Problem 4: Vibrations of a linear chain

Consider a linear chain with two atoms of masses M_1 and M_2 per unit cell. The atoms are at the positions $X_{j,\nu} = R_j + \tau_{\nu} + u_{j,\nu}$. The lattice "vector" $R_j = j \cdot a$ and the basis "vector" τ_{ν} ($\tau_1 = 0$, $\tau_2 = d$) describe the equilibrium positions and $u_{j,\nu}$ gives the elongation of an atom. Two neighboring atoms interact via a potential

$$V(x) = V_0 \left\{ -e^{-2\alpha (x-d)} + 2e^{-\alpha (x-d)} \right\}$$

with $V_0 < 0, \alpha > 0$. Thus, the potential energy of the chain is given by

$$E^{\text{el}} = \sum_{i} \{ V (X_{i,1} - X_{i-1,2}) + V (X_{i,2} - X_{i,1}) \}$$

with the equilibrium distance d between the atoms and lattice constand a = 2d.

- a) Plot the pair potential V(x).
- b) Calculate the force constants $\Phi(j\nu, j'\nu')$.
- c) Set up the dynamic matrix $D_{\nu,\nu'}(q)$ and calculate the vibrational frequencies $\omega(q)$ of the chain. Give the values of $\omega(q)$ for q = 0 and $q = \pm \pi/a$. Calculate the sound velocity of the acoustic branch.
- d) Consider the case $M_1 = M_2 = M$. Give the frequencies $\omega(q)$.

Problem 5: Linear chain with a point defect

Consider a linear chain (lattice constant = a) with force constant F between neighbouring atoms (i.e. the simplest textbook case). All atoms have the same mass M, except for one atom (with index j = 0) which has the mass M_0 .

- a) Show that for $M_0 < M$, a localized phonon mode $u_j(t) = (-1)^j e^{-\kappa |j|} \bar{u}_0 e^{i \bar{\omega} t}$ with $\kappa > 0$ is possible. Calculate its frequency $\bar{\omega}$.
- b) Discuss $\bar{\omega}$ as a function of $\frac{M_0}{M}$. What do you obtain for $M_0 \to 0$ and for $M_0 \to M$? Compare with the results for a periodic chain (\rightarrow see lecture). Plot the mode for $M_0 \ll M$ and for $M_0 \simeq M.$
- c) Show that a mode as given in a) is not possible for $M_0 > M$. Is there a simple explanation?

(4 points)

Prof. Rohlfing

(4 points)