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The order of the QCD thermal transition, 

chiral p.t.
restoration of global

µ = 0

deconfinement p.t.: 
breaking of global 

SU(2)L � SU(2)R � U(1)A

Z(3)

anomalous

chiral critical line

deconfinement critical line



Very difficult!

Monte Carlo history,
plaquette near phase boundary 
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Finding a phase transition in QCD: fluctuations



Fluctuations visible in any observable, but 
largest in “order parameter”:

Generalised susceptibilities:

(Note: can be generalised to 4d, but the QCD equilibrium system is 3d!)

Volume averages (intensive variables):

fluctuation:

Finding a phase transition in QCD: fluctuations

Pseudo-critical couplings (finite V!):  fluctuations maximal but finite!

pseudo-critical parameters not unique!



Finding the phase transition:   the critical temperature 
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‘Measuring’ the phase transition I: (pseudo-) critical temperature T0

hadron gas→ quark gluon plasma: deconfinement or chiral phase transition?

“order parameters”:

Polyakov loop ⟨L⟩ (form → ∞), chiral condensate ⟨ψ̄ψ⟩ (form → 0)
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Susceptibilities: χ = V Nt(⟨O2⟩ − ⟨O⟩2) ⇒χmax = χ(β0) ⇒T0

β0, T0 only pseudo-critical on finite V

Susceptibilities:

Measuring the `order parameter’ as function of lattice coupling (viz. T)

here:  Nf = 2
β =

2Nc

g2(a)
T =

1

aNt

Tdeconf ≈ Tchiral



Approaching the thermodynamic limit

different definitions (e.g. scanning in different directions, different observables etc.)

β0(µ) not unique

µ

T
finite V

βc(µ) unique for p.t., not for crossover

µ

T
infinite V

Critical line unique in thermodynamic limit!

Order of transition: finite volume scaling (β0(V ) − β0(∞)) ∼ V −σ

σ = 1 1st order

σ < 1 2nd order

σ = 0 crossover



The nature of the phase transition at the physical point Fodor et al. 06

...in the staggered approximation...in the continuum...is a crossover!

The nature of the transition for phys. masses Aoki et al. 06



How to identify the critical surface: Binder cumulant

B4(ψ̄ψ) ≡
⟨(δψ̄ψ)4⟩

⟨(δψ̄ψ)2⟩2
V →∞
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⎧
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Observable: Binder cumulant

• Probability distribution of order parameter

- distinguishes crossover (Gaussian) vs 1rst order (2 peaks)

- 2nd order: scale-invariant distribution with known Ising exponents

- encoded in Binder cumulant
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How to identify the order of the phase transition

x� xc

parameter along  phase boundary, T = Tc(x)



Order of p.t., arbitrary quark masses  
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Large cut-off effects on critical lines!
Towards the continuum: Nt = 6, a � 0.2 fm

phys.
point

0
0

N  = 2

N  = 3

N  = 1

f

f

f

m s

s
m

Gauge

 m   , mu

1st

2nd order
O(4) ?

2nd order
Z(2)

2nd order
Z(2)

crossover

1st

 d 

tric

!

!

Pure

Nt=4

Physical point deeper in crossover region as            

Cut-off effects stronger than finite density effects! 

Preliminary: curvature of chiral crit. surface remains negative    de Forcrand, O.P. 10     

a� 0

de Forcrand, Kim, O.P. 07
Endrodi et al 07 

Nt=6

critical pion mass shrinks by factor ~1.8 from a=0.3 fm to a=0.2 fm!  
no continuum limit yet!



Order of the transition in the chiral limit
is not yet settled!
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Lattice QCD at finite baryon density

Quark number and chemical potential:

Necessary for real world applications:        heavy ion collisions, nuclear matter, 
                                                               compact stars,...

Behaviour under charge conjugation:       
                                                              

sign flip in Q!

µ > 0 : net baryon number
µ < 0 : net anti-baryon number



The sign problem

Dirac operators satisfy 
(continuum, Wilson, staggered,...)

With complex chemical potential:

“Sign problem” of QCD

Complex measure cannot be used for MC importance sampling

After integration over gauge fields the partition function is real!

Generic for systems with anti-particles, necessary for physics!



 1dim. illustration



Approximate methods to evade the sign problem: 
Reweighting

Based on exact relation:

I. Numerically difficult, signal exponentially suppressed with volume

II. Overlap problem, because of importance sampling

With increasing difference the most frequent configs. are
increasingly unimportant 

U

S
µ=0 finite µ

in
te

gr
an

d



Finite density by Taylor expansion

Taylor expansion of the pressure 
around zero density:

The coefficients can be computed at zero density!

