Beyond SM Sensitivity with KATRIN

Nicholas Steinbrink

RTG 2149 Retreat 2016, Körbecke

KATRIN

Because Size Does Matter

http://katrin.kit.edu

- Worlds strongest Tritium source (10¹¹ Bq)
- Worlds sharpest MAC-E-Filter (1 eV)
- Worlds best neutrino mass sensitivity (0.2 eV)

Neutrino Mass

Seesaw (1 generation):

$$\mathcal{L}_{\text{mass},\nu} = -\frac{1}{2} (\bar{\nu}_L, (\bar{\nu}_R)^C) \begin{pmatrix} m_L & m_D \\ m_D & m_R \end{pmatrix} \begin{pmatrix} (\nu_L)^C \\ \nu_R \end{pmatrix}$$

• Set $m_L = 0$ (Seesaw Type I), diagonalisation

$$m_l = \frac{m_D^2}{m_R} \qquad m_h = m_R$$

In reality more complex...

The truth is out there...

- Increase neutrino mass sensitivity
- Find keV sterile neutrinos
- Find right-handed currents and eV sterile neutrinos

The truth is out there...

- Increase neutrino mass sensitivity
- Find keV sterile neutrinos
- Find right-handed currents and eV sterile neutrinos

My job: simulate!

Pars Prima

Increase Neutrino Mass Sensitivity

Increase Neutrino Mass Sensitivity

Seesaw (1 generation):

$$\mathcal{L}_{\text{mass},\nu} = -\frac{1}{2} (\bar{\nu}_L, (\bar{\nu}_R)^C) \begin{pmatrix} m_L & m_D \\ m_D & m_R \end{pmatrix} \begin{pmatrix} (\nu_L)^C \\ \nu_R \end{pmatrix}$$

Set m_L = 0 (Seesaw Type I), diagonalisation

$$m_l = \frac{m_D^2}{m_R} \qquad m_h = m_R$$

In reality more complex...

Increase Neutrino Mass Sensitivity

Seesaw (1 generation):

$$\mathcal{L}_{\text{mass},\nu} = -\frac{1}{2} (\bar{\nu}_L, (\bar{\nu}_R)^C) \begin{pmatrix} m_L & m_D \\ m_D & m_R \end{pmatrix} \begin{pmatrix} (\nu_L)^C \\ \nu_R \end{pmatrix}$$

• Set $m_L = 0$ (Seesaw Type I), diagonalisation

$$m_l = \frac{m_D^2}{m_R} \qquad m_h = m_R$$

In reality more complex...

Increase Neutrino Mass Sensitivity

- Cosmologists: no way, KATRIN!
 - Planck + BAO: m₁ + m₂ + m₃ < 0.23 eV
- Descend into hierarchical region
- Idea: TOF spectroscopy

KATRIN Design Report (2004)

Classic mode: integral

 MAC-E-Filter = high-pass filter, transmits e⁻ above threshold qU ("integrates")

TOF mode: differential

 Given qU, e⁻ TOF spectrum ~ isomorphic to energy spectrum above qU

New Journal of Physics The open access journal for physics

Neutrino mass sensitivity by MAC-E-Filter based time-of-flight spectroscopy with the example of KATRIN

Nicholas Steinbrink^{1,3}, Volker Hannen¹, Eric L Martin², R G Hamish Robertson², Michael Zacher¹ and Christian Weinheimer¹

 ¹ Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Wilhelm Klemm-Strasse 9, D-48149 Münster, Germany
 ² Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA, USA E-mail: n.steinbrink@uni-muenster.de

New Journal of Physics **15** (2013) 113020 (29pp) Received 6 August 2013 Published 11 November 2013 Online at http://www.njp.org/ doi:10.1088/1367-2630/15/11/113020

Online at http://www.njp.org/ doi:10.1088/1367-2630/15/11/113020

Results

- Ideal TOF mode (tagger): Improvement of statistical sensitivity up to a factor 2!
- Background almost no deal

Pars Secunda

Find keV Sterile Neutrinos

Find keV sterile neutrinos

Seesaw (1 generation):

$$\mathcal{L}_{\text{mass},\nu} = -\frac{1}{2} (\bar{\nu}_L, (\bar{\nu}_R)^C) \begin{pmatrix} m_L & m_D \\ m_D & m_R \end{pmatrix} \begin{pmatrix} (\nu_L)^C \\ \nu_R \end{pmatrix}$$

• Set $m_L = 0$ (Seesaw Type I), diagonalisation

$$m_l = \frac{m_D^2}{m_R} \qquad m_h = m_R$$

In reality more complex...

