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Lecture I: QCD at finite temperature and density

Motivation: Why thermal QCD?

 The continuum formulation

The lattice formulation

Phase transitions and phase diagrams



Why thermal QCD?

chiral condensate , Cooper pairs
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Chiral symmetry:          broken                                        (nearly) restored



Thermal QCD in nature

The Early Universe:

Physics of Non-Abelian

Plasmas
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Physics of early universe:

non-abelian plasma physics
(          )

          QCD is prototype

µB ≈ 0



What are compact stars made of?

Radius  ~ 10-12 km
Mass    ~  1.2-2.2 x Solar Mass

�0 : nuclear density



Thermal QCD in experimentThis is how experiment probes the phase transition & QGP....

heavy ion collision experiments at RHIC, LHC, GSI....



QCD phase diagram: theorist’s view (science fiction)
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~170 MeV

~1 GeV?

Expectation based on simplifying models (NJL, linear sigma model, random matrix models, ...)

Check this from first principles QCD! 

Until 2001: no finite density lattice calculations, sign problem!
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Less conservative views….
Others with more (and non-chiral) critical points...  

                                    NJL with vector interactions,               Zhang, Kunihiro, Fukushima 09
                                    Ginzburg-Landau approach                  Baym et al. 06
                                    for quark condensates, 
                                    beyond mean field methods...               Ferroni, Koch, Pinto 10        
                                                    ...    

+ inhomogeneous phases,  quarkyonic phases,….  you name it!



The QCD phase diagram established by experiment:
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Unsolved from QCD: nuclear matter
Nuclear physics

~100 years old, still no fundamental description, Bethe-Weizsäcker droplet model: 

Z

N

Binding energy per nucleon

QFT descriptions: Fetter-Walecka model, Skyrme model, ...

Ab initio Hamiltonian descriptions



Statistical mechanics reminder

Density matrix,
Partition function:

Thermodynamics:

Densities:

System of particles in volume V with conserved number operators,
in thermal contact with heatbath at temperature T

Canonical ensemble: exchange of energy with bath, particle number fixed

Grand canonical ensemble: exchange of energy and particles with the bath

Ni, i = 1, 2, . . .



QCD at finite temperature and density

Sg[Aµ] =

1/T
∫

0

dx0

∫

V

d3
x

1

2
Tr FµνFµν

Sf [ψ̄, ψ, Aµ] =

1/T
∫

0

dx0

∫

V

d3
x

Nf
∑

f=1

ψ̄f

(

γµDµ + mf
q − µγ0

)

ψf

Grand canonical partition function

Action

Parameters g2, mu ∼ 3MeV, md ∼ 6MeV, ms ∼ 120MeV, V, T, µ = µB/3

Z(V, T, µ; g, Nf , mf ) = Tr(e−(H−µQ)/T) =

∫
DADψ̄ Dψ e−Sg[Aµ]e−Sf [ψ̄,ψ.Aµ]

quark number Nf
q = ψ̄fγ0ψf

Nf = 2 + 1 sufficient up to T~300-400 MeV



Symmetries of the QCD Lagrangian

Local              transformationsSU(3)c ��
c(x) =

�
ei�a(x)T a

⇥

cc�
�c�(x)

a = 1, . . . N2
c � 1

For degenerate quarks,  
global              transformations

mf1 = . . . = mfnf

SU(nf )
��

f (x) =
�
ei�aT a

⇥

ff �
�f �(x)

a = 1, . . . n2
f � 1

Global          transformations:U(1) ��(x) = ei� �(x)

For massless quarks,                              =0:
 
Global axial              transformations

mf1 = . . . = mfnf

SU(nf ) ��
f (x) =

�
ei⇥aT a�5

⇥

ff �
�f �(x)

a = 1, . . . n2
f � 1

Global axial         transformations,  
anomalous, broken by quantum effects

U(1) ��(x) = ei⇥�5 �(x)



Symmetries for parameter values realised by nature

SU(3)c gauge symmetry, exact, only colour singlets observable

U(1)B baryon number, exact

SU(2)isospin approximate, O(few %), mu � md

SU(3)flavour approximate, O(few 10 %),                                    (quark model!)mu ⇥ md � ms

SU(2)axial approximate mu � md � 0

approximate chiral symmetry  
= isospin+axial flavour symmetry combined

mu � md � 0SU(2)L � SU(2)R



Perturbation theory at finite T

Split action into free (Gaussian) and interacting part, expand in interactions

Renormalisation:  Whatever renormalisation is necessary and sufficient at   
T=0 is also necessary and sufficient at finite temperature and density

UV behaviour:  microscopic physics, depends on details of interactions

         :  macroscopic parameters, affect IR behaviour of the theory



Difference to T=0: compact, periodic time direction!

