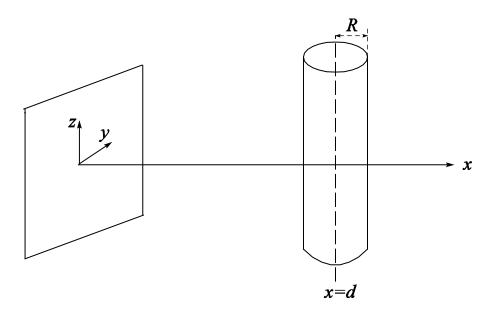
Aufgabe 3 (mündlich): Bildladungsmethode

(10 Punkte)

Ein in z-Richtung unendlich ausgedehnter, homogen geladener Zylinder (Ladungsdichte ρ_0) mit Radius R befinde sich vor einer ebenfalls unendlich ausgedehnten, geerdeten Metallplatte. Die Metallplatte liege in der yz-Ebene, die Zylinderachse befinde sich bei x=d, y=0.



- a) Berechnen Sie das elektrische Feld \vec{E} und das Potential ϕ des Zylinders zunächst ohne Metallplatte. Verwenden Sie hierzu das Gaußsche Gesetz mit entsprechenden Symmetrieüberlegungen. Unterscheiden Sie die Fälle außerhalb und innerhalb des Zylinders.
- b) Bestimmen Sie nun für die gegebene Anordnung mit Metallplatte das Potential im Halbraum $x \ge 0$ mit Hilfe der Bildladungsmethode. Sie können sich hierbei auf den Bereich außerhalb des Zylinders beschränken.
- c) Wie groß ist die influenzierte Flächenladungsdichte σ auf der Platte? Wie groß ist die gesamte influenzierte Ladung pro Länge L in z-Richtung? Vergleichen Sie diese Ladung mit der Ladung pro Länge L des Zylinders.

Aufgabe 4 (schriftlich): Rotierende geladene Kugel

(14 Punkte)

Eine homogen geladene Kugel mit Radius R und Gesamtladung q rotiere mit konstanter Winkelgeschwindigkeit $\vec{\omega}$ um eine Achse durch den Mittelpunkt.

- a) Bestimmen Sie die dadurch erzeugte Stromdichte $\vec{j}(\vec{r})$.

 Hinweis: Die Stromdichte $j(\vec{r})$ einer bewegten Ladungsverteilung $\rho(\vec{r})$ beträgt $j(\vec{r}) = \vec{v}(\vec{r}) \, \rho(\vec{r})$. Dabei ist $\vec{v}(\vec{r})$ die Geschwindigkeit am Ort \vec{r} .
- b) Berechnen Sie das dadurch erzeugte Vektorpotential $\vec{A}(\vec{r})$ im Außenraum, d.h. für r > R. Verwenden Sie zur Berechnung des Integrals Kugelkoordinaten und legen Sie die z-Achse dieses Koordinatensystems in Richtung \vec{r} .

- c) Bestimmen Sie das dazugehörige Magnetfeld \overrightarrow{B} im Außenraum.
- d) Das magnetische Moment einer Stromdichteverteilung $\vec{j}(\vec{r})$ ist gegeben durch

$$\vec{m} = \frac{1}{2} \int d^3 r \left[\vec{r} \times \vec{j} \left(\vec{r} \right) \right].$$

Wie groß ist das magnetische Moment der rotierenden Kugel?

e) Zeigen Sie, dass die Felder \vec{A} und \vec{B} mit den magnetischen Dipolfeldern

$$\vec{A} = \frac{\mu_0}{4\pi} \frac{\vec{m} \times \vec{r}}{r^3} \qquad \qquad \vec{B} = \frac{\mu_0}{4\pi} \frac{3(\vec{m} \cdot \vec{r})\vec{r} - \vec{m}r^2}{r^5}$$

übereinstimmen.