Problem 3: Screened point charge

As discussed in the lecture, electrostatic response can be expressed in terms of three potentials $\delta \varphi_{\mathrm{ext}}(\vec{r}), \delta \varphi_{\mathrm{ind}}(\vec{r})$, and $\delta \varphi(\vec{r})$. $\delta \varphi_{\mathrm{ext}}$ is provided "from outside", $\delta \varphi_{\text {ind }}$ constitutes the system's response, and $\delta \varphi=\delta \varphi_{\mathrm{ext}}+\delta \varphi_{\mathrm{ind}}$ is the resulting, "total" potential. The charge-density response $\delta \rho_{\text {ind }}(\vec{r})$ can be expressed as $\delta \rho_{\text {ind }}=\chi_{0} \circ \delta \varphi$ (with charge susceptibility χ_{0}), resulting in $\delta \varphi_{\text {ind }}=V \circ \delta \rho_{\text {ind }}\left(\right.$ with Coulomb interaction $\left.V\left(\vec{r}-\vec{r}^{\prime}\right)=\frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right)$.
For a homogeneous system, Fourier transform

$$
f(\vec{r})=\frac{1}{(2 \pi)^{3}} \int f(\vec{q}) \mathrm{e}^{i \vec{q} \vec{r}} d^{3} q, \quad f(\vec{q})=\int f(\vec{r}) \mathrm{e}^{-i \vec{q} \vec{r}} d^{3} r
$$

turns the convolutions into multiplications, i.e.

$$
\delta \varphi_{\text {ind }}(\vec{q})=V(\vec{q}) \cdot \chi_{0}(\vec{q}) \cdot \delta \varphi(\vec{q}) .
$$

By defining $\varepsilon\left(\vec{r}, \vec{r}^{\prime}\right)$ such that $\varepsilon \circ \delta \varphi=\delta \varphi_{\text {ext }}$ one arrives at $\varepsilon=\delta\left(\vec{r}-\vec{r}^{\prime}\right)-V \circ \chi_{0}$ (or, for a homogeneous system, $\left.\varepsilon(\vec{q})=1-V(\vec{q}) \cdot \chi_{0}(\vec{q})\right)$.
Alternatively, the charge-density response can be expressed as $\delta \rho_{\text {ind }}=\chi \circ \delta \varphi_{\text {ext }}$ (with $\chi \neq \chi_{0}!$), finally resulting (for a homogeneous system) in $\frac{1}{\varepsilon(\vec{q})}=1+V(\vec{q}) \chi(\vec{q})$.

The static dielectric function of a homogeneous, infinitely large semiconductor may be given by

$$
\varepsilon(q)=1+\frac{1}{\left(\varepsilon_{0}-1\right)^{-1}+q^{2} / \bar{q}^{2}}
$$

with $\varepsilon_{0}=\varepsilon(q=0)$ the static dielectric constant and \bar{q} being some characteristic wave number (e.g., q_{TF} in a metal). Consider an external point charge Q at $\vec{r}=0$ (e.g. due to a defect atom), resulting in $\delta \varphi_{\text {ext }}(\vec{r})=\frac{Q}{r}$.
a) Calculate and plot the induced charge density $\delta \rho_{\text {ind }}(\vec{r})$. Show that the entire induced charge amounts to $\left(\varepsilon_{0}^{-1}-1\right) Q$.
b) Calculate and plot $\delta \varphi_{\text {ind }}(\vec{r})$ and $\delta \varphi(\vec{r})$. Show that for $r \rightarrow \infty$,

$$
\delta \varphi(\vec{r}) \quad \longrightarrow \quad \frac{Q}{\varepsilon_{0} r} .
$$

c) What do you get for a simple metal?

Problem 4: Commutator relations for fermions

a) The anticommutator of the operators \hat{A} and \hat{B} is given by

$$
[\hat{A}, \hat{B}]_{+}=\hat{A} \hat{B}+\hat{B} \hat{A}
$$

Show that the following relation holds for an additional operator \hat{D}

$$
[\hat{A}, \hat{B} \hat{D}]_{-}=[\hat{A}, \hat{B}]_{+} \hat{D}-\hat{B}[\hat{A}, \hat{D}]_{+} .
$$

b) The creation and annihilation operators \hat{c}_{j}^{+}and c_{j} have been introduced in the lecture. Use the anticommutator relations of these operators to calculate the following commutator $[\hat{A}, \hat{B}]_{-}=\hat{A} \hat{B}-\hat{B} \hat{A}$
i)

$$
\left[\hat{n}_{j}, \hat{c}_{k}\right]_{-} \quad \text { and } \quad\left[\hat{n}_{j}, \hat{c}_{k}^{+}\right]_{-} \quad \text { with } \quad \hat{n}_{j}=\hat{c}_{j}^{+} \hat{c}_{j} .
$$

ii)

$$
\left[\hat{c}_{i}^{+} \hat{c}_{j}, \hat{c}_{l}^{+} \hat{c}_{m}\right]_{-}=\alpha \cdot \hat{c}_{i}^{+} \hat{c}_{m}+\beta \hat{c}_{l}^{+} \hat{c}_{j} .
$$

