Problem 13: Homogeneous electron gas

Consider N interacting electrons in a volume Ω with a neutralizing background of a constant positive density $\rho_{\text{nucl}} = e n_{\text{nucl}} = e \frac{n}{\Omega}$. Within the Hartree-Fock approximation, the one-particle wave functions $\Psi_{\vec{k},\sigma}(\vec{r})$ are given by the solutions of

$$\left(-\frac{\hbar^2 \nabla^2}{2m} + V_{EN}(\vec{r}) + V_{Coul}(\vec{r}) \right) \psi_{\vec{k},\sigma}(\vec{r}) - \sum_{\sigma'=-\frac{1}{2}}^{1/2} \sum_{\vec{k}'} \delta_{\sigma,\sigma'} \frac{e^2}{4\pi\varepsilon_0} \int_{\Omega} \frac{\Psi_{\vec{k}',\sigma'}^*(\vec{r}') \Psi_{\vec{k},\sigma}(\vec{r}')}{|\vec{r}-\vec{r}'|} d^3r' \Psi_{\vec{k}',\sigma'}(\vec{r}) = \lambda_{\vec{k},\sigma} \psi_{\vec{k},\sigma}(\vec{r}) ,$$

with

$$V_{EN}(\vec{r}) = -\frac{N}{\Omega} \frac{e^2}{4\pi\varepsilon_0} \int_{\Omega} \frac{1}{|\vec{r} - \vec{r'}|} d^3 r'$$

and

$$V_{\text{Coul}}(\vec{r}) = \frac{e^2}{4\pi\varepsilon_0} \int_{\Omega} \frac{n(\vec{r}')}{|\vec{r} - \vec{r}'|} d^3r', \qquad n(\vec{r}) = \sum_{\sigma} \sum_{\vec{k}} |\Psi_{\vec{k},\sigma}(\vec{r})|^2.$$

The sums over \vec{k} and \vec{k}' include all occupied states, i.e. $|\vec{k}| \leq k_F$, $|\vec{k}'| \leq k_F$.

a) Show that the Hartree-Fock equations of this system are solved by plane waves

$$\Psi_{\vec{k},\sigma} = \frac{1}{\sqrt{\Omega}} e^{i\vec{k}\cdot\vec{r}} \chi_{\sigma} \quad \text{with spinors} \quad \chi_{\frac{1}{2}} = \begin{pmatrix} 1\\ 0 \end{pmatrix} \quad \text{and} \quad \chi_{-\frac{1}{2}} = \begin{pmatrix} 0\\ 1 \end{pmatrix} .$$

Hint: Convince yourselves that V_{EN} is compensated by V_{Coul} .

b) Calculate the eigenvalues $\lambda_{\vec{k},\sigma}$. To this end, convert the sum over \vec{k}' into an integral. Useful integral:

$$\int x \ln \left| \frac{x+a}{x-a} \right| \, dx = \frac{1}{2} \left(x^2 - a^2 \right) \ln \left| \frac{x+a}{x-a} \right| + a \, x \, .$$

c) Plot $\lambda_{\vec{k},\sigma}$ and discuss its behaviour at $k = k_F$.

(4 points)

Problem 14: Exchange hole

(3 points)

The exchange energy of an interacting electron gas with density $n = \frac{N}{\Omega}$ can be written in the form

$$E_x = \frac{1}{2} \frac{e^2}{4 \pi \varepsilon_0} \int \frac{n(\vec{r}) n_x(\vec{r}, \vec{r'})}{|\vec{r} - \vec{r'}|} d^3 r d^3 r'$$

with the exchange-hole density

$$n_x(\vec{r}, \vec{r}') = -\frac{2}{\Omega^2 n} \sum_{\substack{\vec{k} \\ |\vec{k}| \le k_F}} \sum_{\substack{\vec{k}' \\ |\vec{k}'| \le k_F}} e^{-i\vec{k}\cdot\vec{r}} e^{-i\vec{k}'\cdot\vec{r}'} e^{i\vec{k}\cdot\vec{r}'} e^$$

a) Calculate

$$\sum_{\substack{\vec{k}\\ |\vec{k}| \,\leq \, k_F}} e^{i\,\vec{k}\,\cdot\,(\vec{r}\,-\,\vec{r}\,')}$$

and use the result to determine $n_x(\vec{r}, \vec{r'})$.

b) Plot $n_x(\vec{r}, \vec{r'})$ as a function of $|\vec{r} - \vec{r'}|$.

Problem 15: Theorem of Koopmans

(3 points)

The total energy of N electrons is given within the Hartree-Fock approximation by

$$E_{\rm HF}^{\rm el}(N) = \sum_{j=1}^{N} A_j + \frac{1}{2} \sum_{j,j'=1}^{N} B_{jj'} + U_{NN}$$

with

$$\begin{split} A_{j} &= \int \psi_{\alpha j}^{*}(\vec{r}) \left(\frac{\hat{p}^{2}}{2 \, m} + V_{EN}(\vec{r})\right) \psi_{\alpha j}(\vec{r}) \, d^{3} r , \\ B_{j j'} &= \frac{e^{2}}{4 \, \pi \, \varepsilon_{0}} \int \int \psi_{\alpha j}^{*}(\vec{r}) \, \psi_{\alpha j'}^{*}(\vec{r}') \, \frac{1}{|\vec{r} - \vec{r'}|} \left(\psi_{\alpha j}(\vec{r}) \, \psi_{\alpha j'}(\vec{r'}) - \psi_{\alpha j}(\vec{r'}) \, \psi_{\alpha j'}(\vec{r})\right) d^{3} r \, d^{3} r' . \end{split}$$

 $E_{\rm HF}^{\rm el}$ $(N - 1, \alpha_l)$ is the corresponding energy of a system in which one electron in the state ψ_{α_l} is missing with respect to $E_{\rm HF}^{\rm el}(N)$. Approximately, the one-particle states $\psi_{\alpha j}$ of both systems are equal. Show that the difference of both total energies is equal to the Lagrangian multiplier λ_{α_l} (see lecture) in this case.

Hint: represent λ_{α_l} by A_l and B_{lj} .