleagues and supervisors

most people you meet...

- have no scientific background
- dislike maths
- have no idea what data processing and programming mean

My opinion: Colleagues and supervisors

most people you meet...

- have no scientific background
- dislike maths
- have no idea what data processing and programming mean

typical supervisors...

- are 58–65 years old males
- avoid seminars for employee motivation and personnel management?
- more interested in their career than in patient care/science?

My opinion: Colleagues and supervisors

most people you meet...

- have no scientific background
- dislike maths
- have no idea what data processing and programming mean

typical supervisors...

- are 58–65 years old males
- avoid seminars for employee motivation and personnel management?
- more interested in their career than in patient care/science?

better look for...

- other physicists, statisticians, engineers, computer scientists
- motivated technical assistants, workshop employees, IT specialists
- biologists, chemists

- 1 General overview
 - 1.1 Facts to know about hospitals and the healthcare system
 - 1.2 Fields of activity
- 2 Personal experience
 - 2.1 My everyday work situation

- 2.2 My projects
- Requirements, perspectives and challenges
 - 3.1 Accessing medical physics
 - 3.2 My opinion: Colleagues and supervisors
 - 3.3 Payment and contracts

Contracts and payment

- fixed-term contracts, even in patient care for open-ended contracts: strong advocate and lot of patience needed
- no room to negotiate for scientists
 - collective agreements in public owned hospitals (TV-L, TVöD)
 - special regulations in church-owned hospitals
 - company agreements in private institutions
- pay group depends on job specification not academic qualification!

Thanks for using Medical Physics

Evaluation

fascination
curiosity
flexibility
circumstances
payment

Would you recommend Medical Physics to a friend?

✓ yes □ no but not @UKM

Comments:

- think twice, circumstances can be really bad
- check conditions carefully

University Hospital Münster

operated by: North Rhine-Westphalia

- 血
- 45 departments 39 institutes
- 1,460 beds

- 72,000 inpatients 440,000 outpatients / year
- 10,000 employees
 940 physicians *
 1,800 nurses *
 320 social occupations *
 320 technical assistants *
 150 administrative assistants *

* Full Time Equivalents

MSc Medizinische Physik / TU Kaiserslautern

Grundlagenstudium

MPT0001: Anatomie und Physiologie

MPT0002: Biochemie und Biophysik

MPT0003: Biomathematik, insbesondere Statistik

MPT0004: Informatik: Grundlagen und Einsatz in der Medizin

MPT0005/0021: Medizintechnik (Technik und gesetzlicher Rahmen)

MPT0006: Organisatorische und rechtl. Grundsätze im Gesundheitswesen

MPT0007: Einführung in den Strahlenschutz

MSc Medizinische Physik / TU Kaiserslautern

Vertiefungsstudium

Alle Fachrichtungen:

MPT0017: Physikalische Messtechniken in der Medizin

MPT0022: Grundlagen der Diagnostik

Fachrichtung Medizinische Strahlenphysik:

MPT0009: Physik und Technik der Nuklearmedizin

MPT0010: Physik und Technik der Röntgendiagnostik

MPT0008: Physik und Technik der Strahlentherapie

Fachrichtung Medizinische Laserphysik:

MPT0011: Medizinische Optik

MPT0012: Grundlagen von Lasern

MPT0013: Medizinische Anwendung von Lasern

Fachrichtung Medizinische Bildverarbeitung:

MPT0015: Physik und Technik der Ultraschallanwendung in der Medizin

MPT0016: Bilderzeugung und Bildverarbeitung in der Medizin

MPT0018: Kernspintomografie und Kernspinspektroskopie

MPT0019: Bilderzeugung und Bildbewertung in der Strahlenphysik

MPT0023: Fortgeschrittene Methoden der medizinischen Bildverarbeitung

MSc Medizinische Physik / TU Kaiserslautern

Graduierungsphase

Alle Fachrichtungen:

MPT0104: Klinische Studien

MPT0107: Qualitätsmanagement in Gesundheits- und Sozialeinrichtungen

Masterarbeit

Fachrichtung Medizinische Strahlenphysik:

MPT0009: Physik und Technik der Nuklearmedizin

MPT0010: Physik und Technik der Röntgendiagnostik

Fachrichtung Medizinische Laserphysik:

MPT0011: Medizinische Optik

MPT0012: Grundlagen von Lasern

Fachrichtung Medizinische Bildverarbeitung:

MPT0015: Physik und Technik der Ultraschallanwendung in der Medizin

MPT0016: Bilderzeugung und Bildverarbeitung in der Medizin