Problem 6: Phonons in stiff layers

Consider a two-dimensional sheet of material or (simpler but analogous) a one-dimensional wire. The system is stiff, i.e. bending costs elastic energy.
A simple linear-chain model might look as follows (for small vertical displacements u_{j}):

$$
V=\sum_{j=-\infty}^{\infty} \alpha \cdot\left(u_{j+1}+u_{j-1}-2 u_{j}\right)^{2}
$$

Notice that different from a vibrating string, drum etc. the elastic energy does not result from elongation of the bonds, but from resistance of the material against bending.
a) Calculate the elastic energy per atom if the system is bent into a ring or coil of Radius $R \gg a$.
b) Calculate and plot the phonon dispersion $\omega(k)$ and show that $\omega(k) \approx \beta \cdot k^{2}$ for small k. Calculate β.

Remark: as a consequence of this effect, all two-dimensional systems with stiffness (i.e. resistance against bending) show low-frequency sound waves /phonon modes / ... with quadratic dispersion.

Problem 7: Phonons of a hexagonal lattice

A two-dimensional lattice is described by the vectors

$$
\vec{a}_{1}=(1,0) a \quad \text { and } \quad \vec{a}_{2}=(-1, \sqrt{3}) \frac{a}{2} .
$$

The atoms of the lattice interact via central forces with spring constant K between nearest neighbors. The potential energy of this system has the form

$$
E^{\mathrm{el}}=\frac{1}{2} \sum_{j} \sum_{j^{\prime}} \frac{K}{2}\left[\left|\vec{R}_{j}+\vec{u}_{j}-\vec{R}_{j^{\prime}}-\vec{u}_{j^{\prime}}\right|-\left|\vec{R}_{j}-\vec{R}_{j^{\prime}}\right|\right]^{2} .
$$

The sum over j^{\prime} includes only nearest neighbors of \vec{R}_{j}. Derivatives with respect to the elongations \vec{u}_{j} and $\vec{u}_{j^{\prime}}$ give the force constants. They have for $j \neq j^{\prime}$ the form

$$
\Phi_{\alpha, \alpha^{\prime}}\left(\vec{R}_{j}, \vec{R}_{j^{\prime}}\right)=\left\{\begin{array}{ccc}
-K \frac{\left(\vec{R}_{j}-\vec{R}_{j^{\prime}}\right)_{\alpha}\left(\vec{R}_{j}-\vec{R}_{j^{\prime}}\right)_{\alpha^{\prime}}}{\left|\vec{R}_{j}-\vec{R}_{j^{\prime}}\right|^{2}} & \text { for } & \left|\vec{R}_{j}-\vec{R}_{j^{\prime}}\right|=1 \mathrm{n} . \text { N. distance } \\
0 & \text { else }
\end{array} .\right.
$$

The force constants for $j=j^{\prime}$ can be calculated from the acoustic sum rule.
a) Calculate the force constants $\Phi_{\alpha \alpha^{\prime}}\left(\vec{R}_{j}, 0\right)$ for the six \vec{R}_{j} of the nearest neighbors of an atom at $\vec{R}_{j^{\prime}}=\overrightarrow{0}$ and then for $\vec{R}_{j}=\overrightarrow{0}$.
b) Set up the dynamical matrix.
c) Calculate the vibrational frequencies $\omega(\vec{q})$ at the high-symmetry points

$$
\begin{array}{lll}
\vec{q}=(0,0) \frac{2 \pi}{a} & \text { (Г point }) & \vec{q}=\left(0, \frac{1}{\sqrt{3}}\right) \frac{2 \pi}{a} \quad(M \text { point }) \\
\vec{q}=\left(\frac{1}{3}, \frac{1}{\sqrt{3}}\right) \frac{2 \pi}{a} \quad(K \text { point }) & \vec{q}=\left(\frac{2}{3}, 0\right) \frac{2 \pi}{a} \quad\left(K^{\prime} \text { point }\right)
\end{array}
$$

and along the high-symmetry lines $\Gamma-M, M-K, K-\Gamma$ of the Brillouin zone. Plot $\omega(\vec{q})$ along these lines.

Problem 8: Phonons of a linear chain

The Hamilton operator of a linear chain (lattice constant a) with atoms of mass M is given by

$$
\hat{H}=\frac{1}{2} \sum_{j} \frac{\hat{P}_{j}^{2}}{M}+\frac{1}{2} K \sum_{j}\left(u_{j}-u_{j-1}\right)^{2} .
$$

Show that \hat{H} can be transformed into a sum of Hamilton operators of decoupled harmonic oscillators by employing

$$
\begin{aligned}
& u_{j}=\sqrt{\frac{\hbar}{N M}} \sum_{q} \frac{1}{\sqrt{2 \omega(q)}}\left(\hat{a}(q)+\hat{a}^{+}(-q)\right) \mathrm{e}^{i q R_{j}}, \\
& \hat{P}_{j}=\sqrt{\frac{\hbar M}{N}} \sum_{q} \sqrt{\frac{\omega(q)}{2}} \frac{1}{i}\left(\hat{a}(q)-\hat{a}^{+}(-q)\right) \mathrm{e}^{-i q R_{j}}
\end{aligned}
$$

with $R_{j}=j \cdot a$ and N denotes the number of unit cells in a Born-von Karman supercell. [Here, $\hat{a}(q)=\frac{1}{\sqrt{2 M \hbar \omega(q)}}(M \omega(q) x(q)+i p(q))$ and the corresponding $\hat{a}^{+}(q)$ are the ladder operators for mode q, while $x(q)=\sum_{j=1}^{N} \mathrm{e}^{-i q R_{j}} u_{j}$ and $p(q)=\sum_{j=1}^{N} \mathrm{e}^{-i q R_{j}} p_{j}$ denote the transformation of the displacements to the normal modes.

Hint: use the explicit form of the dispersion relation $\omega(q)$ of the linear chain.