Fourier expansion of the fields:   discrete Matsubara frequencies

Thermodynamic limit:

Modified Feynman rules:

Loop integration:Inverse (bosonic) free propagator:

��1 =



IR-structure: divergences and mass scales

Inverse (bosonic) free propagator:

effective thermal mass ~T

n=0 mode: propagator of a 3d theory, 
divergent for m=0!

Corrections:

electric or Debye screening 
mass

mLO
M = 0, mM � g2T from 2-loop magnetic screening 

mass
�Ai(x)Ai(y)⇥

�A0(x)A0(y)⇥

0-mode sector of 4d QCD at finite T contains 3d Yang-Mills theory with 
Confining! Doom for perturbation theory....

g2
3 � g2T



Salvation comes as a lattice...



Lattice formulation of Euclidean QFT’s

(infinite-dimensional) integration measure well defined on discrete system!

         finite numbers on finite lattice!

10

Lattice formulation of QFTs

the (infinite-dimensional) integration measure D! receives a con-

crete meaning by passing to the

lattice discretization

continuous (Euclidean) R4 → discretized space-time = lattice

typically chosen hypercubic : x= {xµ|µ= 1, . . . ,4} ∈ aZ4

a : lattice spacing (or constant)

obvious equivalences (still sticking to the notion of a scalar field)

• !(x) : living on the lattice sites only

• partial derivatives→ finite differences:

"µ! → △(∗)
µ !(x) =

±!(x±aµ̂)∓!(x)

a

⇒ forward & backward lattice derivatives
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• integrals→ sums
Z

d4x → !
x

a4

⇒ for instance, the action of discretized "4 theory reads

S=!
x

a4

{
1

2

4

!
µ=1

[△µ"(x)]
2+

m20
2
"2(x)+

g0

4!
"4(x)

}

• functional integral measure

D"→#
x

d"(x) ≡ D["]

runs over the lattice points x only, i.e. we have a discrete set of

integration variables (that is even finite if the lattice is)

⇒ suited for numerical evaluation by Monte Carlo methods

• the finite spacing a also gives rise to a momentum-space cutoff

Fourier transform : "̃(p) =!
x

a4 e−ipx"(x) periodic

⇒ restrict momenta to Brillouin zone −$/a< pµ≤ $/a

inverse Fourier transform:

"(x) =
Z $/a

−$/a

d4p

(2$)4
e ipx "̃(p) ⇔ ultraviolet cutoff |pµ|≤

$

a

⇒ field theories on a lattice are naturally regularized

in principle, a lattice calculation would now contain 3 basic steps

1. given: a (hypercubic) lattice of extensions L1 = L2 = L3 ≡ L in

space and L4 ≡ Lt in (Euclidean) time, finite volume V = L3Lt

⇒ coordinates xµ = anµ , nµ = 0,1,2, . . .Lµ−1
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4

h

Rotation symmetry:



SU(N) gauge theory on a lattice

Lattice Formulation: Variables

Euclidean space-time lattice L3 × Nt, lattice spacing a,

V = (aL)3, finite T: T = 1
aNt

Fermion fields: on sites, ψ(x)

Gauge fields: cf. continuum parallel transport

ψ(y) = P exp
[

ig
∫ y

x dzµAµ(z)
]

ψ(x)

Links=parallel transp. by a: Uµ(x) = e−iagAµ(x)

Gauge trafo: ψg(x) = g(x)ψ(x), Ug
µ(x) = g(x)Uµ(x)g†(x+ µ̂)

Two kinds of gauge invariant objects ⇒observables

4

Covariant derivative:

Lattice Formulation: Actions

Discrete derivative: f ′(x) = a−1(f(x + a) − f(x)) + O(a)

Dµψ(x) → a−1 (Uµ(x)ψ(x + µ̂) − ψ(x)) + O(a)

Gauge sector:

smallest loop: “plaquette”

✲ ✻

✛
❄
!

→ 1 + ia2gFµν −
a4g2

2
FµνF

µν + O(a6) + . . .

Wilson action

Sg =

∫

d4x FµνFµν →
6

g2

∑

x,µ<ν

ReTr
1

3
(1 − ✲ ✻

✛
❄
!

