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Endpoint and Q-value of T, How a measurement of the endpoint E  can help Statistical uncertainty on E_ at KATRIN
the KATRIN experiment

Realist The statistical uncertainty on E at the KATRIN
. . eallstiC: ] effect of an incorrect cross section . . ) .
spectrum is the maximum A measurement of the Endpoint E, at KATRIN and . experiment will be only 2-3 meV with 3 years of

ossible Energy a beta _ ) A N R SR S data, below 17 meV after 1 month of data taking,
b ) By (T)) =4,590 eV a comparison to an external experimental value * : J

electron can get from the / . and below 100 meV after just 1 day. These
decay of one of the tritium allows us to check if we understand our numbers are true for the design sensitivity of
atoms in a T,molecule systematics.

KATRIN.
assuming zero neutrino mass. AM(He, T) = Some of our systematics influence E, directly and

If we assume a much higher background of 0.5 Hz,
Q(T) = 18592,01 (7) eV others influence E indirectly because our fit the uncertainty will increase to 5 meV after 3 years

i 18575,717 (70) eV | 2 N S of measurement time.
The mass difference between (calculated, no E.G.Meyers et al. parameters E_, amplitude and m?(v_) are | .

He and T is known from a recoil) correlated in the fit of the electron energy D O SO S seilction — -0 o _ statistical Error on EO

penning trap measurement by Spectrum. | = 0.01 Hz backgrOl!Jnd
E.G. I\/Ieyers with 70 meV Y SHe + T* + o Hypothetical: : — 0.5 Hz\backgrour?d |

precision. Q‘H(T) Y If we would know the endpoint E exactly we

The endpoint E of the
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shift of the Endpoint in meV

correlation between m?2 and E,

CHeT)" +e )/ED (HeT)' 13,60 eV

From this we can deduce the 1,897 eV would reach the same statistical sensitivity in 1
Q-value of molecular tritium if \ He + T / year of measurement time which we do in 3
we know the molecular binding
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_ At the moment an improvement of the statistical = LR
o =1,72eV Error is not realistic because the required Rt
T,) =18575,717 (70) eV uncertainty of < 5 meV of an external value and | L
=Q(T,)-E = 18573,997 (70) eV our systerr]atlcs (e.g. the retarding voltage) ) i s - - e
combined is out of reach. R S time (measuring days)

statistical Error (meV)
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recoil

We obtain the Endpoint E of

the spectrum by subtracting the
recoil Energy of a T, molecule.
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Energy of an electron in the analyzing plane Determination of 53U and ® with an e-gun (1) Determination of U and &, ...,

tromet i
spectrometer with an e-gun (2)

spectrometer First we need to determine Optical setup of the electron gun.

%

U ; the work function of the . detector ¢ o ouon Once we know the work function of the e-gun, we
g photoelectron gun. light source monochromator  feed: through window can measure the transmission function of the
5 This can be done by ‘enese i spectrometer at a low e energy (at low voltage the

fiber
e e " W 10/90 energy resolution of the spectrometer is much
detector the egun at different | I splitter

/ . better). This allows us to determine the effective
itti fiber coupler for translation vacuum .. . . .
wavelength and fitting the e stage fibers transmission function, which contains both the
voltage inhomogeneity 60U and the work function

I At of the spectrometer .
’ITE — . 12

analyzing . .
. plane fowler function to it.
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2 Working principle of the e-gun. | |
92 + 9 + ] forp <0

Back plate

U, Transmission
o o Front plate at different

U+ 0U(r) \ ! ' wavelengths

This has already been done | corresponding |
by J. Berens with a different | Magn. field line to different

E — + d + @ —a(U + 5U((r)) — d egun. The error on the egun e surplus !
ana start plasma source ~ q( (7)) Spec workfunction was < 20 mV. eneprgies_ b

Only electrons with E___> 0 make it to the detector. T ™ T I R R
To determine the Q-value we measure the spectrum (E__ ) and we also Picture by J. Behrens, P. Ranitzsch Plot by Jan Behrens
need to know all the other parameters of this equation.
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Determination of the Source work function ®

_ source Absolute high voltage U = s Summary / Outlook
and the plasma potential ® S

| " '
plasma UV-surface The Endpoint E can only be The measurement of the tritium Q-value at

A measurement mode where 8MKr is mixed in the \'&% | determined correctly if the absolute ‘ | Ened (IS KATRIN is dominated by systematical
source with D, or T, gas can be used to gain >45// to 20 pup high voltage is known on a ppm level. P Uncertainties.
information about the plasma potential ®___ . |

Also the neulrino mass measurement Ll B A It is reasonable to assume that we can determine

at KATRIN requires a high voltage g o ¥ i . -
Unfortunately a measurement with ™Kr can only be ~ ~250mm stability on thg ppm Ieveglj. J S ho:--1¢ the Q-value with a precision of 70 to 100 meV.

done at a temperature of 110K. At this temperature T | To fulfill this ambitious goal two high e The comparison of the Q-value measured at
the plasma potential is higher than at the nominal voltage dividers (K35 and K65) have CL R KATRIN and an external Q-value will be a good

value of 30K for tritium measurements. _ been built. heck f : tematics. i.e. th K
Depending on how well the Kr lines are known these The rear wall (RW) is a gold coated ' check Tormany ot our systematics, 1.€. the wor
functions or the absolute value of the high voltage

measurements can also be used to determine the steel plate which will dominantly : o

effective work function of the source. contribute to the effective source High voltage divider K-35 system.
At the moment these lines are known only with 300 potential. The work function of the RW

meV or even 500 meV uncertainty. However there has been measured with a kelvin probe
are measurements planed with a condensed Krypton and it is planned to determine the work

source which might provide a better value. function in situ with the fowler method.
83Rb Setting it to the right electric potential

N st will also lower the plasma potential.
83mKr /

00 TR DU K. Blaum from MPIK Heidelberg aims to measure
o=5mV_ the mass difference of T and 3He with <70 meV
| precision in a penning trap experiment.
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7 ""Tees 1ppm measurement of
| precision HV supply
FuG HCP 70-
35000M with K35.
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