Other physical quantities follow:

No sign problem, but need small µ/T

Higher coeffs. increasingly difficult:



QCD at imaginary chemical potential

No sign problem; general idea:

Observables have definite symmetry,
even or odd in chemical potential

Simulate left side without further systematic error

Check if fit to low order polynomial is possible 

Analytic continuation trivial (in the absence of singularities)

General considerations:

Partition function is periodic

Is this a healthy theory?

Yes! Recall

Equivalent to theory in real external field!

Z = T̂r e�
(H�iµiQ)

T

µ/T < 1



Periodicity non-trivial:

Chemical potential can be absorbed by boundary conditions

Consider the topological gauge trafo

Measure and action are invariant, hence

Both partition fcns. related by gauge trafo, identical!

Roberge-Weiss symmetry:



The phase diagram at imaginary chemical potential

Phase of Polyakov loop

Analytic continuation
of chiral/deconfinement
transition, depends on
Nf, quark masses

Roberge-Weiss:     Z(3) transitions are first order for large T (perturbation theory)
                                                          crossover for small T (strong coupling limit)

Limited by singularity (phase transition)
closest to  µ = 0



The Z(3) transition numerically
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Towards the QCD phase diagram 

Analyticity of the (pseudo-)critical line

Recall definition by peak of susceptibilities:

Implicit definition of pseudo-critical line

Implicit function theorem:

For analytic susceptibility, also the implicitly 
defined pseudo-critical coupling is analytic 
(always true on finite V!)

�c(mf , µ)

⇤max = ⇤(�c, mf , µ)

Accessible to all methods discussed for sufficiently small chemical potential

Crosscheck, in particular between Taylor coefficients and imaginary chem. pot.



Test of methods: comparing Tc(µ)



The crossover for physical masses

Figure 4: The phase diagram based on the µ-dependent Tc from the chiral condensate,
analytically continued from imaginary chemical potential. The blue band indicates the width
of the transition. The shaded black region shows the transition line obtained from the chiral
condensate. The widening around 300 MeV is coming from the uncertainty of the curvature
and from the contribution of higher order terms, thus the application range of the results
is restricted for smaller µ values. For completeness, on the right panel we also show some
selected non-lattice results: the Dyson-Schwinger result of Ref. [37] and the freeze-out data
of Refs. [57–63].

a. In Ref. [38] we used a vanishing strangeness chemical potential. In the
present analysis we use instead vanishing strange density. The reason for this
change is to be as close to the experimental situation as possible. In heavy ion
collisions the net strangeness is zero.

b. It is emphasized in the discussion of Figure 5 of [38] that only statistical
uncertainties were provided. The present analysis estimates systematic uncer-
tainties coming from various aspects of the analysis as discussed earlier. These
are comparable to or in some cases even larger than the statistical uncertainties.
A similar assumption on the systematics of Ref. [38] would make the tension
between the results much weaker.
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Budapest - Wuppertal 15

In the continuum:

Fluctuations at finite temperature and density Szabolcs Borsányi
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where the net strangeness vanishes. These data are reproduced by a leading Taylor estimate (open circles).
If we keep all chemical potentials equal instead of requiring strangeness neutrality we arrive at the green
dots and triangles. The latter two refer to an extrapolation from the µ

B

= 0 or the Imµ
B

> 0 data, they are in
agreement [24].

The strange susceptibility together with the chiral condensate and susceptibility was used to
calculate the curvature of the transition line in the QCD phase diagram [63]. The use of imaginary
chemical potentials became a very popular approach, since then the µ

B

-derivative of the chiral
observables do not have to be calculated. Instead, T

c

has to be determined for several imaginary
values of the chemical potentials. Recently three consistent continuum results emerged [23, 24, 25].
In Fig. 9 we show the continuum extrapolated T

c

results at various imaginary chemical potentials
and the phase diagram after the analytical continuation. The curvature k of the phase diagram is
defined as

T

c

(µ
B

)

T

c

(µ = 0)
= 1�k

✓
µ

B

T

c

(µ
B

)

◆2

+O(µ4
B

) . (5.2)

The Pisa group concluded at k = 0.0135(15) (2stout staggered action up to N

t

= 12) [23] the
Wuppertal-Budapest group published k = 0.0149(21) (4stout staggered action up to N

t

= 16) [24].