Calculate α and β.
iii)

$$
\begin{aligned}
{\left[\hat{c}_{i}^{+} \hat{c}_{j} \hat{c}_{l}^{+} \hat{c}_{m}, \hat{c}_{n}^{+} \hat{c}_{p}\right]_{-} } & =\left(\alpha \cdot \hat{c}_{i}^{+} \hat{c}_{p}+\beta \cdot \hat{c}_{n}^{+} \hat{c}_{j}\right) \hat{c}_{l}^{+} \hat{c}_{m} \\
& +\hat{c}_{i}^{+} \hat{c}_{j}\left(\gamma \cdot \hat{c}_{l}^{+} \hat{c}_{p}+\zeta \cdot \hat{c}_{n}^{+} \hat{c}_{m}\right)
\end{aligned}
$$

Calculate α, β, γ and ζ.
Useful relation:

$$
[\hat{A} \hat{B}, \hat{D}]_{-}=[\hat{A}, \hat{D}]_{-} \hat{B}+\hat{A}[\hat{B}, \hat{D}]_{-} .
$$

Problem 5: Expectation values for fermions

(2 points)
The eigenstates of the Hamilton operator

$$
\hat{H}=\sum_{j=1}^{\infty} \varepsilon_{j} \hat{c}_{j}^{+} \hat{c}_{j} \quad \text { have the form } \quad|\phi\rangle=\prod_{j=1}^{\infty}\left(\hat{c}_{j}^{+}\right)^{n_{j}}|0\rangle .
$$

a) Calculate $\hat{n}_{l}|\phi\rangle$ with $\hat{n}_{l}=\hat{c}_{l}^{+} \hat{c}_{l}$.
b) Determine the expectation values
a) $\langle\phi| \hat{c}_{l}^{+} \hat{c}_{m}|\phi\rangle$,
b) $\langle\phi| \hat{c}_{i}^{+} \hat{c}_{l}^{+} \hat{c}_{k} \hat{c}_{m}|\phi\rangle$.

Use the occupation numbers n_{k} and n_{m} to represent your result.

Problem 6: Two-level system

The Hamilton operator of a system with two spin degenerate energy levels ε_{a} and ε_{b} has the form

$$
\hat{H}=\varepsilon_{a}\left(\hat{c}_{a \uparrow}^{+} \hat{c}_{a \uparrow}+\hat{c}_{a \downarrow}^{+} \hat{c}_{a \downarrow}\right)+\varepsilon_{b}\left(\hat{c}_{b \uparrow}^{+} \hat{c}_{b \uparrow}+\hat{c}_{b \downarrow}^{+} \hat{c}_{b \downarrow}\right) .
$$

a) Show that the state $\left|\phi_{1}\right\rangle=\hat{c}_{a \uparrow}^{+} \hat{c}_{b \uparrow}^{+}|0\rangle$ is an eigenstate of the system. Which energy has the system in this state?
b) Show that the state $\left|\phi_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(\hat{c}_{a \uparrow}^{+}+\hat{c}_{a \downarrow}^{+}\right) \hat{c}_{b \uparrow}^{+}|0\rangle$ is normalized. Is $\left|\phi_{2}\right\rangle$ an eigenstate of the system?
c) Calculate for $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$, respectively, the expectation values for the spin operators

$$
\hat{S}_{z}=\frac{\hbar}{2} \sum_{j}\left(\hat{c}_{j \uparrow}^{+} c_{j \uparrow}-\hat{c}_{j \downarrow}^{+} \hat{c}_{j \downarrow}\right) \quad \text { and } \quad \hat{S}_{x}=\frac{\hbar}{2} \sum_{j}\left(\hat{c}_{j \uparrow}^{+} \hat{c}_{j \downarrow}+\hat{c}_{j \downarrow}^{+} c_{j \uparrow}\right) \quad \text { with } \quad j=a, b .
$$