)

Fermion sector, naive action: fermions ≡ problems

Sf =

∫

d4x ψ̄(D/ + mq)ψ →
∑

x

ψ̄(x)Mxy[U ]ψ(y)

16 flavors (doublers) in chiral limit ⇒Nielsen-Ninomiya theorem

no local, chiral fermion action without doublers

⇒different discretizations, different problems:

Wilson, staggered, domain wall, overlap....

6

16

solution:

take a path C from y to x and define a parallel transporter along C

as the integral

U (x,y;C ) ≡ Pexp

{
ig0

Z x

y

Aaµ(z)Tadz
µ

}

P : path ordering of non-commuting Aaµ(z)Ta factors

designed to map vectors along curves (→ differential geometry)

⇒ transforms as desired and satisfies e.g. the decomposition rule

U (x,y;C ) =U (x,u;C1) ·U (u,y;C2) for C = C2 ◦C1

x

C

y

Lattice gauge fields

transfer the concept of parallel transporters to the lattice situation,

where products of fields at neighbouring points — separated by a—

are present

ensure gauge invariance ⇔ take smallest parallel transporters

link b= ⟨x+aµ̂,x⟩ ≡ (x,µ)

x y

a
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Two kinds of gauge invariant objects              observables

Discretisation respects gauge invariance, independent of a!

Lattice Formulation: Actions

Discrete derivative: f ′(x) = a−1(f(x + a) − f(x)) + O(a)

Dµψ(x) → a−1 (Uµ(x)ψ(x + µ̂) − ψ(x)) + O(a)

Gauge sector:

smallest loop: “plaquette”

✲ ✻

✛
❄
!

→ 1 + ia2gFµν −
a4g2

2
FµνF

µν + O(a6) + . . .

Wilson action

Sg =

∫

d4x FµνFµν →
6

g2

∑

x,µ<ν

ReTr
1

3
(1 − ✲ ✻

✛
❄
!

)

Fermion sector, naive action: fermions ≡ problems

Sf =

∫

d4x ψ̄(D/ + mq)ψ →
∑

x

ψ̄(x)Mxy[U ]ψ(y)

16 flavors (doublers) in chiral limit ⇒Nielsen-Ninomiya theorem

no local, chiral fermion action without doublers

⇒different discretizations, different problems:

Wilson, staggered, domain wall, overlap....

6
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(b)(a)

U  (x,y)x

U  (x,y)y yU  (x+4,y)

xU  (x,y+3)

17

link variable

U(b) ≡U(x,µ) ∈ SU(N) : residing on ⟨x+aµ̂,x⟩

⇒U(x,µ) replaces the gauge field Aaµ(x), it transforms as

U(x,µ) → !−1(x+aµ̂)U(x,µ)!(x)

⇒ locally gauge invariant kinetic term in the lattice action

"
x,µ

#(x+aµ̂) ·U(x,µ)#(x)

moreover, the covariant lattice (forward) derivative

$µ#(x) =
1

a

[
U−1(x,µ)#(x+aµ̂)−#(x)

]

replaces the ordinary one,U−1(x,µ) =U†(x,µ) =U(x+aµ̂,−µ)

implications

• other intersting gauge invariant expressions on the lattice:

Tr {U(b1)U(b2) · · ·U(bn)} along closed C = bn ◦ · · ·b2 ◦b1

• in particular: plaquette = most elementary closed path

x x   a+ µ

+x   aν

U(p) ≡Up(x) ≡U†(x,%)U†(x+a%̂,µ)U(x+aµ̂,%)U(x,µ)

transforms adjoint:

U
g
C(x) = g(x)UC(x)g−1(x)

TrUg
C = TrUC(x)



Wilson action:

18

• the plaquette variable U(p) is the central object, out of which

K. Wilson derived his proposal for the lattice Yang-Mills action:

Sg[U ] = !"
p

{
1−

1

N
Re [TrU(p) ]

}

"
p

="
x

"
1≤µ<#≤4

⇒ Sg[U ] is gauge invariant and purely real by construction

! is fixed by requiring the standard Yang-Mills action to be re-

covered in the (naive) continuum limit a→ 0

U(x,µ) ≡ exp
{
ig0aA

b
µ(x)Tb

}

⇒ Sg[U ] =
!g20
8N
"
x

a4Fb
µ#(x)F

b
µ#(x) + O(a5)

⇒ !=
2N

g20

after using once more the Baker-Campbell-Hausdorff formula

(note: Aµ(x) = −ig0Abµ(x)Tb = Lie algebra valued vector field)

• for the quantum theory:→ perform functional integrals

⟨O⟩ =
1

Z

Z

D[U ] O e−Sg[U ] Z =
Z

D[U ] e−Sg[U ]

