Prof. Rohlfing Ex 6: Date of issue: 09.01.2020 Deadline: 23.01.2020 **Discussion: 30.01.2020**

Problem 15: (Anti-)Ferromagnetism

[7 points]

An (anti-)ferromagnet can be approximated by the Ising model, i.e. by a Hamiltonian

$$H = -\frac{1}{2} \sum_{i,j=1}^{N} J_{ij} s_i s_j + \mu_B B_0 \sum_{i=1}^{N} s_i$$

with $s_i = \pm 1$ (Spin up/down). The factor $\frac{1}{2}$ compensates double counting of pairs $s_i s_j$ in the double sum. J_{ij} are the exchange integrals between the spins $(J > 0 \leftrightarrow \text{ferromagnetic}, J < 0 \leftrightarrow \text{ferromagnetic})$ antiferromagnetic), and B_0 denotes an external magnetic field (the orientation of the magnetic field defines the quantization axis of the spins). Consider nearest-neighbour interactions only, which may be all equal: $J_{ij} = J$. For simplicity we focus on linear chains / quadratic patterns / cubic lattices, i.e. each spin has 2D neighbours (D = 1, 2, 3: spatial dimension of the problem). Consider the system in the canonical ensemble, in the thermodynamic limit $(N \to \infty)$.

a) Reformulate H by using the mean-field approximation, i.e. by neglecting the last term in the equation

$$s_i s_j = s_i \langle s_j \rangle + \langle s_i \rangle s_j - \langle s_i \rangle \langle s_j \rangle + (s_i - \langle s_i \rangle) (s_j - \langle s_j \rangle)$$
.

- b) Derive (for the ferromagnetic case), within the mean-field approximation, the relationship between the spin expectation value $\langle s \rangle$, the exchange integral J, and the external magnetic field B_0 .
- c) The relationship of a) must be solved self-consistently. Without external field $(B_0 = 0)$ one obtains (below a critical temperature T_C) spontaneous magnetization ($\langle s \rangle \neq 0$: ferromagnetic phase). $\langle s \rangle = 0$ is also a possible solution below T_C , but not stable: Demonstrate its thermodynamical instability by showing that the free energy is higher than for the solution with non-zero $\langle s \rangle$. Show that above T_C one obtains $\langle s \rangle = 0$ (paramagnetic phase). Determine the value of T_C . Determine the spin expectation value for very small temperature $(T \ll T_C)$ and slightly below T_C (i.e. $|T - T_C| \ll T_C$).
- d) Now include the external magnetic field (i.e. $B_0 \neq 0$). Determine (for the limit $B_0 \rightarrow 0$) the magnetic susceptibility slightly above and slightly below T_C .
- e) Now consider the same system for the antiferromagnetic case, i.e. J < 0. Show (again within mean-field approximation) that there exists again a transition temperature T_N (Néel-Temperatur) between an antiferromagnetic and a paramagnetic phase. Determine T_N . Determine the magnetic susceptibility slightly above T_N .

Hint: Since neighbouring spins now tend to be anti-parallel to each other, it is necessary to consider (for the ordered phase) alternating spins on two sublattices (with two spin expectation values $\langle s_1 \rangle$ and $\langle s_2 \rangle$).

Problem 16: Exact solution of the Ising model in one dimension

[3 points]

Consider an Ising model of a one-dimensional chain of N sites with nearest-neighbour interaction, without external magnetic field, i.e.

$$H = -\sum_{i=1}^{N-1} J_i s_i s_{i+1} .$$

For the calculation it is convenient to consider individual values for J_i . At the end, they all take the same value, $J_i = J$.

a) Show (e.g., by complete induction) that the canonical partition sum (Zustandssumme) is given by

$$Z_N = 2^N \left[\cosh \left(\beta J \right) \right]^{N-1} .$$

b) Calculate the expectation value

$$\langle s_j \, s_{j+k} \rangle = \frac{1}{Z_N} \sum_{s_1 = \pm 1} \dots \sum_{s_N = \pm 1} s_j \, s_{j+k} \, e^{-\beta H}$$

and show that

$$\langle s_j s_{j+k} \rangle = [\tanh(\beta H)]^k$$
.

Hints: prove first that

 $(1) s_j \, s_{j+k} \, = \, s_j \, s_{j+1} \, s_{j+1} \, s_{j+2} \, s_{j+2} \dots s_{j+k-1} \, s_{j+k-1} \, s_{j+k} \; ,$

(2)
$$s_j s_{j+1} e^{-\beta H} = \frac{1}{\beta} \frac{\partial}{\partial J_j} e^{-\beta H} .$$

c) $\langle s_j s_{j+k} \rangle$ contains "correlation" between spins j and j+k, but at large distance $(k \to \infty)$ this should vanish and the non-correlated result $\langle s_j \rangle \cdot \langle s_{j+k} \rangle$ must emerge. In the limit of an infinitely long chain, all $\langle s_j \rangle$ should be the same $(=\langle s \rangle)$, which leads to

$$\langle s \rangle^2 = \lim_{k \to \infty} \langle s_j \, s_{j+k} \rangle$$
.

What do you obtain for $\langle s \rangle$ (as a function of T)? Is there a critical temperature between two phases?

d) Compare $\langle s \rangle$ (as a function of T) and the critical temperature (if any) with the mean-field result (e.g., problem 15). Differences would indicate that the mean-field approximation is not exact.

Remark: Also for 2D, an exact solution of the Ising model exists (\rightarrow Onsager solution). In 3D, no exact solution has been found so far.