Find keV sterile neutrinos

Seesaw (1 generation):

$$\mathcal{L}_{\text{mass},\nu} = -\frac{1}{2} (\bar{\nu}_L, (\bar{\nu}_R)^C) \begin{pmatrix} m_L & m_D \\ m_D & m_R \end{pmatrix} \begin{pmatrix} (\nu_L)^C \\ \nu_R \end{pmatrix}$$

• Set $m_L = 0$ (Seesaw Type I), diagonalisation

$$m_l = \frac{m_D^2}{m_R} \qquad m_h = m_R$$

In reality more complex...

Find keV sterile neutrinos

Simulation, Lovell et al. (2012), CIAS Meudon Workshop 2012

Sterile v in KATRIN - searching for the kink

Energy

S. Mertens et al. JCAP02(2015)020

$$R_{tot} = \cos^2 \theta R(m_l) + \sin^2 \theta R(m_h)$$

High rate, tiny signal, many systematics

- Differential detector (S. Mertens et al.)
- TOF (NS)

Sensitivity estimation method

- ~10¹⁸ events expected! Now try classic Monte Carlo...
- Alternative simulation strategy: divide et impera (or some other name)
- Approximate model Φ by splitting

$$\Phi' = c_S \Phi_S + c_B \Phi'_B$$
Signal Background
Realistic Approximated

- Natural solution for sterile neutrinos
 - linear combination
 - coefficient $c_s = sin^2 \theta$ very small

Trick 1: different model but result correct! Importance sampling, ya know?

• Reason: χ^2 width for sin² θ only depends on signal :)

Trick 1: different model but result correct! Importance sampling, ya know?

• Reason: χ^2 width for sin² θ only depends on signal :)

Trick 2: relative variance reduction

Remember: max. 10¹¹ signal events expected. Do we need > 10¹¹ MC samples?

► No. And here's why.

Background

- Always signal PLUS background measured
- Theor. signal variance only needs to be smaller than total variance

Trick 2: relative variance reduction

Remember: max. 10¹¹ signal events expected. Do we need > 10¹¹ MC samples?

► No. And here's why.

Background

- Always signal PLUS background measured
- Theor. signal variance only needs to be smaller than total variance

=> yet another factor $sin^2\theta$ less statistics needed

Trick 2: relative variance reduction

Remember: max. 10¹¹ signal events expected. Do we need > 10¹¹ MC samples?

► No. And here's why.

Background

- Always signal PLUS background measured
- Theor. signal variance only needs to be smaller than total variance

Sensitivity for ideal TOF mode

- Stat + exemplary systematics (inelastic scattering cross section)
- Overall sensitivity improvement by ~ factor 5 (
 25 x more measurement time)
- Significant systematics reduction

Sensitivity for ideal TOF mode

- Stat + exemplary systematics (inelastic scattering cross section)
- Overall sensitivity improvement by ~ factor 5 (
 25 x more measurement time)
- Significant systematics reduction

Pars Tertia

Find right-handed currents and eV sterile neutrinos

Find right-handed currents and eV scale sterile neutrinos

Seesaw (1 generation):

$$\mathcal{L}_{\text{mass},\nu} = -\frac{1}{2} (\bar{\nu}_L, (\bar{\nu}_R)^C) \begin{pmatrix} m_L & m_D \\ m_D & m_R \end{pmatrix} \begin{pmatrix} (\nu_L)^C \\ \nu_R \end{pmatrix}$$

• Set $m_L = 0$ (Seesaw Type I), diagonalisation

$$m_l = \frac{m_D^2}{m_R} \qquad m_h = m_R$$

In reality more complex...

Find right-handed currents and eV scale sterile neutrinos

just a little hint...

- Seesaw (1 generation): $\mathcal{L}_{\text{mass},\nu} = -\frac{1}{2} (\bar{\nu}_L, (\bar{\nu}_R)^C) \begin{pmatrix} m_L & m_D \\ m_D & m_R \end{pmatrix} \begin{pmatrix} (\nu_L)^C \\ \nu_R \end{pmatrix}$
- Set m_L = 0 (Seesaw Type I), diagonalisation

$$m_l = \frac{m_D^2}{m_R} \qquad m_h = m_R$$

In reality more complex...