6. Fluctuations, where theory meets experiment

Perhaps the most beautiful aspect of fluctuations of conserved charges is their availability from
heavy ion experiments. Fluctuations are characteristic to the temperature, chemical potential(s)
and volume of a grand canonical ensemble. Using a somewhat simplified picture, the plasma that
was created at a high energy density equilibrates locally and follows a hydrodynamical evolution,
simultaneously cooling down into the transition range. Although the total baryon number and
electric charge are conserved a subsystem can be described by a grand canonical ensemble, though
it is important to consider the finite size of the subvolume [72]. The net abundance of conserved
charges in a subsystem is counted by using rapidity cuts in experiment. The efficiency of the
detector is corrected for and spallation protons are excluded by appropriate cuts in p

T

, though
such cuts also introduce systematic errors [73]. At RHIC STAR has published results on the first

10

Bonati et al., 15
Cea et al. 15
Bielefeld-Brookhaven 14

Consistent with other simulations
and different actions



Lattice-calculable region of the QCD phase diagramThe lattice-calculable region of the phase diagram
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So far only “heavy dense QCD”, i.e. static quarks  Aarts et al. 16  
cf. density of states   Langfeld et al. 16                                 



Much harder: is there a QCD critical point?

12

Some methods trying (1) give indications of critical point, but systematics not yet controlled 



Approach 2:  follow chiral critical line        surface 
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de Forcrand, O.P.   08,09 



Finite density: chiral critical line        critical surface
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Curvature of the chiral critical surface

de Forcrand, O.P.   08,09 
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Un-discovering a critical point feels like...



Critical lines at imaginary µ
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Chiral and deconfinement critical surfaces

shape, sign of curvatures determined by tricritical scaling!

de Forcrand, O.P. 10
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Non-trivial phase structure 
Roberge-Weiss  Z(3) symmetry! 

Critical surfaces from imaginary chemical potential
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shape, sign of curvatures determined by tricritical scaling!

de Forcrand, O.P. 10
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Critical surfaces at real and imaginary chemical potential

shape, sign of curvatures determined by tricritical scaling!
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shape, sign of curvatures determined by tricritical scaling!
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Deconfinement critical line
Fromm, Langelage, Lottini, O.P. 11

mc

T
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T
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tri-critical scaling:                                                                                    exponent universal
        

Heavy quarks



Effective lattice theory for heavy and dense QCDThe effective lattice theory approach I

Two-step treatment: 

1. Calculate effective theory analytically 
II. Simulate effective theory  

Step I.:  split temporal and spatial link integrations:     

Spatial integration after analytic strong coupling and hopping expansion
                                                                           

Result: 3d spin model of QCD, infinitely many couplings, ordered parametrically

Truncation: valid for heavy quarks, sufficiently close to the continuum

Step II:  sign problem milder: Monte Carlo, complex Langevin

Numerical simulations in 3d without fermion matrix inversion,  very cheap! 

Z =
�

DU0DUi det Q eSg[U ] �
�

DU0e
�Seff [U0] =

�
DL e�Seff [L]

3

Truncation valid for heavy quarks on reasonably fine lattices, a~0.1 fm 

Step II.: Mild sign problem, complex Langevin, Monte Carlo  

New Step II.:  Analytic solution by cluster expansion!  

with M.Fromm, J.Langelage, S.Lottini, M.Neuman, J.Glesaaen

Check in SU(2):  Scior, von Smekal 15 

(Numerical versions:  Greensite et al. ; Bergner et al.    )

⇠ 1

g2
,
1

mq



Continuum approach
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Figure 3. Continuum approach of the baryon number.

extending the range where our effective action is reliable. Fig. 2 (right) shows the same
exercise for the largest  considered in this work, this time increasing the orders of the
character expansion. We observe good convergence up to � ⇠ 6, which is a sufficiently
weak coupling to allow for continuum extrapolations. It is interesting to note that the
convergence properties are not determined by the size of the expansion parameters alone.
Even though the u(�)-values far exceed the -values employed in the figures, convergence
in u(�) appears to be faster. The gain in convergence region by the additional orders in
the effective action can be exploited to study the systematics of our effective theory.

