Problem 13: Polarons
Consider the coupling of a (single) electron with longitudinal optical phonons (one branch only, with frequency $\omega_{L O}$). In addition to the Hamiltonian H_{0} of free electrons (with quadratic band dispersion $\epsilon_{\vec{k}}$ with effective mass m) and phonons, the electron-phonon interaction is given by

$$
H_{1}=\sum_{\vec{k} \vec{q} \sigma}\left[M(\vec{q}) c_{\vec{k}+\vec{q}, \sigma}^{\dagger} c_{\vec{k} \sigma} b_{\vec{q}}+M(-\vec{q}) c_{\vec{k}-\vec{q}, \sigma}^{\dagger} c_{\vec{k} \sigma} b_{\vec{q}}^{\dagger}\right]
$$

(a) As shown in the lecture, such a Hamiltonian can be transformed into an equivalent form by a canonical transformation, i.e. $\tilde{H}=\exp (-i S) H \exp (i S)$ with a Hermitean operator S, leaving all physics unchanged. S can be chosen arbitrarily; if chosen such that $i\left[H_{0}, S\right]_{-}=-H_{1}, \tilde{H}$ is (up to second order in S) given by $\tilde{H} \approx H_{0}+\frac{i}{2}\left[H_{1}, S\right]_{-}$, i.e. $\tilde{H}_{1} \approx \frac{i}{2}\left[H_{1}, S\right]_{-}$.
Show that this procedure turns the H_{1} given above into the form

$$
\tilde{H}_{1}=\sum_{\vec{k} \vec{q} \sigma}|M(\vec{q})|^{2} \frac{1}{\epsilon_{\vec{k}}-\epsilon_{\vec{k}-\vec{q}}-\hbar \omega_{\vec{q}}} c_{\vec{k}, \sigma}^{\dagger} c_{\vec{k} \sigma}
$$

In here, inversion symmetry was used: $M(\vec{q})=M(-\vec{q})$. [Hint: using the notation of the lecture, consider phonon-free states $|n\rangle=|\tilde{n}\rangle=$ electron at \vec{k} with spin σ, i.e. $|n\rangle=|\tilde{n}\rangle=c_{\vec{k} \sigma}^{\dagger}|0\rangle$ with $|0\rangle=$ vacuum state, consider intermediate states $|m\rangle=$ electron at \vec{k}^{\prime} combined with a phonon at \vec{q}, and argue that \vec{k}^{\prime} must be equal to $\vec{k}-\vec{q}$.]
(b) While electron-phonon interaction in its original form requires second-order perturbation theory to show an effect, the present technique of a canonical transformation allows to use first-order perturbation theory. Consider a state with an electron at \vec{k}_{0} and no phonon. Show that for this state, the Hamiltonian \tilde{H}_{1} of (a) yields an energy correction of

$$
\Delta E^{(1)}=\sum_{\vec{q}} \frac{|M(\vec{q})|^{2}}{\epsilon_{\vec{k}_{0}}-\epsilon_{\vec{k}_{0}+\vec{q}}-\hbar \omega_{\vec{q}}}
$$

(c) Evaluate the result of (c) further by using the flat phonon dispersion (frequency $\omega_{L O}$) and quadratic dispersion (with effective mass m) for the electron. Assume that $M(\vec{q})=a / q$, and replace the first-Brillouin-zone sum over \vec{q} by an integration with respect to \vec{q} which covers the entire 3D space. For small k the result can be Taylor-expanded in k, yielding an increase of the effective mass due to coupling to the phonons.
Usefull integral: $\quad \int_{0}^{\infty} \frac{1}{x} \ln \left|\frac{a^{2}+2 b x+x^{2}}{a^{2}-2 b x+x^{2}}\right| d x=2 \pi \arcsin \frac{b}{a}$.