Right handed currents

- Occur e.g. in left-rightsymmetric models
 SU(2)_L x SU(2)_R x U(1)_{B-L}
- Couple to right handed particles.
- Possible mixing/oscillation
 between W_L and W_R bosons

Beta spectrum in LR symmetric theory

Derived from Barry, Rodejohann et al., JHEP07(2014)081

$$a_{LL} = 1 + 2C \tan \xi \cos \alpha ,$$

$$\begin{aligned} \frac{\mathrm{d}\Gamma}{E} &= \frac{\mathrm{d}\Gamma_h}{\mathrm{d}E} \cdot \left(a_{LL} \sin^2\theta + a_{RR} \cos^2\theta\right) \\ &+ \frac{\mathrm{d}\Gamma_l}{\mathrm{d}E} \cdot \left(a_{LL} \cos^2\theta + a_{RR} \sin^2\theta\right) \\ &+ \frac{\mathrm{d}\Gamma_h}{\mathrm{d}E} \cdot \frac{m_h}{E_0 - E} a_{LR} \cos\theta\sin\theta \\ &+ \frac{\mathrm{d}\Gamma_l}{\mathrm{d}E} \cdot \frac{m_l}{E_0 - E} a_{LR} \cos\theta\sin\theta \end{aligned}$$

$$a_{RR} = \frac{m_{W_L}^4}{m_{W_R}^4} + \tan^2 \xi + 2C \frac{m_{W_L}^2}{m_{W_R}^2} \tan \xi \cos \alpha ,$$

$$a_{LR} = \frac{m_{W_L}^2}{m_{W_R}^2} + C \tan \xi \cos \alpha$$

$$C = \frac{g_V^2 - 3g_A^2}{g_V^2 + 3g_A} \simeq -0.65$$

- θ: active sterile mixing angle
- m_h/_l: sterile/active v mass
- dΓ_{h/l}/dE: raw β spectrum with neutrino mass m_{h/l}, respectively

- ξ : W_L/W_R mixing angle
- α: CP violating phase

Model-independent reparametrization

- Effective mixing $\sin^2\theta_{eff}$ $(a_{LL} + a_{RR}) \sin^2\theta_{eff} = a_{LL} \sin^2\theta + a_{RR} \cos^2\theta$
- Effective right handed coupling strength c_{RH}

$$c_{\rm RH} = \frac{a_{LR}}{a_{LL} + a_{RR}} \, \cos\theta\sin\theta$$

Model-independent
 feature: right-handed
 terms ~ m_v/E-E₀

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}E} = \frac{\mathrm{d}\Gamma'_{h}}{\mathrm{d}E} \cdot \sin^{2}\theta_{\mathrm{eff}} + \frac{\mathrm{d}\Gamma'_{l}}{\mathrm{d}E} \cdot \cos^{2}\theta_{\mathrm{eff}}$$
$$+ c_{\mathrm{RH}} \cdot \left(\frac{\mathrm{d}\Gamma'_{h}}{\mathrm{d}E} \cdot \frac{m_{h}}{E_{0} - E} + \frac{\mathrm{d}\Gamma'_{l}}{\mathrm{d}E} \cdot \frac{m_{l}}{E_{0} - E}\right)$$

eff. RH coupling strength

- Endpoint of β spectrum normalized to β spectrum without v
- RH currents boost or lower region close to endpoint
- Effect much stronger on sterile v

MCMC credible intervals for $c_{RH} = 0$

Corner plot - shows posterior parameter distribution

28

Summary

- Increase neutrino mass sensitivity
 - factor 2 (stat) ideal improvement (≙ 15 x more measurement time)
 - tagger?
- Find keV sterile neutrinos
 - factor 5 (stat + exemplary sys) ideal improvement (
 ⁽⁴⁾ 25 x more measurement time)
 - new estimation method for high background + low signal scenarios
 - measurement method?
- Find right-handed currents and eV sterile neutrinos
 - mass-dependent sensitivity of $C_{\text{RH}} \sim 0.2$ 0.05
 - constraining endpoint?