Problem 1: Dielectric function of the electron gas

(5 points)
The dielectric function of the three-dimensional electron gas has the form (cf. the expression for semiconductors as discussed in the lecture)

$$
\varepsilon(\vec{q}, \omega)=1-\frac{e^{2}}{\varepsilon_{0} \Omega} \frac{2}{q^{2}} \sum_{\substack{\vec{k} \\|\vec{k}| \leq k_{F}}}\left(\frac{1}{E(\vec{k})-E(\vec{k}+\vec{q})+\hbar \omega}+\frac{1}{E(\vec{k})-E(\vec{k}+\vec{q})-\hbar \omega}\right) .
$$

We consider the static limit $\omega=0$.
a) Calculate $\varepsilon(\vec{q}, 0)$. To this end, substitute the sum over \vec{k} by an integral.
b) Consider the case $q \ll 2 k_{F}$ and take terms up to the order $\frac{1}{q^{2}}$ into account. Calculate the screened potential in this case

$$
\tilde{V}_{\mathrm{eff}}(\vec{q})=\frac{\tilde{V}_{\mathrm{el}}(\vec{q})}{\varepsilon(\vec{q})} \quad \text { with } \quad \tilde{V}_{\mathrm{el}}(\vec{q})=-\frac{e^{2}}{\varepsilon_{0} \Omega} \frac{1}{q^{2}} .
$$

Use $\tilde{V}_{\text {eff }}(\vec{q})$ to determine the screened potential $V_{\text {eff }}(\vec{r})$ in real space.
c) Discuss the behaviour of $\varepsilon(\vec{q}, 0)$ in the limit $q \rightarrow \infty$?
d) $\operatorname{Plot} \varepsilon(\vec{q}, 0)$.

Hint:

$$
\int x \ln \left|\frac{a x+b}{a x-b}\right|=\frac{b}{a} x+\frac{1}{2}\left(x^{2}-\frac{b^{2}}{a^{2}}\right) \ln \left|\frac{a x+b}{a x-b}\right| .
$$

Problem 2: Excitons in a simple model

Consider an electron and a hole in gallium arsenide (GaAs). The hole moves in the highest valence band (effective mass $m_{h}=0.5 m_{0}$), the electron moves in the lowest conduction band (effective mass $m_{e}=0.06 m_{0}$). They interact with one another via Coulomb interaction, screened by the effective dielectric constant of GaAs $\left(\epsilon_{r}=13\right)$. This leads to the formation of an exciton, i.e. a state in which electron and hole are bound to one another. The motion of the two particles is controlled by the effective Hamiltonian of the electron ($\hat{H}_{e}=\hat{p}_{e}^{2} / 2 m_{e}+E_{g}$), that of the hole ($\hat{H}_{h}=-\hat{p}_{h}^{2} / 2 m_{h}$), and the screened Coulomb interaction $\left(\hat{V}=-e^{2} / \epsilon_{r}\left|\mathbf{r}_{e}-\mathbf{r}_{h}\right|\right)$. The addition of E_{g} in \hat{H}_{e} reflects the fact that the conduction band starts at E_{g} (setting the top of the valence band to zero). The total Hamiltonian $\hat{H}=\hat{H}_{e}-\hat{H}_{h}+\hat{V}$ now acts on an effective two-particle wave function $\psi\left(\mathbf{r}_{e}, \mathbf{r}_{h}\right)$ for the exciton, with \mathbf{r}_{e} being the position of the electron and \mathbf{r}_{h} that of the hole. The negative sign in $-\hat{H}_{h}$ corresponds to the fact that an electron-hole excitation involves an energy difference between conduction and valence band.

Show that the Schrödinger equation $\hat{H}|\psi\rangle=E|\psi\rangle$ can be solved by a separation ansatz, $\psi\left(\mathbf{r}_{e}, \mathbf{r}_{h}\right)=$ $\chi(\mathbf{R}) \phi(\mathbf{r})$, with a center-of-mass coordinate $\mathbf{R}=\left(m_{h} \mathbf{r}_{h}+m_{e} \mathbf{r}_{e}\right) /\left(m_{h}+m_{e}\right)$ and a relative coordinate $\mathbf{r}=\mathbf{r}_{e}-\mathbf{r}_{h}$, leading to separate Schrödinger equations for $|\chi\rangle$ and $|\phi\rangle$.
Show that the resulting eigenvalues can be written as $E_{n, \mathbf{K}}=E_{g}+\hbar^{2} K^{2} / 2\left(m_{h}+m_{e}\right)-R^{*} / n^{2}$ with an effective Rydberg constant R^{*} and total momentum \mathbf{K} of the exciton. $E_{n, \mathbf{K}}$ is thus given by center-of-mass motion (that was neglected in the lecture) plus a hydrogen-like spectrum.
How big is R^{*} in the present case of GaAs?

