Aufgabe 21: **Unbestimmte Integrale**

Bestimmen Sie eine Stammfunktion von f(x):

a)
$$f(x) = x^2 + 4x^4$$

f)
$$f(x) = \cos(x) \cdot \sin^2(x)$$

b)
$$f(x) = \sqrt{x} - 6x^4$$

g)
$$f(x) = x^2 e^{-3x^3}$$

c)
$$f(x) = \frac{1}{x^3} - \frac{1}{x^2}$$
 h) $f(x) = \frac{1+x}{(1-x)^2}$

h)
$$f(x) = \frac{1+x}{(1-x)^2}$$

d)
$$f(x) = (7x + 3)^7$$
 i) $f(x) = x \cdot \ln(x)$

i)
$$f(x) = x \cdot \ln(x)$$

e)
$$f(x) = x(3 + 3x^2)^3$$
 j) $f(x) = x^2 e^{-x}$

j)
$$f(x) = x^2 e^{-x}$$

Aufgabe 22: Bestimmte Integrale

Berechnen Sie folgende Integrale:

a)
$$\int_{1}^{5} dx$$

f)
$$\int_{0}^{1/2} \sin(2\pi(x+1)) dx$$

b)
$$\int_{2}^{4} \left(\frac{1}{x^2} + 2x \right) dx$$

g)
$$\int_{1}^{\infty} e^{-3x} dx$$

c)
$$\int_{2}^{3} |x| dx$$

$$h) \int_{-1}^{0} \frac{1}{\sqrt{x+1}} \, dx$$

d)
$$\int_{0}^{\pi} \sin(x) dx$$

i)
$$\int_{1}^{e} \frac{(\ln x)^2}{x} dx$$

$$e) \int_{0}^{2\pi} \sin(x) dx$$

$$j) \int_{1}^{5} \frac{x}{\sqrt{1+3x}} \, dx$$

k*) Berechnen Sie den Flächeninhalt derjenigen Punktmenge, die von den Graphen der Funktionen

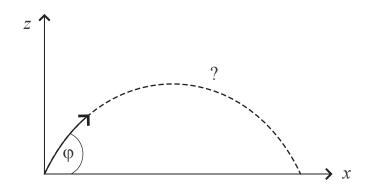
$$f(x) = -\frac{x^2}{2} + x + \frac{3}{2}$$
 und $g(x) = 2x$

sowie von der x-Achse begrenzt wird.

Aufgabe 23: Kreisbahn

Ein Körper bewege sich auf einer Kreisbahn mit Radius R. Die Bahnkurve lautet

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = R \begin{pmatrix} \cos(\omega t) \\ \sin(\omega t) \\ 0 \end{pmatrix}.$$


Dabei sei die sogenannte Winkelgeschwindigkeit ω konstant.

- a) Skizzieren Sie die Bahn in der x-y-Ebene. Wo befindet sich das Teilchen zur Zeit t=0 und wo bei $t=\frac{3\pi}{2\omega}$?
- b) Berechnen Sie die Geschwindigkeit $\vec{v}(t) \equiv \dot{\vec{r}}(t)$, die Beschleunigung $\vec{a}(t) \equiv \ddot{\vec{r}}(t)$ und die Beträge von $\vec{v}(t)$ und $\vec{a}(t)$. Geben Sie $\vec{v}(t)$ und $\vec{a}(t)$ für t=0 und $t=\frac{3\pi}{2\omega}$ an.

Aufgabe 24*: Wurfbahn

Ein Ball wird unter einem Winkel φ mit der Anfangsgeschwindigkeit v_0 abgeworfen und bewegt sich unter dem Einfluss der Schwerkraft auf der Bahnkurve

$$\vec{r}(t) = \begin{pmatrix} v_0(t)\cos\varphi \\ 0 \\ v_0(t)\sin\varphi - \frac{1}{2}gt^2 \end{pmatrix}.$$

- a) Skizzieren Sie x(t), z(t) und die Flugbahn z(x) für $\varphi = 60^{\circ}$ und $v_0 = 20$ m/s. Benutzen Sie für die Skizze g = 10 m/s².
- b) Berechnen Sie für beliebige v_0 und φ die Geschwindigkeit $\vec{v}(t)$, die Beschleunigung $\vec{a}(t)$ und deren Beträge.
- c) Zu welcher Zeit t_1 erreicht der Ball den höchsten Punkt der Bahn? Wie muss der Abwurfwinkel φ gewählt werden, damit die Höhe maximal wird?
- d) Nach welcher Zeit t_2 trifft der Ball wieder am Erdboden auf? Wie groß ist der Betrag der Geschwindigkeit beim Auftreffen? Wie muss der Abwurfwinkel φ gewählt werden, damit die Wurfweite maximal wird? Wie groß ist die maximale Wurfweite?

2