Problem 4: Vibrations of a linear chain

Consider a linear chain with two atoms of masses M_{1} and M_{2} per unit cell. The atoms are at the positions $X_{j, \nu}=R_{j}+\tau_{\nu}+u_{j, \nu}$. The lattice "vector" $R_{j}=j \cdot a$ and the basis "vector" $\tau_{\nu}\left(\tau_{1}=0\right.$, $\left.\tau_{2}=d\right)$ describe the equilibrium positions and $u_{j, \nu}$ gives the elongation of an atom. Two neighboring atoms interact via a potential

$$
V(x)=V_{0}\left\{-\mathrm{e}^{-2 \alpha(x-d)}+2 \mathrm{e}^{-\alpha(x-d)}\right\}
$$

with $V_{0}<0, \alpha>0$. Thus, the potential energy of the chain is given by

$$
E^{\mathrm{el}}=\sum_{i}\left\{V\left(X_{i, 1}-X_{i-1,2}\right)+V\left(X_{i, 2}-X_{i, 1}\right)\right\}
$$

with the equilibrium distance d between the atoms and lattice constand $a=2 d$.

a) Plot the pair potential $V(x)$.
b) Calculate the force constants $\Phi\left(j \nu, j^{\prime} \nu^{\prime}\right)$.
c) Set up the dynamic matrix $D_{\nu, \nu^{\prime}}(q)$ and calculate the vibrational frequencies $\omega(q)$ of the chain. Give the values of $\omega(q)$ for $q=0$ and $q= \pm \pi / a$. Calculate the sound velocity of the acoustic branch.
d) Consider the case $M_{1}=M_{2}=M$. Give the frequencies $\omega(q)$.

Problem 5: Linear chain with a point defect

(4 points)
Consider a linear chain (lattice constant $=a$) with force constant F between neighbouring atoms (i.e. the simplest textbook case). All atoms have the same mass M, except for one atom (with index $j=0$) which has the mass M_{0}.
a) Show that for $M_{0}<M$, a localized phonon mode $u_{j}(t)=(-1)^{j} \mathrm{e}^{-\kappa|j|} \bar{u}_{0} \mathrm{e}^{i \bar{\omega} t}$ with $\kappa>0$ is possible. Calculate its frequency $\bar{\omega}$.
b) Discuss $\bar{\omega}$ as a function of $\frac{M_{0}}{M}$. What do you obtain for $M_{0} \rightarrow 0$ and for $M_{0} \rightarrow M$? Compare with the results for a periodic chain (\rightarrow see lecture). Plot the mode for $M_{0} \ll M$ and for $M_{0} \simeq M$.
c) Show that a mode as given in a) is not possible for $M_{0}>M$. Is there a simple explanation?