3.2. Continuum approach

An important question for any lattice investigation concerns the continuum limit. Fig. 3
(left) shows the baryon number as a function of chemical potential and highlights a severe
issue of lattice QCD at finite baryon density, irrespective of the sign problem or the accuracy
of effective actions: cut-off effects at finite density cause not only quantitative systematic
errors, but alter the qualitative behaviour of the system. Because of the finite number
of lattice sites available, the Pauli principle leads to a saturation density of nsat

B

= 2N
f

baryons per site, which does not exist in the continuum. Once lattice saturation is reached,
a further increase of chemical potential makes no sense. Thus lattices have to be made
finer before higher densities can be addressed. On finer lattices the saturation density in
physical units grows and in the continuum limit moves to infinity. This lattice artefact
starts to make itself felt already quite early, as is also apparent in the numerical behaviour
of the Polyakov loop [8] and related to the half-filling symmetry of the static action [15].

The difficulty is also reflected in Fig. 3 (right), where the slopes of the continuum ap-
proach rapidly increase with growing chemical potential, such that a continuum extra-
polation is increasingly difficult to control. The figure shows results from our previous
simulations obtained with the 4 action at two values of µ > µ

c

, i.e. beyond the nuclear
onset transition, and compares it with the new 8 action. The baryon density just about
reaches the domain with leading cut-off effects linear in a, which are expected for standard
Wilson fermions. In this context it should prove particularly valuable to work with an im-
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Continuum approach  ~a  as expected for Wilson fermions  

Cut-off effects grow rapidly beyond onset transition

Finer lattice necessary for larger density to avoid saturation 



Cold and dense, interacting:  onset to nuclear matter

Onset transition to cold nuclear matter 

... with very heavy quarks

continuum limit with 5-7 lattice spacings per point
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Nuclear physics

~100 years old, still no fundamental description, Bethe-Weizsäcker droplet model: 

Z

N

Binding energy per nucleon

QFT descriptions: Fetter-Walecka model, Skyrme model, ...

Ab initio Hamiltonian descriptions

New computational avenues in LQCD:

CPU GPU

Here, very old-fashioned approach: BPU!

Biological Processing Unit!

Large densities?     Effective theories!

The effective lattice theory approach I

Two-step treatment: 

1. Calculate effective theory analytically 
II. Simulate effective theory  

Step I.:  split temporal and spatial link integrations:     

Spatial integration after analytic strong coupling and hopping expansion
                                                                           

Result: 3d spin model of QCD, infinitely many couplings, ordered parametrically

Truncation: valid for heavy quarks, sufficiently close to the continuum

Step II:  sign problem milder: Monte Carlo, complex Langevin

Numerical simulations in 3d without fermion matrix inversion,  very cheap! 

Z =
�

DU0DUi det Q eSg[U ] �
�

DU0e
�Seff [U0] =

�
DL e�Seff [L]

The equation of state for nuclear matter

m� = 20 GeV, T = 10 MeV, a = 0.17 fm

Effect of binding between baryons: 
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Transition is smooth crossover: 

Binding energy per nucleon: � =
µc �mB

mB
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Seff � �num, n + m = 4

Lighter quarks:  first order + endpoint!
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Experimentally established phase diagram:

B

Nuclear liquid gas transition with critical end point

Tc  ~ Nuclear binding energy

Nuclear matter

decreases with growing quark mass



The effective lattice theory approach II

Two-step treatment: 

1. Calculate effective theory analytically 
II. Simulate effective theory  

Step I.:  integrate over gauge links in strong coupling expansion, leave fermions  

                                                                           

Result: 4d “polymer” model of QCD (hadronic degrees of freedom!)
Valid for all quark masses (also m=0!), at strong coupling (very coarse lattices)                                    

Step II:  sign problem milder: Monte Carlo with worm algorithm

Numerical simulations without fermion matrix inversion,  very cheap! 

de Forcrand, Langelage, O.P., Unger
Phys.Rev.Lett. 113 (2014) 152002
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(staggered)



From strong coupling limit to finite coupling

QCD phase diagram from the lattice at strong coupling Wolfgang Unger
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Figure 1: The Phase diagram in the strong coupling limit (left), as measured in a Monte Carlo
simulation, compared to the standard expectation of the continuum QCD phase diagram (right).
Both diagrams are for massless quarks.

the Grassmann constraint:

nx + Â
n̂=±0̂,...,±d̂

✓
kn̂(x)+

Nc

2
|`n̂(x)|

◆
= 3. (2.2)

This constraint restricts the number of admissible configurations {kb,nx,`} in Eq. (2.1) such that
mesonic degrees of freedom always add up to 3 and baryons form self-avoiding loops not in contact
with the mesons. The weight w(`,µ) and sign s(`) = ±1 for an oriented baryonic loop ` depend
on the loop geometry. The partition function Eq. (2.1) describes effectively only one quark flavor,
which however corresponds to four flavors in the continuum (see Sec. 4). It is valid for any quark
mass. We will however restrict here to the theoretically most interesting case of massless quarks,
mq = 0. In fact, in this representation the chiral limit is very cheap to study via Monte Carlo,
in contrast to conventional determinant-based lattice QCD where the chiral limit is prohibitively
expensive.

