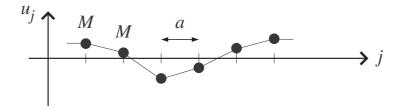
Introduction to Solid State Theory WS 2019/20 **Prof.** Rohlfing Ex 3: Date of issue: 07.11.2019 Deadline: 19.11.2019 Discussion: 26.11.2019

Problem 6: Phonons in stiff layers

Consider a two-dimensional sheet of material or (simpler but analogous) a one-dimensional wire. The system is stiff, i.e. bending costs elastic energy.

A simple linear-chain model might look as follows (for small vertical displacements u_i):



$$V = \sum_{j=-\infty}^{\infty} \alpha \cdot (u_{j+1} + u_{j-1} - 2u_j)^2 .$$

Notice that different from a vibrating string, drum etc. the elastic energy does <u>not</u> result from elongation of the bonds, but from resistance of the material against bending.

- a) Calculate the elastic energy per atom if the system is bent into a ring or coil of Radius $R \gg a$.
- b) Calculate and plot the phonon dispersion $\omega(k)$ and show that $\omega(k) \approx \beta \cdot k^2$ for small k. Calculate β .

Remark: as a consequence of this effect, all two-dimensional systems with stiffness (i.e. resistance against bending) show low-frequency sound waves /phonon modes / ... with quadratic dispersion.

Problem 7: Phonons of a hexagonal lattice

A two-dimensional lattice is described by the vectors

$$\vec{a}_1 = (1, 0) a$$
 and $\vec{a}_2 = (-1, \sqrt{3}) \frac{a}{2}$

The atoms of the lattice interact via central forces with spring constant K between nearest neighbors. The potential energy of this system has the form

$$E^{\rm el} = \frac{1}{2} \sum_{j} \sum_{j'} \frac{K}{2} \left[|\vec{R}_j + \vec{u}_j - \vec{R}_{j'} - \vec{u}_{j'}| - |\vec{R}_j - \vec{R}_{j'}| \right]^2 \,.$$

The sum over j' includes only nearest neighbors of \vec{R}_j . Derivatives with respect to the elongations \vec{u}_j and $\vec{u}_{j'}$ give the force constants. They have for $j \neq j'$ the form

$$\Phi_{\alpha,\alpha'}(\vec{R}_j, \vec{R}_{j'}) = \begin{cases} -K \frac{(\vec{R}_j - \vec{R}_{j'})_{\alpha} (\vec{R}_j - \vec{R}_{j'})_{\alpha'}}{|\vec{R}_j - \vec{R}_{j'}|^2} & \text{for} \quad |\vec{R}_j - \vec{R}_{j'}| = 1 \text{ n. N. distance} \\ 0 & \text{else} \end{cases}$$

The force constants for j = j' can be calculated from the *acoustic sum rule*.

1

[7 points]

[2 points]

- a) Calculate the force constants $\Phi_{\alpha \alpha'}(\vec{R}_j, 0)$ for the six \vec{R}_j of the nearest neighbors of an atom at $\vec{R}_{j'} = \vec{0}$ and then for $\vec{R}_j = \vec{0}$.
- b) Set up the dynamical matrix.
- c) Calculate the vibrational frequencies $\omega(\vec{q})$ at the high-symmetry points

$$\vec{q} = (0,0) \frac{2\pi}{a} \quad (\Gamma \text{ point}) \qquad \qquad \vec{q} = \left(0, \frac{1}{\sqrt{3}}\right) \frac{2\pi}{a} \quad (M \text{ point})$$
$$\vec{q} = \left(\frac{1}{3}, \frac{1}{\sqrt{3}}\right) \frac{2\pi}{a} \quad (K \text{ point}) \qquad \qquad \vec{q} = \left(\frac{2}{3}, 0\right) \frac{2\pi}{a} \quad (K' \text{ point})$$

and along the high-symmetry lines Γ -M, M-K, K- Γ of the Brillouin zone. Plot $\omega(\vec{q})$ along these lines.

Problem 8: Phonons of a linear chain

[3 points]

The Hamilton operator of a linear chain (lattice constant a) with atoms of mass M is given by

$$\hat{H} = \frac{1}{2} \sum_{j} \frac{\hat{P}_{j}^{2}}{M} + \frac{1}{2} K \sum_{j} (u_{j} - u_{j-1})^{2}.$$

Show that \hat{H} can be transformed into a sum of Hamilton operators of decoupled harmonic oscillators by employing

$$u_{j} = \sqrt{\frac{\hbar}{NM}} \sum_{q} \frac{1}{\sqrt{2\omega(q)}} \left(\hat{a}(q) + \hat{a}^{+}(-q)\right) e^{iqR_{j}},$$
$$\hat{P}_{j} = \sqrt{\frac{\hbar M}{N}} \sum_{q} \sqrt{\frac{\omega(q)}{2}} \frac{1}{i} \left(\hat{a}(q) - \hat{a}^{+}(-q)\right) e^{-iqR_{j}}$$

with $R_j = j \cdot a$ and N denotes the number of unit cells in a Born-von Karman supercell.

 $\begin{bmatrix} \text{Here, } \hat{a}(q) = \frac{1}{\sqrt{2M\hbar\omega(q)}} (M\omega(q)x(q) + ip(q)) \text{ and the corresponding } \hat{a}^{+}(q) \text{ are the ladder operators for mode } q, \text{ while } x(q) = \sum_{j=1}^{N} e^{-iqR_j} u_j \text{ and } p(q) = \sum_{j=1}^{N} e^{-iqR_j} p_j \text{ denote the transformation of the displacements to the normal modes.} \end{bmatrix}$

Hint: use the explicit form of the dispersion relation $\omega(q)$ of the linear chain.