D[U ] =$
b

dU(b)

with dU(b) the invariant integration measure on the group man-

ifold (Haar measure) obeying for any compact group G ∋U,V :
Z

G

f (U)dU =
Z

G

f (VU)dU =
Z

G

f (UV)dU
Z

G

dU = 1

• remark: since on the lattice the volume of the gauge group is
unity, no ill defined gauge factor has to be devided out

⇒ no gauge fixing and introduction of Fadeev-Popov ghosts neces-

sary, except for purpose of perturbation theory
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• remark: since on the lattice the volume of the gauge group is
unity, no ill defined gauge factor has to be devided out

⇒ no gauge fixing and introduction of Fadeev-Popov ghosts neces-
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lattice gauge coupling

reproduces SU(N) Yang-Mills in continuum limit; for finite a not unique!

action gauge-invariant for any lattice spacing

real, positive



Adding fermions

Pick a suitable fermion action:

Full QCD partition function:

Wilson fermions:



Fixes: pick your poison

Wilson fermions
add irrelevant ops. (going away in CL) to make doublers very massive
breaks chiral symmetry for non-zero a 

staggered (Kogut-Susskind) fermions
distribute spinor components on different sites, reduces to 4 flavours
take 4th root of determinant to get to one flavour, keeps reduced chiral symm.
non-local operation, have to take CL before chiral limit, mixing of spin, flavour

domain wall fermions
introduce 5th dimension, fermions massive in that dim. and chiral in the other
expensive

overlap fermions
non-local formulation with modified chiral symmetry even for finite a
two orders of magnitude more expensive than Wilson



Monte Carlo evaluation

Systematics:  finite V,a effects

QCD on the lattice

Euclidean space-time lattice L3 × Nt, lattice spacing a, V = (aL)3, T = 1
aNt

System with finite number of d.o.f, partition function:

Z =

∫

DU detM [U ] e−Sg[U ]

gauge fields U , fermions−→ detM [U ],⇒perform U -integration numerically

for hadron withmH , ξ ∼ m−1
H

a ≪ ξ ≪ aL !

←→
ξ

⇒e.g. 304 ∼ 106 lattice points

every point⇒4U ’s, everyU ∈ SU(3)⇒8 independent components ⇒108-dimensional integral!

Light fermions expensive:

detM [U ] = λ1[U ] · λ2[U ] · λ3[U ] . . . , cost(detM) ∼
1

mn
q

, n > 2

Non-local: every eigenvalue depends on every link

Systematic errors:

• finite volume V

• finite lattice spacing a

• fermions break chiral symmetry, introduce unwanted species,...only ok as a → 0

• accuracy of inversion algorithms

⇒Extrapolate to thermodynamic and continuum limit

Directly calculable: particle masses, decay constants, equilibrium thermodynamics

Euclidean partition function:
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System with finite number of d.o.f, partition function:

Z =

∫

DU detM [U ] e−Sg[U ]

gauge fields U , fermions−→ detM [U ],⇒perform U -integration numerically

for hadron withmH , ξ ∼ m−1
H

a ≪ ξ ≪ aL !

←→
ξ

⇒e.g. 304 ∼ 106 lattice points

every point⇒4U ’s, everyU ∈ SU(3)⇒8 independent components ⇒108-dimensional integral!

Light fermions expensive:

detM [U ] = λ1[U ] · λ2[U ] · λ3[U ] . . . , cost(detM) ∼
1

mn
q

, n > 2

Non-local: every eigenvalue depends on every link

Systematic errors:

• finite volume V

• finite lattice spacing a

• fermions break chiral symmetry, introduce unwanted species,...only ok as a → 0

• accuracy of inversion algorithms

⇒Extrapolate to thermodynamic and continuum limit

Monte Carlo evaluation

Z =

∫

Dψ̄DψDU e−Sg[U ]−Sf [U,ψ̄,ψ] =

∫

DU
∏

f

(detM) e−Sg[U ]

very peaked integrand!

⇒Monte Carlo integration, importance sampling

Markov process: ensemble

{U1} → {U2} → {U3} . . . {UN}

“→ ”: updating algorithm with associated probability,

ergodic

detM [U ]e−S[U ]

U

⟨O⟩ = Z−1

∫

DU detMO e−Sg[U ] ≈
1

N

N
∑

n=1

(detMO)[U ]

⇒N “measurements” ofO ⇒statistical error∼ 1/
√

N

5



Continuum limit 

Fixed scale approach: 

 For a given lattice spacing,       controls temperature;  

 Allows only discrete temperatures, too large for many applications; 

 Continuum limit requires series of lattice spacings

Fixed       approach:

For a given      , vary the lattice spacing via        ;    
      

Allows continuous temperatures, but each T value has different cut-off!  

