Problem 10: Spin-orbit coupling

Consider a quadratic lattice in the x-y-plane with one atom per unit cell and lattice constant a. Use the empirical tight-binding method to calculate the band structure. Employ s, p_x and p_y orbitals for spin-up and spin-down electrons. Take interactions between nearest neighbors into account and use the spin-orbit coupling within the on-site approximation. For simplicity, set

$$V_1 = -V_{ss} = +V_{pp\sigma} = +V_{pp\pi}$$
 and $V_2 = V_{sp}$.

Use the abbreviation

$$f(\vec{k}) = 2V_1(\cos(k_x a) + \cos(k_y a))$$
.

a) Set up the (6×6) Hamilton matrix

$$\bar{\bar{H}}\left(\vec{k}\right) = \left(\begin{array}{cc} H^{\uparrow\uparrow} & H^{\uparrow\downarrow} \\ H^{\downarrow\uparrow} & H^{\downarrow\downarrow} \end{array}\right) \ .$$

- b) Calculate the eigenvalues and eigenvectors of $H^{\uparrow\uparrow}$ at the Γ point.
- c) Calculate the band structure $E_{n\,\vec{k}}$ for the special case $V_2=0.$ Plot the bands along $X'-\Gamma-X-M-X'$ for

i)
$$E_s = 2.0 \text{ eV}, \quad E_p = -2.2 \text{ eV}, \quad V_1 = 0.5 \text{ eV}, \quad V_2 = 0.0 \text{ eV} \text{ and } \lambda = 0.0 \text{ eV}$$

ii)
$$E_s = 2.0 \text{ eV}, \quad E_p = -2.2 \text{ eV}, \quad V_1 = 0.5 \text{ eV}, \quad V_2 = 0.0 \text{ eV} \text{ and } \lambda = 0.9 \text{ eV}$$

d) The figure below shows the band structure for the parameters of c) ii), but with V = 0.4 eV. There is a gap at Γ between 0.0 and 0.7 eV. Use your results from b) to compare the corresponding eigenvectors of the energetically highest state with those from c) i) at Γ .

(4 points)

Problem 11: Rashba effect in a two-dimensional electron gas

(4 points)

An electron is moving in the x-y plane at z = 0 under the influence of spin-orbit coupling. The movement in the z direction is confined due to a potential V(z). Therefore, the kinetic enery with respect to the z direction is neglected in the following. The Hamilton operator of the system has the form

$$\hat{H} = \frac{\hat{p}_x^2 + \hat{p}_y^2}{2m} + \frac{\hbar}{4m^2c^2} \left(\vec{\nabla}V \times \hat{\vec{p}}\right) \cdot \hat{\vec{\sigma}}$$

with

$$\frac{\hbar}{4m^2c^2}\vec{\nabla}V = \left(0, 0, \frac{\hbar}{4m^2c^2}\frac{\partial V}{\partial z}\Big|_{z=0}\right) := (0, 0, \gamma).$$

a) Calculate the eigenstates of \hat{H} . To this end, employ a wave function of the form

$$\psi_{n,\vec{k}}(x, y, 0) = \begin{pmatrix} a_{n,\vec{k}} \\ b_{n,\vec{k}} \end{pmatrix} e^{i\vec{k}\cdot\vec{r}}$$
 with $\vec{k} = (k_x, k_y, 0)$ and $n = 1, 2$.

This ansatz leads to a (2×2) linear system of equations which gives you $E_{n,\vec{k}}$, $a_{n,\vec{k}}$ and $b_{n,\vec{k}}$. Choose $a_{1,\vec{k}} = a_{2,\vec{k}} = 1/\sqrt{2}$ in the calculation. Plot the eigenvalues $E_{n,\vec{k}}$ as a function of k_x for $k_y = 0$.

b) Use $a_{n,\vec{k}}$ and $b_{n,\vec{k}}$ to calculate the spin expectation values $\langle \hat{S}_x \rangle$, $\langle \hat{S}_y \rangle$ and $\langle \hat{S}_z \rangle$. Which direction has the vector $\langle \hat{\vec{S}} \rangle$ for $\gamma > 0$ at

i)
$$\vec{k} = (k_x, 0, 0)$$
 and ii) $\vec{k} = (0, k_y, 0)?$

Consider the two cases $k_x > 0$ and $k_x < 0$ for i) and the cases $k_y > 0$ and $k_y < 0$ for ii).

Problem 12: Density of states for a linear chain

The band structure of a linear chain with one s-like orbital per atom is given within the framework of the empirical tight-binding method by

$$E_k = E_s + 2V_{ss}\cos(ka) \; .$$

Calculate the density of states

$$N(E) = 2 \cdot \sum_{k} \delta(E - E_{k})$$

of the chain. The factor 2 results from the spin and the sum runs over all k within the first Brillouin zone.

Hint: Substitute the sum by an integral.

(2 points)