Problem 13: Homogeneous electron gas

Consider N interacting electrons in a volume Ω with a neutralizing background of a constant positive density $\rho_{\text {nucl }}=e n_{\text {nucl }}=e \frac{n}{\Omega}$. Within the Hartree-Fock approximation, the one-particle wave functions $\Psi_{\vec{k}, \sigma}(\vec{r})$ are given by the solutions of

$$
\begin{aligned}
& \left(-\frac{\hbar^{2} \nabla^{2}}{2 m}+V_{E N}(\vec{r})+V_{\text {Coul }}(\vec{r})\right) \psi_{\vec{k}, \sigma}(\vec{r}) \\
& -\sum_{\sigma^{\prime}=-\frac{1}{2}}^{1 / 2} \sum_{\vec{k}^{\prime}} \delta_{\sigma, \sigma^{\prime}} \frac{e^{2}}{4 \pi \varepsilon_{0}} \int_{\Omega} \frac{\Psi_{\overrightarrow{k^{\prime}}, \sigma^{\prime}}^{*}\left(\vec{r}^{\prime}\right) \Psi_{\vec{k}, \sigma}\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} r^{\prime} \Psi_{\vec{k}^{\prime}, \sigma^{\prime}}(\vec{r})=\lambda_{\vec{k}, \sigma} \psi_{\vec{k}, \sigma}(\vec{r}),
\end{aligned}
$$

with

$$
V_{E N}(\vec{r})=-\frac{N}{\Omega} \frac{e^{2}}{4 \pi \varepsilon_{0}} \int_{\Omega} \frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} r^{\prime}
$$

and

$$
V_{\text {Coul }}(\vec{r})=\frac{e^{2}}{4 \pi \varepsilon_{0}} \int_{\Omega} \frac{n\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} r^{\prime}, \quad n(\vec{r})=\sum_{\sigma} \sum_{\vec{k}}\left|\Psi_{\vec{k}, \sigma}(\vec{r})\right|^{2} .
$$

The sums over \vec{k} and \vec{k}^{\prime} include all occupied states, i.e. $|\vec{k}| \leq k_{F},\left|\vec{k}^{\prime}\right| \leq k_{F}$.
a) Show that the Hartree-Fock equations of this system are solved by plane waves

$$
\Psi_{\vec{k}, \sigma}=\frac{1}{\sqrt{\Omega}} e^{i \vec{k} \cdot \vec{r}} \chi_{\sigma} \quad \text { with spinors } \quad \chi_{\frac{1}{2}}=\binom{1}{0} \quad \text { and } \quad \chi_{-\frac{1}{2}}=\binom{0}{1} .
$$

Hint: Convince yourselves that $V_{E N}$ is compensated by $V_{\text {Coul }}$.
b) Calculate the eigenvalues $\lambda_{\vec{k}, \sigma}$. To this end, convert the sum over \vec{k}^{\prime} into an integral.

Useful integral:

$$
\int x \ln \left|\frac{x+a}{x-a}\right| d x=\frac{1}{2}\left(x^{2}-a^{2}\right) \ln \left|\frac{x+a}{x-a}\right|+a x .
$$

c) Plot $\lambda_{\vec{k}, \sigma}$ and discuss its behaviour at $k=k_{F}$.

Problem 14: Exchange hole

The exchange energy of an interacting electron gas with density $n=\frac{N}{\Omega}$ can be written in the form

$$
E_{x}=\frac{1}{2} \frac{e^{2}}{4 \pi \varepsilon_{0}} \int \frac{n(\vec{r}) n_{x}\left(\vec{r}, \vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} d^{3} r d^{3} r^{\prime}
$$

with the exchange-hole density

$$
n_{x}\left(\vec{r}, \vec{r}^{\prime}\right)=-\frac{2}{\Omega^{2} n} \sum_{\substack{\vec{k} \\|\vec{k}| \leq k_{F}}} \sum_{\substack{\vec{k}^{\prime} \\\left|\vec{k}^{\prime}\right| \leq k_{F}}} e^{-i \vec{k} \cdot \vec{r}} e^{-i \vec{k}^{\prime} \cdot \vec{r}^{\prime}} e^{i \vec{k} \cdot \vec{r}^{\prime}} e^{i \vec{k}^{\prime} \cdot \vec{r}} .
$$

a) Calculate

$$
\sum_{\substack{\vec{k} \\|\vec{k}| \leq k_{F}}} e^{i \vec{k} \cdot\left(\vec{r}-\vec{r}^{\prime}\right)}
$$

and use the result to determine $n_{x}\left(\vec{r}, \vec{r}^{\prime}\right)$.
b) Plot $n_{x}\left(\vec{r}, \vec{r}^{\prime}\right)$ as a function of $\left|\vec{r}-\vec{r}^{\prime}\right|$.

Problem 15: Theorem of Koopmans

The total energy of N electrons is given within the Hartree-Fock approximation by

$$
E_{\mathrm{HF}}^{\mathrm{el}}(N)=\sum_{j=1}^{N} A_{j}+\frac{1}{2} \sum_{j, j^{\prime}=1}^{N} B_{j j^{\prime}}+U_{N N}
$$

with

$$
\begin{aligned}
& A_{j}=\int \psi_{\alpha j}^{*}(\vec{r})\left(\frac{\hat{p}^{2}}{2 m}+V_{E N}(\vec{r})\right) \psi_{\alpha j}(\vec{r}) d^{3} r, \\
& B_{j j^{\prime}}=\frac{e^{2}}{4 \pi \varepsilon_{0}} \iint \psi_{\alpha j}^{*}(\vec{r}) \psi_{\alpha j^{\prime}}^{*}\left(\vec{r}^{\prime}\right) \frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}\left(\psi_{\alpha j}(\vec{r}) \psi_{\alpha j^{\prime}}\left(\vec{r}^{\prime}\right)-\psi_{\alpha j}\left(\vec{r}^{\prime}\right) \psi_{\alpha j^{\prime}}(\vec{r})\right) d^{3} r d^{3} r^{\prime} .
\end{aligned}
$$

$E_{\mathrm{HF}}^{\mathrm{el}}\left(N-1, \alpha_{l}\right)$ is the corresponding energy of a system in which one electron in the state $\psi_{\alpha_{l}}$ is missing with respect to $E_{\mathrm{HF}}^{\mathrm{el}}(N)$. Approximately, the one-particle states $\psi_{\alpha j}$ of both systems are equal. Show that the difference of both total energies is equal to the Lagrangian multiplier $\lambda_{\alpha_{l}}$ (see lecture) in this case.

Hint: represent $\lambda_{\alpha_{l}}$ by A_{l} and $B_{l j}$.

