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Aufgabe 5: Hartree-Fock-Naherung (3 Punkte)
Der Hamiltonoperator eines Systems wechselwirkender Elektronen in einem Potential V' (7) hat die
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Im Rahmen der Besetzungszahldarstellung unter Verwendung der Basisfunktion vy (7, §) = 9 (¥)

Form

hat der Hamiltonoperator die Form
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a) Welcher Zusammenhang besteht zwischen Bjji,;, und B ?

b) Im Rahmen der Hartree-Fock-Ndherung wird H durch einen effektiven Hamiltonoperator
approximiert
Heg = Hyp + W mit  Hup = Y Dyéf ¢ .
i1
Der Term W enthélt keine Erzeugungs- und Vernichtungsoperatoren. Die Approximation wird
durch folgende Ersetzung des Viereroperators realisiert:
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Die Erwartungswerte ( )o werden beziiglich der Eigenfunktionen des effektiven Hamilton-

operators gebildet. Es gilt:
(c+ Cm)o = N+ Oim -

i) Berechnen Sie D; und W. Stellen Sie Ihr Ergebnis mit Hilfe von A, B;;j, Biji; und n;
dar.

Hinweis: Substituieren Sie die Summationsvariablen in geeigneter Weise.

ii) Die Koeffizienten D;; des Operators Hyp lassen sich in der Form

~

Dy = [ (@)OF)u(T)d’x
schreiben. Die Funktionen v (Z) werden so gewéhlt, dass sie Eigenfunktionen von O sind

Oy (T) = Ny ()

Damit gilt
Dy = N, -

Vergleichen Sie diese Figenwertgleichung mit der aus dem letzten Semester bekannten Form
der Hartree-Fock-Gleichung in der Orts-Spin-Darstellung.



Aufgabe 6: Dielektrische Funktion des Elektronengases (4 Punkte)

Die dielektrische Funktion des dreidimensionalen Elektronengases hat im Rahmen der RPA Néherung
fir T = 0 die Form
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Wir betrachten hier den statischen Grenzfall w = 0.

a) Berechnen Sie ¢ (7, 0). Ersetzen Sie dazu die Summe iiber k& durch ein Integral.

b) Betrachten Sie den Fall ¢ < 2kp. Beriicksichtigen Sie dabei die Terme einschlielich der
1
Ordnung —;. Berechnen Sie in diesem Grenzfall das abgeschirmte Potential
q
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Bestimmen Sie aus Vog (¢ ) das abgeschirmte Potential Vg (7) im Ortsraum.

Verr (7) =

c) Wie verhélt sich € (q, 0) fir ¢ — oo?

d) Skizzieren Sie € (g, 0).
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Aufgabe 7: Lorentz-Oszillator (3 Punkte)

Hinwezs:
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In einem klassischen Modell fiir die Abschirmung in einem Festkorper nehmen wir an, dass ein dufleres
Feld

E(t) = Ey - e7'¥!
die Elektronen im Festkérper um 7 (t) verschiebt. Dabei wirken neben dem Feld E auch die
,Riickstellkraft“ —m w7 (t) und die Reibungskraft —2m 7 (t) auf das Elektron. Die Verschiebung
bewirkt ein Dipolmoment, das zur einer Polarisation P=— n¥ (t) fiihrt. Dabei ist n die Dichte
der Elektronen.

a) Stellen Sie die Newton’sche Bewegungsgleichung auf und lésen Sie diese.

b) Berechnen Sie aus
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c0e(W)E (W) = g E (w) + P (w)
die dielektrische Funktion.

Geben Sie Thr Ergebnis unter Verwendung der Plasmafrequenz
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c) Zerlegen Sie ¢ (w) in den Realteil £; (w) und den Imaginérteil €2 (w) und skizzieren Sie diese als
Funktionen von w.
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