Problem 10: Spin-orbit coupling

Consider a quadratic lattice in the $x-y$-plane with one atom per unit cell and lattice constant a. Use the empirical tight-binding method to calculate the band structure. Employ s, p_{x} and p_{y} orbitals for spin-up and spin-down electrons. Take interactions between nearest neighbors into account and use the spin-orbit coupling within the on-site approximation. For simplicity, set

$$
V_{1}=-V_{s s}=+V_{p p \sigma}=+V_{p p \pi} \quad \text { and } \quad V_{2}=V_{s p} .
$$

Use the abbreviation

$$
f(\vec{k})=2 V_{1}\left(\cos \left(k_{x} a\right)+\cos \left(k_{y} a\right)\right) .
$$

a) Set up the (6×6) Hamilton matrix

$$
\overline{\bar{H}}(\vec{k})=\left(\begin{array}{ll}
H^{\uparrow \uparrow} & H^{\uparrow \downarrow} \\
H^{\downarrow \uparrow} & H^{\downarrow \downarrow}
\end{array}\right) .
$$

b) Calculate the eigenvalues and eigenvectors of $H^{\uparrow \uparrow}$ at the Γ point.
c) Calculate the band structure $E_{n \vec{k}}$ for the special case $V_{2}=0$. Plot the bands along $X^{\prime}-\Gamma-X-M-X^{\prime}$ for
i) $\quad E_{s}=2.0 \mathrm{eV}, \quad E_{p}=-2.2 \mathrm{eV}, \quad V_{1}=0.5 \mathrm{eV}, \quad V_{2}=0.0 \mathrm{eV} \quad$ and $\quad \lambda=0.0 \mathrm{eV}$
ii) $\quad E_{s}=2.0 \mathrm{eV}, \quad E_{p}=-2.2 \mathrm{eV}, \quad V_{1}=0.5 \mathrm{eV}, \quad V_{2}=0.0 \mathrm{eV} \quad$ and $\quad \lambda=0.9 \mathrm{eV}$
d) The figure below shows the band structure for the parameters of c) ii), but with $V=0.4 \mathrm{eV}$. There is a gap at Γ between 0.0 and 0.7 eV . Use your results from b) to compare the corresponding eigenvectors of the energetically highest state with those from c) i) at Γ.

Brillouin zone

M: $(1,1) \frac{\pi}{a}$

An electron is moving in the $x-y$ plane at $z=0$ under the influence of spin-orbit coupling. The movement in the z direction is confined due to a potential $V(z)$. Therefore, the kinetic enery with respect to the z direction is neglected in the following. The Hamilton operator of the system has the form

$$
\hat{H}=\frac{\hat{p}_{x}^{2}+\hat{p}_{y}^{2}}{2 m}+\frac{\hbar}{4 m^{2} c^{2}}(\vec{\nabla} V \times \hat{\vec{p}}) \cdot \hat{\vec{\sigma}}
$$

with

$$
\frac{\hbar}{4 m^{2} c^{2}} \vec{\nabla} V=\left(0,0,\left.\frac{\hbar}{4 m^{2} c^{2}} \frac{\partial V}{\partial z}\right|_{z=0}\right):=(0,0, \gamma) .
$$

a) Calculate the eigenstates of \hat{H}. To this end, employ a wave function of the form

$$
\psi_{n, \vec{k}}(x, y, 0)=\binom{a_{n, \vec{k}}}{b_{n, \vec{k}}} \mathrm{e}^{i \vec{k} \cdot \vec{r}} \quad \text { with } \quad \vec{k}=\left(k_{x}, k_{y}, 0\right) \quad \text { and } \quad n=1,2 .
$$

This ansatz leads to a (2×2) linear system of equations which gives you $E_{n, \vec{k}}, a_{n, \vec{k}}$ and $b_{n, \vec{k}}$. Choose $a_{1, \vec{k}}=a_{2, \vec{k}}=1 / \sqrt{2}$ in the calculation. Plot the eigenvalues $E_{n, \vec{k}}$ as a function of k_{x} for $k_{y}=0$.
b) Use $a_{n, \vec{k}}$ and $b_{n, \vec{k}}$ to calculate the spin expectation values $\left\langle\hat{S}_{x}\right\rangle,\left\langle\hat{S}_{y}\right\rangle$ and $\left\langle\hat{S}_{z}\right\rangle$. Which direction has the vector $\langle\hat{\vec{S}}\rangle$ for $\gamma>0$ at

$$
\text { i) } \vec{k}=\left(k_{x}, 0,0\right) \quad \text { and } \quad \text { ii) } \quad \vec{k}=\left(0, k_{y}, 0\right) ?
$$

Consider the two cases $k_{x}>0$ and $k_{x}<0$ for i) and the cases $k_{y}>0$ and $k_{y}<0$ for ii).

Problem 12: Density of states for a linear chain

The band structure of a linear chain with one s-like orbital per atom is given within the framework of the empirical tight-binding method by

$$
E_{k}=E_{s}+2 V_{s s} \cos (k a) .
$$

Calculate the density of states

$$
N(E)=2 \cdot \sum_{k} \delta\left(E-E_{k}\right)
$$

of the chain. The factor 2 results from the spin and the sum runs over all k within the first Brillouin zone.

Hint: Substitute the sum by an integral.

