Problem 10: Bogoliubov transformation

The Hamilton operator of two interacting electrons has the form

$$
\hat{H}=A\left(\hat{c}_{1}^{\dagger} \hat{c}_{1}+\hat{c}_{2}^{\dagger} \hat{c}_{2}\right)-B\left(\hat{c}_{1}^{\dagger} \hat{c}_{2}^{\dagger}+\hat{c}_{2} \hat{c}_{1}\right)
$$

with the constants $A, B>0$. Using the new operators $\hat{\alpha}, \hat{\beta}, \hat{\alpha}^{\dagger}$ and $\hat{\beta}^{\dagger}$ with

$$
\hat{c}_{1}=u \hat{\alpha}+v \hat{\beta}^{\dagger}, \quad \hat{c}_{1}^{\dagger}=u \hat{\alpha}^{\dagger}+v \hat{\beta}, \quad \hat{c}_{2}=u \hat{\beta}-v \hat{\alpha}^{\dagger}, \quad \hat{c}_{2}^{\dagger}=u \hat{\beta}^{\dagger}-v \hat{\alpha},
$$

\hat{H} can be transformed into diagonal form. Here, u and v are real constants.
a) Calculate the anticommutators

$$
\left[\hat{\alpha}, \hat{\alpha}^{\dagger}\right]_{+}, \quad\left[\hat{\alpha}, \hat{\beta}^{\dagger}\right]_{+} \quad \text { and } \quad\left[\hat{\beta}, \hat{\beta}^{\dagger}\right]_{+}
$$

for the case $u^{2}+v^{2}=1$.
b) Use the transformation given above to show that \hat{H} can be put into the form

$$
\hat{H}=F\left(\hat{\alpha}^{\dagger} \hat{\alpha}+\hat{\beta}^{\dagger} \hat{\beta}\right)+G
$$

if u and v are chosen in an appropriate way (under the requirement $u^{2}+v^{2}=1$). Here, F and G are constants.
c) Determine the ground state energy of the system.

Problem 11: Fermi-Bose model

The simplest model for coupling a Fermi particle (electron) and a Bose particle (phonon) is given by

$$
\hat{H}=\epsilon \hat{c}^{\dagger} \hat{c}+\omega \hat{b}^{\dagger} \hat{b}+\gamma\left(\hat{b}^{\dagger}+\hat{b}\right) \hat{c}^{\dagger} \hat{c}
$$

with $\hat{c} / \hat{c}^{\dagger}$ Fermi and $\hat{b} / \hat{b}^{\dagger}$ Bose annihilators/creators. Usually $\gamma<0$.
The Hilbert space is (in second quantization) given by states $\left|n_{f}, n_{b}\right\rangle$ with Fermi occupation number $n_{f}=0,1$ and Bose occupation number $n_{b}=0,1,2, \ldots$

Apparently, the Hilbert space splits into a subspace for $n_{f}=0$ and one for $n_{f}=1$.
a) What is the explicit form of the matrix representation of \hat{H} in the two subspaces (using $\left|n_{f}, n_{b}\right\rangle$ as basis states)?
b) Diagonalize \hat{H} by using a "quadratic addition", i.e. by turning \hat{H} into a form

$$
\hat{H}=\tilde{\epsilon} \hat{c}^{\dagger} \hat{c}+\omega \hat{\tilde{b}}^{\dagger} \hat{\tilde{b}} .
$$

Determine $\tilde{\epsilon}$ and $\hat{\tilde{b}}$. Show that $\hat{\tilde{b}} / \hat{\tilde{b}}^{\dagger}$ still fulfil Bose commutator rules. Determine the energy eigenvalues explicitly.

Consider a one-dimensional harmonic oscillator with spring constant k, mass m, and energy eigenstates $|n\rangle(n=0,1,2, \ldots)$.

Consider a second oscillator with same parameters, but spatially shifted with respect to the first oscillator by d, with energy eigenstates $|\tilde{n}\rangle(\tilde{n}=0,1,2, \ldots)$.
a) $|\tilde{n}\rangle$ can be expanded in $|n\rangle$, i. e.

$$
|\tilde{n}\rangle=\sum_{n} A_{n}^{(\tilde{n})}|n\rangle
$$

Calculate $A_{n}^{(\tilde{n})}$ for $\tilde{n}=0$ (ground state).
b) Show that in the limit of large mass the largest coefficient $A_{n}^{(0)}$ is found for

$$
n=\frac{1}{2}\left(\frac{d}{x_{0}}\right)^{2}
$$

with $x_{0}=\sqrt{\frac{\hbar}{m \omega}}$ being the characteristic length of the oscillator.

