Problem 7: Point group of graphene

(3 points)

Graphen is a two-dimensional sheet of carbon atoms that form a lattice with primitive vectors $\vec{a}_1 = (1, 0) a$ and $\vec{a}_2 = (-1, \sqrt{3}) \frac{a}{2}$ and basis vectors $\vec{\tau}_1 = (0, 0), \vec{\tau}_2 = \left(0, \frac{1}{\sqrt{3}}\right) a$.

- a) First, consider graphene as a two-dimensional structure in a *two-dimensional* space. List all symmetry operations (according to the Schönflies notation) that let the structure invariant. Give a short description of the respective operations (e.g. C_{2z} : rotation by 180° about the z axis). Mark the respective axes and mirror planes in the figure. Which point group is formed by these operations?
- b) Secondly, consider graphene as a layer of carbon atoms that exist in a three-dimensional space in the x-y plane at z = 0. List the additional symmetry operations that let the structure invariant. Which group is formed by *all* operations?

Problem 8: Band structure of graphen

(3 points)

Graphene consists of a layer of carbon atoms that are arranged in a hexagonal structure.

- a) Give the primitive vectors \vec{b}_1 and \vec{b}_2 of the reciprocal lattice and construct the first Brillouin zone.
- b) Use the empirical tight-binding method with one p_z orbital per atom to calculate the band structure $E_n(k_x, k_y)$ of graphen.

c) Plot the band structure for $E_p = 0$ eV and $V_{pp\pi} = -2.828$ eV along the high-symmetry lines from Γ to K and from K to M.

$$K:$$
 $\left(\frac{2}{3}, 0\right) \frac{2\pi}{a}, \qquad M:$ $\left(\frac{1}{2}, \frac{-1}{2\sqrt{3}}\right) \frac{2\pi}{a}.$

d) The figure shows the band structure of graphen resulting from a calculation with s, p_x , p_y and p_z orbitals. Compare your result with this band structure.

Problem 9: Time reversal

- a) The vector of the Pauli matrices is given by $\hat{\vec{\sigma}} = (\hat{\sigma}_x, \hat{\sigma}_y, \hat{\sigma}_z)$. Proof the following relation: $\hat{\sigma}_y^{-1} \hat{\sigma} \hat{\sigma}_y = -\hat{\sigma}^*$.
- b) Show that the time reversal operator $\hat{T} = -i \hat{\sigma}_y \hat{K}$ for a particle with the spin $\frac{1}{2}$ has the following properties:

(1)
$$\hat{T} \ \hat{\vec{r}} = \hat{\vec{r}} \ \hat{T}$$
, (2) $\hat{T} \ \hat{\vec{p}} = -\hat{\vec{p}} \ \hat{T}$, (3) $\hat{T} \ \hat{\vec{S}} = -\hat{\vec{S}} \ \hat{T}$.

 \vec{K} is the operator of complex conjugation. *Hint*: Apply the operators on a wave function in order to proof the relations given above.

- c) Show that $\hat{\mathcal{T}}^2 \Psi = -\Psi$.
- d) Give the inverse $\hat{\mathcal{T}}^{-1}$ of the time-reversal operator.
- e) Consider a Hamilton operator $\hat{H}(\vec{r})$ with $\hat{\mathcal{T}}\hat{H}(\vec{r})\hat{\mathcal{T}}^{-1} = \hat{H}(\vec{r})$. Show that

$$\hat{\mathcal{T}}\,\tilde{\hat{H}}\,(\vec{k})\,\hat{\mathcal{T}}^{-1}\,=\,\tilde{\hat{H}}\,(-k)\qquad\text{for}\qquad\tilde{\hat{H}}\,(\vec{k})\,=\,\mathrm{e}^{-i\,\vec{k}\,\cdot\,\vec{r}}\,\hat{H}\,(\vec{r}\,)\,\mathrm{e}^{i\,\vec{k}\,\cdot\,\vec{r}}\,.$$

f) Give a proof of the following relations i) $\langle \Psi | \hat{\mathcal{T}} | \Phi \rangle = -\langle \Phi | \hat{\mathcal{T}} | \Psi \rangle$, ii) $\langle \hat{\mathcal{T}} \Psi | \hat{\mathcal{T}} \Phi \rangle = \langle \Phi | \Psi \rangle$. *Hint*: use

$$\Psi(\vec{r}) = \begin{pmatrix} \Psi^{(a)}(\vec{r}) \\ \Psi^{(b)}(\vec{r}) \end{pmatrix} \quad \text{and} \quad \Phi(\vec{r}) = \begin{pmatrix} \Phi^{(a)}(\vec{r}) \\ \Phi^{(b)}(\vec{r}) \end{pmatrix}.$$

g) Consider a hermitian operator \hat{U} with $\hat{U}\hat{\mathcal{T}} = \hat{\mathcal{T}}\hat{U}$. Use the relations from c) together with $\hat{\mathcal{T}}^2 = -1$ to show that $\langle \hat{\mathcal{T}} \Psi | \hat{U} | \Psi \rangle = -\langle \hat{\mathcal{T}} \Psi | \hat{U} | \Psi \rangle$. Is it possible that \hat{U} induces a transition from $|\Psi\rangle$ to $\hat{\mathcal{T}} |\Psi\rangle$?