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Theoretical background

The branching ratio for the leptonic decay of a D(s) meson can be written as
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with q = d, s. By measuring this ratio the product |Vcq| fD(s)
can be determined

experimentally. Combined with a precise theoretical prediction for the leptonic decay
constants fD(s)

, the CKM-matrix elements |Vcd| and |Vcs| can be determined, enabling
the unitarity of the CKM-matrix to be tested in detail.

• In QCD: fD and fDs
given by non-perturbative matrix elements

〈0|qγµγ5c|D(s)(p)〉 = ifD(s) pµ .

•On the lattice: computation of decay constants via stochastic Monte Carlo simulations;
derived from two-point correlation functions of the pseudoscalar density P rs = ψrγ5ψs
and the time component of the axial vector current Ars

0 = ψrγ0γ5ψs, which are
constructed from two mass non-degenerate valence quarks r and s as

f rsPP(x0) = −a3
∑

~x

〈P rs(x)P sr(0)〉 , f rsAP(x0) = −a3
∑

~x

〈Ars
0 (x)P

sr(0)〉

→ determined by Dirac structure at source and sink position and propagators (Green’s
functions of the massive lattice Dirac operator). Propagators Si defined by:

∑

y

(D[U ](x, y) +mi)Si(y, z) = 1δx,z .

Motivation for distance preconditioning

Check numerically if condition
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n(y)− ηt(x)
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is satisfied, withD[U ]: discretized lattice Dirac operator,m0: quark mass in lattice units,
Sn(y): approximate solution of propagator at the n-th iteration of the solver procedu-
re, ηt(x): stochastic noise source located on single time-slice t, rgl: global numerical
accuracy one likes to achieve.

•Problem: time-slices y0 far away from source at x0 exponentially suppressed by factor
∝ exp(−m0y0)

•Contributions to norm negligible for heavy quarks

• Solutions for large time extents |x0 − y0| increasingly inaccurate

◮Proposed improvement: implement Distance Preconditioning [1] via diagonal precon-
ditioning matrix P :

P =















p1 0 · · · · · · 0
0 p2 0 · · · 0
0 0 . . . 0 0
0 · · · 0 . . . 0
0 · · · · · · 0 pT















with pi = exp (α0 · |x0 − y0i|)

P is unity in spin, color and spatial coordinates → time-slices receive different expo-
nential weight (α0 acts as control parameter; optimal: α0 ≈

meff

2 )

• Instead of original system consider preconditioned system:

AS = η with A = (D[U ] +m0) −→ A′S′ = η′ ⇔
(

PAP−1
)

(PS) = (Pη)

⇒ solve for PS and scale with P−1 to obtain original solution S

Computational details & techniques

Numerical tests were performed on several Coordinated Lattice Simulations ensembles
(https://twiki.cern.ch/twiki/bin/view/CLS/WebHome) with tree level impro-
ved Lüscher-Weisz gauge action [2] & Sea of Nf = 2 + 1 (2 light mass degenerate +
strange) non-perturbatively O(a) improved Wilson quarks:

• Simulations performed using openQCD code [3], with overall computational setup
described in detail in [4]

•Using 16 U(1) noise sources ηt(x) = δt,x0 exp(iφ(~x)) located on randomly chosen
time slices t [5] so that solving the Dirac equation once for each noise vector ζrt =
Q−1(m0,r)ηt = a−1(D + m0,r)

−1γ5ηt suffices to estimate the two-point functions
projected onto zero momentum

a3f rsXP(x0) =
∑

~x 〈[ζ
r
t (x0 + t, ~x)]†Γζst (x0 + t, ~x)〉 , Γ = 1/γ0 for X = P/A

•Utilizing so called Γ method developed within ALPHA Collaboration [6]
→ error estimation by explicit determination of autocorrelation functions and times
(more certain error estimates than binning techniques, but requires continuous Monte
Carlo series)

Numerical tests of distance preconditioning

•Unmodified solver setup: locally deflated Schwarz preconditioned general conjugate
residual solver (DFL SAP GCR) for light and strange quarks, conjugate gradient on
the normal equations solver (CGNE) and DFL SAP GCR solver for heavy charm quarks

•Modified solver setup: DFL SAP GCR solver for l,s, distance preconditioned CGNE
solver (CGNE DP) & distance preconditioned SAP GCR solver (SAP GCR DP) for h
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Numerical checks with modified CGNE DP
solver show increased accuracy for solution
of heavy-heavy correlator on sample of CLS
configurations (top left) and derived effec-

tive PS meson mass meff = ln
(

fPP (x0)
fPP (x0+1)

)

(top right). The behaviour of the lo-

cal residual rloc = |AS−ηt|(x0)
|S(x0)|

was tested
for unmodified CGNE, modified CGNE DP
and modified SAP GCR DP solver (right;
SAP GCR DP shown in blue) 0 20 40 60 80 100
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Considerable accuracy gain from unmodified solver setup (50 configurations of CLS
H105r002 ensemble, top left) to modified setup for heavy-strange (with rgl = 10−4,
α0 = 0.7, rloc < 10−10, top right).

Further steps and outlook

Ongoing collaboration with members of RQCD, concerning future aspects of analysis:

•Chiral extrapolation to physical point, two proposed strategies: (2ml+ms) = const.
or ms = const. (lines of constant physics along renormalization group trajectories);
examples for fD (top left) and fD(s)

(top right) borrowed from complementary poster
by Stefan Hofmann (RQCD) presented at ”Lattice 2016” and extracted from

CA(x0, y0) =
fPS
2
A(y0)e

−mPS(x0−y0) , CP (T − y0, y0) =
|A(y0)|

2

2mPS
e−mPS(T−2y0)

with A(y0) = 〈0|P |PS〉 , fPS ·mPS = 〈0|A0|PS〉

•Continuum limit extrapolation (lattice spacing a → 0), extra care has to be taken
with regard to extremely localized charm quark

•Non-perturbative determination of renormalization factors (recently computed within
ALPHA Collaboration)

Goal: Precision measurement of the pseudoscalar decay constants fD and

fD(s)
to further explore already existing tensions between lattice calculations and expe-

rimental findings in the heavy flavour sector.
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