For staggered fermions in the strong coupling limit, there is a remnant of the chiral symmetry
U55(1) ⇢ SUL(Nf )⇥ SUR(Nf ). This symmetry is spontaneously broken at T = 0 and is restored
at some critical temperature Tc with the chiral condensate hȳyi being the order parameter of this
transition. As shown in Fig. 1 (left), we find that this transition is of second order. This is analogous
to the standard expectation in continuum QCD with Nf = 2 massless quarks, where the transition is
also believed to be of second order. Moreover, both for our numeric finding at strong coupling and
for the expectation in the continuum, the transition turns into first order as the chemical potential is
increased. Thus the first order line ends in a tricritical point, which is the massless analogue of the
chiral critical endpoint sought for in heavy ion collisions.

In fact, at strong coupling, the zero temperature nuclear transition at µB,c ' mB is intimately
connected to the chiral transition, and they coincide as long as the transition is first order. The
reason for this is the saturation on the lattice due to the Pauli principle: in the nuclear matter

3

QCD phase diagram from the lattice at strong coupling Wolfgang Unger

 0
 0.2

 0.4
 0.6

 0.8
 1

 1.2
 1.4

 1.6

 0  0.5  1  1.5  2  2.5  3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

T [lat. units]

2nd order

chiral
tricritical
point

1st order

nuclear
    CEP

β

µB [lat. units]

T [lat. units]

Figure 3: Phase boundary in the µ-T plane extended to finite b . The backplane corresponds to the
strong coupling limit b = 0. The second order phase boundary is lowered by increasing b . We
do not observe a shift of the chiral tricritical point. However, the nuclear critical endpoint (CEP),
determined from the baryon density, moves down along the first order line (extrapolated to T = 0
to guide the eye) as b is increased.

1. Baryons are point-like in the strong coupling limit, the lattice spacing is too coarse to re-
solve the internal structure of the baryon. Including the gauge correction, baryons become
extended objects, spread over one lattice spacing.

2. The nuclear potential in the strong coupling limit is of entropic nature, where two static
baryons interact merely by the modification of the pion bath. With the leading order gauge
correction, pion exchange is possible as the Grassmann constraint is relaxed: on excited
plaquettes, the degrees of freedom in Eq. (2.2) add up to 4 instead of 3.

These features will have an impact on the phase boundary. In Fig. 3, the effect of the gauge
corrections is shown. We find that the second order phase boundary is lowered, as expected because
the critical temperature in lattice units drops as the lattice spacing is decreased with increasing b .
However, we find the chiral tricritical point and the first order transition to be invariant under the
O(b ) corrections. We want to stress that there are actually two end points, which split due to
the gauge corrections: the second order end point of the nuclear liquid-gas transition is traced by
looking at the nuclear density as an order parameter. We expect the nuclear and the chiral first
order transition to split, such that at T = 0 there are three different phases instead of two phases (as

5
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The effective lattice theory approach II

Two-step treatment: 

1. Calculate effective theory analytically 
II. Simulate effective theory  

Step I.:  integrate over gauge links in strong coupling expansion, leave fermions  

                                                                           

Result: 4d “polymer” model of QCD (hadronic degrees of freedom!)
Valid for all quark masses (also m=0!), at strong coupling (very coarse lattices)                                    

Step II:  sign problem milder: Monte Carlo with worm algorithm

Numerical simulations without fermion matrix inversion,  very cheap! 

de Forcrand, Langelage, O.P., Unger
Phys.Rev.Lett. 113 (2014) 152002
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Strong coupling limit: � = 0 Including leading gauge corrections

Unrooted staggered fermions: Nf=4

Nucl. and chiral transition coincide!

Chiral limit:  m=0



Summary Lecture II:

QCD thermal transition at physical point and zero density is crossover

Order of QCD transition in chiral limit not yet known

Sign problem prohibits Monte Carlo simulations at finite density 

The QCD crossover gets even softer for small baryon density

Transition to cold baryon matter seen for:  
effective theory for heavy quarks near continuum,  
effective theory for massless quarks far from the continuum


