## Problem 15: (Anti-)Ferromagnetism

An (anti-)ferromagnet can be approximated by the Ising model, i.e. by a Hamiltonian

$$
H=-\frac{1}{2} \sum_{i, j=1}^{N} J_{i j} s_{i} s_{j}+\mu_{B} B_{0} \sum_{i=1}^{N} s_{i}
$$

with $s_{i}= \pm 1$ (Spin up/down). The factor $\frac{1}{2}$ compensates double counting of pairs $s_{i} s_{j}$ in the double sum. $J_{i j}$ are the exchange integrals between the spins $(J>0 \leftrightarrow$ ferromagnetic, $J<0 \leftrightarrow$ antiferromagnetic), and $B_{0}$ denotes an external magnetic field (the orientation of the magnetic field defines the quantization axis of the spins). Consider nearest-neighbour interactions only, which may be all equal: $J_{i j}=J$. For simplicity we focus on linear chains / quadratic patterns / cubic lattices, i.e. each spin has $2 D$ neighbours ( $D=1,2,3$ : spatial dimension of the problem). Consider the system in the canonical ensemble, in the thermodynamic limit $(N \rightarrow \infty)$.
a) Reformulate $H$ by using the mean-field approximation, i.e. by neglecting the last term in the equation

$$
s_{i} s_{j}=s_{i}\left\langle s_{j}\right\rangle+\left\langle s_{i}\right\rangle s_{j}-\left\langle s_{i}\right\rangle\left\langle s_{j}\right\rangle+\left(s_{i}-\left\langle s_{i}\right\rangle\right)\left(s_{j}-\left\langle s_{j}\right\rangle\right) .
$$

b) Derive (for the ferromagnetic case), within the mean-field approximation, the relationship between the spin expectation value $\langle s\rangle$, the exchange integral $J$, and the external magnetic field $B_{0}$.
c) The relationship of a) must be solved self-consistently. Without external field ( $B_{0}=0$ ) one obtains (below a critical temperature $T_{C}$ ) spontaneous magnetization $(\langle s\rangle \neq 0$ : ferromagnetic phase). $\langle s\rangle=0$ is also a possible solution below $T_{C}$, but not stable: Demonstrate its thermodynamical instability by showing that the free energy is higher than for the solution with non-zero $\langle s\rangle$. Show that above $T_{C}$ one obtains $\langle s\rangle=0$ (paramagnetic phase). Determine the value of $T_{C}$. Determine the spin expectation value for very small temperature ( $T \ll T_{C}$ ) and slightly below $T_{C}$ (i.e. $\left|T-T_{C}\right| \ll T_{C}$ ).
d) Now include the external magnetic field (i.e. $B_{0} \neq 0$ ). Determine (for the limit $B_{0} \rightarrow 0$ ) the magnetic susceptibility slightly above and slightly below $T_{C}$.
e) Now consider the same system for the antiferromagnetic case, i.e. $J<0$. Show (again within mean-field approximation) that there exists again a transition temperature $T_{N}$ (NéelTemperatur) between an antiferromagnetic and a paramagnetic phase. Determine $T_{N}$. Determine the magnetic susceptibility slightly above $T_{N}$.

Hint: Since neighbouring spins now tend to be anti-parallel to each other, it is necessary to consider (for the ordered phase) alternating spins on two sublattices (with two spin expectation values $\left\langle s_{1}\right\rangle$ and $\left.\left\langle s_{2}\right\rangle\right)$.

Consider an Ising model of a one-dimensional chain of $N$ sites with nearest-neighbour interaction, without external magnetic field, i.e.

$$
H=-\sum_{i=1}^{N-1} J_{i} s_{i} s_{i+1} .
$$

For the calculation it is convenient to consider individual values for $J_{i}$. At the end, they all take the same value, $J_{i}=J$.
a) Show (e.g., by complete induction) that the canonical partition sum (Zustandssumme) is given by

$$
Z_{N}=2^{N}[\cosh (\beta J)]^{N-1} .
$$

b) Calculate the expectation value

$$
\left\langle s_{j} s_{j+k}\right\rangle=\frac{1}{Z_{N}} \sum_{s_{1}= \pm 1} \ldots \sum_{s_{N}= \pm 1} s_{j} s_{j+k} \mathrm{e}^{-\beta H}
$$

and show that

$$
\left\langle s_{j} s_{j+k}\right\rangle=[\tanh (\beta H)]^{k} .
$$

Hints: prove first that

$$
\begin{align*}
& s_{j} s_{j+k}=s_{j} s_{j+1} s_{j+1} s_{j+2} s_{j+2} \ldots s_{j+k-1} s_{j+k-1} s_{j+k}  \tag{1}\\
& s_{j} s_{j+1} \mathrm{e}^{-\beta H}=\frac{1}{\beta} \frac{\partial}{\partial J_{j}} \mathrm{e}^{-\beta H} \tag{2}
\end{align*}
$$

c) $\left\langle s_{j} s_{j+k}\right\rangle$ contains „correlation" between spins $j$ and $j+k$, but at large distance $(k \rightarrow \infty)$ this should vanish and the non-correlated result $\left\langle s_{j}\right\rangle \cdot\left\langle s_{j+k}\right\rangle$ must emerge. In the limit of an infinitely long chain, all $\left\langle s_{j}\right\rangle$ should be the same $(=\langle s\rangle)$, which leads to

$$
\langle s\rangle^{2}=\lim _{k \rightarrow \infty}\left\langle s_{j} s_{j+k}\right\rangle .
$$

What do you obtain for $\langle s\rangle$ (as a function of $T$ )? Is there a critical temperature between two phases?
d) Compare $\langle s\rangle$ (as a function of $T$ ) and the critical temperature (if any) with the mean-field result (e.g., problem 15). Differences would indicate that the mean-field approximation is not exact.

Remark: Also for 2D, an exact solution of the Ising model exists ( $\rightarrow$ Onsager solution). In 3D, no exact solution has been found so far.

