Problem 7: Point group of graphene

Graphen is a two-dimensional sheet of carbon atoms that form a lattice with primitive vectors $\vec{a}_{1}=(1,0) a$ and $\vec{a}_{2}=(-1, \sqrt{3}) \frac{a}{2}$ and basis vectors $\vec{\tau}_{1}=(0,0), \vec{\tau}_{2}=\left(0, \frac{1}{\sqrt{3}}\right) a$.
a) First, consider graphene as a two-dimensional structure in a two-dimensional space. List all symmetry operations (according to the Schönflies notation) that let the structure invariant. Give a short description of the respective operations (e.g. $\mathrm{C}_{2 z}$: rotation by 180° about the z axis). Mark the respective axes and mirror planes in the figure. Which point group is formed by these operations?
b) Secondly, consider graphene as a layer of carbon atoms that exist in a three-dimensional space in the $x-y$ plane at $z=0$. List the additional symmetry operations that let the structure invariant. Which group is formed by all operations?

Problem 8: Band structure of graphen

Graphene consists of a layer of carbon atoms that are arranged in a hexagonal structure.
a) Give the primitive vectors \vec{b}_{1} and \vec{b}_{2} of the reciprocal lattice and construct the first Brillouin zone.
b) Use the empirical tight-binding method with one p_{z} orbital per atom to calculate the band structure $E_{n}\left(k_{x}, k_{y}\right)$ of graphen.
c) Plot the band structure for $E_{p}=0 \mathrm{eV}$ and $V_{p p \pi}=-2.828 \mathrm{eV}$ along the high-symmetry lines from Γ to K and from K to M.

$$
K: \quad\left(\frac{2}{3}, 0\right) \frac{2 \pi}{a}, \quad M: \quad\left(\frac{1}{2}, \frac{-1}{2 \sqrt{3}}\right) \frac{2 \pi}{a} .
$$

d) The figure shows the band structure of graphen resulting from a calculation with s, p_{x}, p_{y} and p_{z} orbitals. Compare your result with this band structure.

Problem 9: Time reversal

a) The vector of the Pauli matrices is given by $\hat{\vec{\sigma}}=\left(\hat{\sigma}_{x}, \hat{\sigma}_{y}, \hat{\sigma}_{z}\right)$. Proof the following relation: $\hat{\sigma}_{y}^{-1} \hat{\sigma} \hat{\sigma}_{y}=-\hat{\sigma}^{*}$.
b) Show that the time reversal operator $\hat{\mathcal{T}}=-i \hat{\sigma}_{y} \hat{K}$ for a particle with the spin $\frac{1}{2}$ has the following properties:
(1) $\hat{\mathcal{T}} \hat{\vec{r}}=\hat{\vec{r}} \hat{\mathcal{T}}$,
(2) $\hat{\mathcal{T}} \hat{\vec{p}}=-\hat{\vec{p}} \hat{\mathcal{T}}$,
(3) $\hat{\mathcal{T}} \hat{\vec{S}}=-\hat{\vec{S}} \hat{\mathcal{T}}$.
\vec{K} is the operator of complex conjugation. Hint: Apply the operators on a wave function in order to proof the relations given above.
c) Show that $\hat{\mathcal{T}}^{2} \Psi=-\Psi$.
d) Give the inverse $\hat{\mathcal{T}}^{-1}$ of the time-reversal operator.
e) Consider a Hamilton operator $\hat{H}(\vec{r})$ with $\hat{\mathcal{T}} \hat{H}(\vec{r}) \hat{\mathcal{T}}^{-1}=\hat{H}(\vec{r})$. Show that

$$
\hat{\mathcal{T}} \tilde{\hat{H}}(\vec{k}) \hat{\mathcal{T}}^{-1}=\tilde{\hat{H}}(-k) \quad \text { for } \quad \tilde{\hat{H}}(\vec{k})=\mathrm{e}^{-i \vec{k} \cdot \vec{r}} \hat{H}(\vec{r}) \mathrm{e}^{i \vec{k} \cdot \vec{r}}
$$

f) Give a proof of the following relations i) $\langle\Psi| \hat{\mathcal{T}}|\Phi\rangle=-\langle\Phi| \hat{\mathcal{T}}|\Psi\rangle$, ii) $\langle\hat{\mathcal{T}} \Psi \mid \hat{\mathcal{T}} \Phi\rangle=\langle\Phi \mid \Psi\rangle$. Hint: use

$$
\Psi(\vec{r})=\binom{\Psi^{(a)}(\vec{r})}{\Psi^{(b)}(\vec{r})} \quad \text { and } \quad \Phi(\vec{r})=\binom{\Phi^{(a)}(\vec{r})}{\Phi^{(b)}(\vec{r})}
$$

g) Consider a hermitian operator \hat{U} with $\hat{U} \hat{\mathcal{T}}=\hat{\mathcal{T}} \hat{U}$. Use the relations from c) together with $\hat{\mathcal{T}}^{2}=-1$ to show that $\langle\hat{\mathcal{I}} \Psi| \hat{U}|\Psi\rangle=-\langle\hat{\mathcal{T}} \Psi| \hat{U}|\Psi\rangle$. Is it possible that \hat{U} induces a transition from $|\Psi\rangle$ to $\hat{\mathcal{T}}|\Psi\rangle$?

