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Problem 13: Homogeneous electron gas (4 points)

Consider N interacting electrons in a volume () with a neutralizing background of a constant
n
positive density ppuca = €Npuad = € aQ Within the Hartree-Fock approximation, the one-particle

wave functions W (7) are given by the solutions of
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The sums over k and & include all occupied states, i.e. [k| < kp, |k'| < kp.

a) Show that the Hartree-Fock equations of this system are solved by plane waves
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V. = —¢€'"""x, with spinors X1 = (0> and X_1 = ( ) .
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Hint: Convince yourselves that Vg n is compensated by Vool

b) Calculate the eigenvalues A . To this end, convert the sum over k' into an integral.

Useful integral:
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c¢) Plot Az and discuss its behaviour at k = kp.
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Problem 14: Exchange hole (3 points)

N
The exchange energy of an interacting electron gas with density n = q can be written in the form

with the exchange-hole density
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a) Calculate

Ikl <kp
and use the result to determine n, (7, 7).

b) Plot n, (7, ') as a function of |7 — 7/|.

Problem 15: Theorem of Koopmans (3 points)

The total energy of N electrons is given within the Hartree-Fock approximation by
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EfIlF (N — 1, oy) is the corresponding energy of a system in which one electron in the state 1,

is missing with respect to EI’?IIF (N). Approximately, the one-particle states 1), ; of both systems are

equal. Show that the difference of both total energies is equal to the Lagrangian multiplier \,, (see

lecture) in this case.

Hint: represent Ao, by A; and By ;.
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