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A difficult problem

Strong and weak interactions are mathematically incorrect.

More precisely: their rigorous construction is one of the most
difficult problems of mathematics:

Clay Mathematics Institute Millennium Prize [106$] Problem

5. Yang-Mills Existence and Mass Gap
Prove that for any compact simple gauge group G, a non-trivial
quantum Yang-Mills theory exists on R4 and has a mass gap
∆ > 0. Existence includes establishing axiomatic properties at
least as strong as those of [Wightman, Osterwalder-Schrader].

There is not even a toy model of a 4D QFT!
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Quantum geometry

Argument due to Wheeler (1950s), made precise by
Doplicher-Fredenhagen-Roberts (1995):

Can we measure, in principle, structures of the size 10−60 cm?

NO!

Need test particles of Compton wavelength λ ≈ 10−60 cm.
These carry enormous energy, so large that they create a
black hole with Schwarzschild horizon� λ!

Lesson from quantum physics:
Never use unobservables!

Our standard QFT violates this principle (admits arbitrarily
small distances).

Need to develop QFT on quantum geometries.
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First success stories

Take toy quantum geometry which admits computation.

Theorem (H. Grosse+RW, 2004)
1 4D scalar fields exist perturbatively in finite volume.
2 At one-loop there is no Landau ghost.

Theorem (Disertori-Gurau-Magnen-Rivasseau, 2006)
Assume Planck volume = volume of universe.
Then the β-function is zero to all orders in perturbation theory.

This is a precious result!

Immediate question: Can we construct the model?
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Inside an atom of geometry
Take toy quantum geometry
Adjust V = volume of universe = volume of Planck cell

Quantum fields are infinite matrices (i.e.∞-many colours).

Theorem (H. Grosse+RW, 2012–2014)
1 The limit V →∞ of the 4D scalar Euclidean QFT is exactly

solvable for any coupling constant > − 1
π .

2 All correlation functions (which depend on continuous
coulour) are expressed in terms of the solution of a fixed
point problem.

3 Diagonal correlation functions have interpretation as
Schwinger functions in position space.

They have full Euclidean symmetry (of standard, not
quantum!) 4D space.
They are blind to colour (confinement / darkness).

Raimar Wulkenhaar (Mathematisches Institut) Mathematical Physics 4



RTG 2149: “Strong and Weak Interactions - from Hadrons to Dark Matter”

Inside an atom of geometry
Take toy quantum geometry
Adjust V = volume of universe = volume of Planck cell

Quantum fields are infinite matrices (i.e.∞-many colours).

Theorem (H. Grosse+RW, 2012–2014)
1 The limit V →∞ of the 4D scalar Euclidean QFT is exactly

solvable for any coupling constant > − 1
π .

2 All correlation functions (which depend on continuous
coulour) are expressed in terms of the solution of a fixed
point problem.

3 Diagonal correlation functions have interpretation as
Schwinger functions in position space.

They have full Euclidean symmetry (of standard, not
quantum!) 4D space.
They are blind to colour (confinement / darkness).

Raimar Wulkenhaar (Mathematisches Institut) Mathematical Physics 4



RTG 2149: “Strong and Weak Interactions - from Hadrons to Dark Matter”

Inside an atom of geometry
Take toy quantum geometry
Adjust V = volume of universe = volume of Planck cell

Quantum fields are infinite matrices (i.e.∞-many colours).

Theorem (H. Grosse+RW, 2012–2014)
1 The limit V →∞ of the 4D scalar Euclidean QFT is exactly

solvable for any coupling constant > − 1
π .

2 All correlation functions (which depend on continuous
coulour) are expressed in terms of the solution of a fixed
point problem.

3 Diagonal correlation functions have interpretation as
Schwinger functions in position space.

They have full Euclidean symmetry (of standard, not
quantum!) 4D space.
They are blind to colour (confinement / darkness).

Raimar Wulkenhaar (Mathematisches Institut) Mathematical Physics 4



RTG 2149: “Strong and Weak Interactions - from Hadrons to Dark Matter”

Work in progress: 1 Time 2 Quantum gravity

1 QFT on space-time arises if Schwinger functions are
reflection-positive.

Overwhelming numerical evidence and partial analytic
proof that 2-point function is reflection positive.

Higher functions and non-triviality with Jan Schlemmer
[SFB 878].

2 This subject has inspired enormous progress with
combinatorial quantum gravity.
Breakthrough by Razvan Gurau (2011), many followers

Jins de Jong [SFB 878]: construction of a quartic
analogue of the Kontsevich model

Carlos Pérez-Sánchez [DAAD]: Schwinger-Dyson
equations in coloured tensor models
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Supplement: Reflection positivity

Gx0 = 4F3(. . . |−x)
G x
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0 dt ρ(t)/(t + x)

at λ = −0.1

x x

λ = −0.1

Right: positive measure ρ supported on ]1,∞[

Left: red curve is auxiliary function Gx0 =
∫∞

0
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Defines diagonal function G x
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Reflection positivity is existence on a blue positive function
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