Continuum limit requires series of 

N� �(a)

N�

N�

N�



Quenched limit of QCD and Z(N) symmetry

Infinite quark masses (omitting flavour index)

Static quark propagator: �⇤a
�(⇥,x)⇤̄b

⇥(0,x)⇥ = ��⇥ e�m⇤
�
Tei

R �
0 d⇤A0(⇤,x)

⇥

ab

On the finite T lattice:           Polyakov loop

Static QCD: 
(one flavour)

m�⇥

Gauge transformations:

Periodic b.c.: 

Action gauge invariant:

Sstatic[U ] = Sg[U ] +
⇤

x

�
e�mN� TrL(x) + e�mN� TrL†(x)

⇥

m�⇥�⇥ Sg[U ]



Topologically non-trivial gauge transformations:

Modified b.c. for trafo matrix:

global “twist”

needs to be periodic for correct finite T physics! 

Sg[Ug�
] = Sg[U ] invariant:  centre symmetry of pure gauge action 

Centre of SU(N) 

Note: this is not a symmetry of    , but of      !  H Hz

Requires compact time direction with periodic b.c. ; finite T!



Polyakov loop picks up a phase under centre transformations

Partition function in the presence of one static quark: 

gives free energy difference of thermal YM-system with and without a static quark 

Small T:                    because of confinement

Large T:                    

Thus Polyakov loop is non-analytic function of T                phase transition!

Deconfinement phase transition in YM: spontaneous breaking of Z(N) symmetry



Now add dynamical quarks: 

needs to be anti-periodic for correct finite T physics! h = 1 only

Centre symmetry explicitly broken by dynamical quarks! 

for all T!             

Confined and deconfined region analytically connected (only one phase!) 
No need for a phase transition!



Physical QCD

.....breaks both chiral and Z(3) symmetry explicitly 

.....but displays confinement and very light pions

no order parameter           no phase transition necessary!

if there is a p.t.:        are there two distinct transitions?

if there is just one p.t.:    is it related to chiral or Z(3) dynamics?   

if there is no phase transition:   how do the properties of matter change?

T
deconf
c < T

chiral
c



Phase transitions and phase diagrams

• phase transitions: singularities in free energy F ⇒zeroes in partition function Z

only in thermodynamic limit! ( Lee, Yang)

• first order: jump in order parameter, latent heat, phase coexistence

• second order: diverging correlation length

• crossover smooth, analytic transition

Example 1: water

order parameter: density ρ

Phase transitions and phase diagrams



Example 2: ferromagnetism

M/V

T_c

H=0

H>0

disordered

ordered

T

Ising model, Z(2) symmetry

spins with nearest neighbour interaction

E = −
∑

ij ϵi,jsisj − H
∑

i si

Universality of 2.o. phase transitions, critical exponents:

Correlation length diverges: microscopic dynamics unimportant, only global symmetries

specific heat C ∼ |t|−α, magnetizationM ∼ |t|β, . . . t = T−Tc

Tc

exponents the same for all systems within one universality class!

Critical endpoint of water shows 3d Ising universality, Z(2)!



Scaling analyses employing universality

Effective Hamiltonian analogous to Ising model:

E energy-like M magnetisation-like
� temperature-like h magnetic field-like

Extensive operators:

Parameters:

At a critical point, the singular part of the free energy has the scaling form:

dim.less scale factor

Relation between scaling dimensions and 
critical exponents:



How to map parameters and fields of QCD to those of the Ising model?

For many applications not necessary...

E(Sp, ⌅̄⌅, ...), M(Sp, ⌅̄⌅, ...), ⇤(�,mf , µf ), h(�,mf , µf )

��̄�(E,M) mix of energy and magnetic susceptibilities, 
in thermodynamic limit the more divergent one dominates!

Symmetry groups relevant for QCD:  Z(2), O(4), O(2)

�/⇥

First order scaling:

Analytic crossover:          no divergence, susceptibilities have finite thermodynamic limit



Very difficult!

Monte Carlo history,
plaquette near phase boundary 

 Distribution:

 0.49
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 0  1000  2000  3000  4000  5000  6000  7000  8000

Finding a phase transition in QCD: fluctuations



Summary Lecture I

QCD at finite temperature and density important for many fields of physics

Perturbation theory for finite T QFT limited, infrared modes always confining!

Solution by Monte Carlo simulation of lattice QCD at finite T

Phase transitions: finite size scaling analyses 


