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Aufgabe 5: Hartree-Fock-Näherung (3 Punkte)

Der Hamiltonoperator eines Systems wechselwirkender Elektronen in einem Potential V (�r ) hat die
Form

Ĥ =
N∑

j = 1

(
p̂2

j

2m
+ V (�rj)

)
+

1
2

∑
j �= j′

e2

4π ε0

1
|�rj − �rj|

.

Im Rahmen der Besetzungszahldarstellung unter Verwendung der Basisfunktion ψl (�r, �s ) = ψl (�x )
hat der Hamiltonoperator die Form

Ĥ =
∑
i, l

Ail ĉ
+
i ĉl +

∑
i, j, l, m

1
2

Bijlm ĉ+
i ĉ+

j ĉl ĉm .

a) Welcher Zusammenhang besteht zwischen Bijlm und Bjiml?

b) Im Rahmen der Hartree-Fock-Näherung wird Ĥ durch einen effektiven Hamiltonoperator
approximiert

Ĥeff = ĤHF + W mit ĤHF =
∑
i, l

Dil ĉ
+
i ĉl .

Der Term W enthält keine Erzeugungs- und Vernichtungsoperatoren. Die Approximation wird
durch folgende Ersetzung des Viereroperators realisiert:

ĉ+
i ĉ+

j ĉl ĉm ≈ ĉ+
i cm 〈ĉ+

j cl〉0 + ĉ+
j ĉl 〈ĉ+

i ĉm〉0
− 〈ĉ+

i ĉm〉0 〈ĉ+
j ĉl〉0

− ĉ+
i ĉl 〈ĉ+

j cm〉0 − ĉ+
j ĉm 〈ĉ+

i ĉl〉0
+ 〈ĉ+

i ĉl〉0 〈ĉ+
j ĉm〉0 .

Die Erwartungswerte 〈 〉0 werden bezüglich der Eigenfunktionen des effektiven Hamilton-
operators gebildet. Es gilt:

〈ĉ+
i cm〉0 = nm · δi, m .

i) Berechnen Sie Dil und W . Stellen Sie Ihr Ergebnis mit Hilfe von Ail, Bijjl, Bijlj und nj

dar.
Hinweis: Substituieren Sie die Summationsvariablen in geeigneter Weise.

ii) Die Koeffizienten Dil des Operators ĤHF lassen sich in der Form

Dil =
∫

ψ∗
i (�x ) Ô (�r )ψl (�x ) d3 x

schreiben. Die Funktionen ψl (�x ) werden so gewählt, dass sie Eigenfunktionen von Ô sind

Ô ψl (�x ) = λl ψl (�x ) .

Damit gilt
Dil = λl δi, l .

Vergleichen Sie diese Eigenwertgleichung mit der aus dem letzten Semester bekannten Form
der Hartree-Fock-Gleichung in der Orts-Spin-Darstellung.
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Aufgabe 6: Dielektrische Funktion des Elektronengases (4 Punkte)

Die dielektrische Funktion des dreidimensionalen Elektronengases hat im Rahmen der RPA Näherung
für T = 0 die Form

ε (�q, ω) = 1 − e2

ε0 Ω
2
q2

∑
�k

|�k | ≤ kF

(
1

E (�k) − E (�k + �q ) + h̄ ω
+

1

E (�k ) − E (�k + �q ) − h̄ ω

)
.

Wir betrachten hier den statischen Grenzfall ω = 0.

a) Berechnen Sie ε (�q, 0). Ersetzen Sie dazu die Summe über �k durch ein Integral.

b) Betrachten Sie den Fall q � 2 kF . Berücksichtigen Sie dabei die Terme einschließlich der

Ordnung
1
q2

. Berechnen Sie in diesem Grenzfall das abgeschirmte Potential

Ṽeff (�q ) =
Ṽel (�q )
ε (�q )

mit Ṽel (�q ) = − e2

ε0 Ω
1
q2

.

Bestimmen Sie aus Ṽeff (�q ) das abgeschirmte Potential Veff (�r ) im Ortsraum.

c) Wie verhält sich ε (�q, 0) für q → ∞?

d) Skizzieren Sie ε (�q, 0).

Hinweis: ∫
x ln

∣∣∣∣ax + b

a x − b

∣∣∣∣ =
b

a
x +

1
2

(
x2 − b2

a2

)
ln

∣∣∣∣ax + b

a x − b

∣∣∣∣ .

Aufgabe 7: Lorentz-Oszillator (3 Punkte)

In einem klassischen Modell für die Abschirmung in einem Festkörper nehmen wir an, dass ein äußeres
Feld

�E (t) = �E0 · e−i ω t

die Elektronen im Festkörper um �r (t) verschiebt. Dabei wirken neben dem Feld �E auch die

”Rückstellkraft“ −m ω2
0 �r (t) und die Reibungskraft −2m γ �̇r (t) auf das Elektron. Die Verschiebung

bewirkt ein Dipolmoment, das zur einer Polarisation �P = −e · n�r (t) führt. Dabei ist n die Dichte
der Elektronen.

a) Stellen Sie die Newton’sche Bewegungsgleichung auf und lösen Sie diese.

b) Berechnen Sie aus
ε0 ε (ω) �E (ω) = ε0

�E (ω) + �P (ω)

die dielektrische Funktion.

Geben Sie Ihr Ergebnis unter Verwendung der Plasmafrequenz

ω2
p =

e2

ε0

n

m

an.

c) Zerlegen Sie ε (ω) in den Realteil ε1 (ω) und den Imaginärteil ε2 (ω) und skizzieren Sie diese als
Funktionen von ω.
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