Problem 12: Band structure of graphene
(4 points)

Graphene consists of a layer of carbon atoms that are arranged in a hexagonal structure. The lattice vectors are given by $\vec{a}_{1}=(1,0) a$ and $\vec{a}_{2}=(-1, \sqrt{3}) \frac{a}{2}$.

a) Give the primitive vectors \vec{b}_{1} and \vec{b}_{2} of the reciprocal lattice and construct the first Brillouin zone.
b) Use the empirical tight-binding method with one p_{z} orbital per atom to calculate the band structure $E_{n}\left(k_{x}, k_{y}\right)$ of graphen. The hopping term t only acts between nearest neighbours.
c) Plot the band structure for $E_{0}=0 \mathrm{eV}$ and $t=-2.828 \mathrm{eV}$ along the high-symmetry lines from Γ to K and from K to M.

$$
K: \quad\left(\frac{2}{3}, 0\right) \frac{2 \pi}{a}, \quad M: \quad\left(\frac{1}{2}, \frac{-1}{2 \sqrt{3}}\right) \frac{2 \pi}{a} .
$$

d) The figure shows the band structure of graphen resulting from a calculation with s, p_{x}, p_{y} and p_{z} orbitals. Compare your result with this band structure.

e) Show that in the vicinity of K, i. e. for $\vec{k}=K+\vec{q}$ (with small \vec{q}), the tight-binding method yields isotropic bands with linear dispersion $E_{ \pm}(\vec{k}) \approx \pm v \cdot|\vec{q}|$ („Dirac cones of graphene").

The band structure of a linear chain with one s-like orbital per atom is given within the framework of the empirical tight-binding method by $E_{k}=E_{0}+2 t \cos (k a)$. Calculate the density of states $N(E)=\sum_{k} \delta\left(E-E_{k}\right)$ of the chain. Hint: Substitute the sum by an integral.

Problem 14: Homogeneous electron gas

Consider N interacting electrons in a volume Ω with a neutralizing background of a constant positive density $\rho_{\text {nucl }}=e n_{\text {nucl }}=e \frac{N}{\Omega}$. Within the Hartree-Fock approximation, the one-particle wave functions $\Psi_{\vec{k}, \sigma}(\vec{r})$ are given by the solutions of

$$
\begin{gathered}
\left(-\frac{\hbar^{2} \nabla^{2}}{2 m}+V_{E N}(\vec{r})+V_{\text {Coul }}(\vec{r})\right) \psi_{\vec{k}, \sigma}(\vec{r}) \\
-\sum_{\sigma^{\prime}=-\frac{1}{2}}^{1 / 2} \sum_{\vec{k}^{\prime}} \delta_{\sigma, \sigma^{\prime}} e^{2} \int_{\Omega} \frac{\Psi_{\vec{k}^{\prime}}^{*}\left(\vec{r}^{\prime}, \sigma^{\prime}\right) \Psi_{\vec{k}}\left(\vec{r}^{\prime}, \sigma\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} r^{\prime} \Psi_{\vec{k}^{\prime}, \sigma^{\prime}}(\vec{r})=\varepsilon_{\vec{k}, \sigma} \psi_{\vec{k}}(\vec{r}, \sigma)
\end{gathered}
$$

with

$$
V_{E N}(\vec{r})=-\frac{N}{\Omega} e^{2} \int_{\Omega} \frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} r^{\prime}
$$

and

$$
V_{\text {Coul }}(\vec{r})=e^{2} \int_{\Omega} \frac{n\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} r^{\prime}, \quad n(\vec{r})=\sum_{\sigma} \sum_{\vec{k}}\left|\Psi_{\vec{k}}(\vec{r}, \sigma)\right|^{2} .
$$

The sums over \vec{k} and \vec{k}^{\prime} include all occupied states, i. e. $|\vec{k}| \leq k_{F},\left|\vec{k}^{\prime}\right| \leq k_{F}$.
a) Show that the Hartree-Fock equations of this system are solved by plane waves

$$
\Psi_{\vec{k}}(\vec{r}, \sigma)=\frac{1}{\sqrt{\Omega}} e^{i \vec{k} \cdot \vec{r}} \quad \text { for both spins } \quad\left(\sigma= \pm \frac{1}{2}\right)
$$

Hint: Convince yourselves that $V_{E N}$ is compensated by $V_{\text {Coul }}$.
b) Calculate the eigenvalues $\varepsilon_{\vec{k}, \sigma}$. To this end, convert the sum over \vec{k}^{\prime} into an integral.

Useful integral:

$$
\int x \ln \left|\frac{x+a}{x-a}\right| d x=\frac{1}{2}\left(x^{2}-a^{2}\right) \ln \left|\frac{x+a}{x-a}\right|+a x .
$$

c) Plot $\varepsilon_{\vec{k}, \sigma}$ and discus its behaviour at $k=k_{F}$.
d) The eigenvalues

$$
\varepsilon_{\vec{k}, \sigma}=\frac{\hbar^{2}}{2 m} k^{2}+\Sigma^{\mathrm{ex}}(\vec{k}, \sigma)
$$

contain the self energy $\Sigma^{\mathrm{ex}}(\vec{k}, \sigma)$ (here: only exchange). Within the Hartree-Fock approximation, it contributes the exchange energy

$$
E^{\mathrm{ex}}=\frac{1}{2} \sum_{\substack{\vec{k}, \sigma \\ k<k_{F}}} \Sigma^{\mathrm{ex}}(\vec{k}, \sigma)
$$

to the total energy. Show that $E^{\mathrm{ex}}=-N \cdot \frac{3}{4}\left(\frac{3}{\pi}\right)^{\frac{1}{3}} \cdot n^{\frac{1}{3}} \quad$ with $\quad n=\frac{N}{\Omega}$.

