Kohl/Rohlfing Blatt 2

Aufgabe 8: Sinus- und Kosinussatz

Berechnen Sie (mit dem Sinus- und Kosinussatz) die fehlenden Seiten und Winkel im Dreieck:

a)
$$a = 4.6 \text{ cm}$$

$$b = 6.4 \text{ cm}$$

$$\beta = 33^{\circ}$$

b)
$$b = 2.6 \text{ cm}$$

$$c = 3.5 \text{ cm}$$

$$c = 3.5 \text{ cm}$$
 $\alpha = 147.5^{\circ}$

$$c^*$$
) $a = 86 \text{ mm}$ $b = 5 \text{ cm}$ $c = 6.1 \text{ cm}$

$$h = 5 \text{ cm}$$

$$c = 6.1 \text{ cm}$$

Aufgabe 9*: Additionstheoreme

Benutzen Sie die Additionstheoreme

$$\sin(\alpha + \beta) = \sin\alpha \cos\beta + \sin\beta \cos\alpha$$
 und $\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$

$$\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$$

um folgende Beziehung zu zeigen:

$$\sin(4\alpha) = 4(\sin\alpha\cos^3\alpha - \sin^3\alpha\cos\alpha).$$

Aufgabe 10: Schnittwinkel von Geraden

Bestimmen Sie den Schnittwinkel der beiden Geraden

$$f(x) = -2x + 5$$
 und $g(x) = \frac{3}{2}x + 1$.

Aufgabe 11: Polarkoordinaten

Stellen Sie folgende Punkte in Polarstellung dar:

a)
$$P = (+1, +1)$$

b)
$$P = (-1, -1)$$

$$c^*$$
) $P = (4, -3)$

Berechnen Sie die kartesischen Koordinaten folgender Punkte:

d)
$$r = 5$$
 $\phi = 295^{\circ}$

e)
$$r = 7$$
 $\phi = \frac{4\pi}{6}$

Aufgabe 12: Vektoren

a) Berechnen Sie den Betrag der Vektoren:

$$\vec{a} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$
 , $\vec{b} = \begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} -3 \\ 3 \\ -6 \end{pmatrix}$.

- b) Normieren Sie die Vektoren \vec{a} bis \vec{c} .
- c) Berechnen Sie mit den Vektroren \vec{a} bis \vec{c} :

$$\left(\vec{a} + \vec{b}\right)$$
, $\left(\vec{a} - \vec{b}\right)$, $\left(\vec{a} \cdot \vec{b}\right)$, $\vec{a} \times \vec{b}$,

$$(\vec{a} + \vec{c})$$
, $(\vec{a} - \vec{c})$, $(\vec{a} \cdot \vec{c})$, $\vec{a} \times \vec{c}$.

- d) Wie groß ist der Winkel zwischen den Vektoren \vec{a} und \vec{b} ; \vec{a} und \vec{c} ?
- e*) Wie lang ist die Projektion von \vec{a} auf \vec{b} ?

Aufgabe 13: Koordinatendarstellung von Vektoren

Schreiben Sie die folgenden Vektoren in Koordinatendarstellung (\vec{e}_1 , \vec{e}_2 , \vec{e}_3 seien die drei kartesischen Basisvektoren):

2

a)
$$\vec{e} = -3\vec{e}_1 + 5\vec{e}_2 - 12\vec{e}_3$$

b)
$$\vec{f} = \vec{e}_3$$

c)
$$\vec{g} = 2(\vec{e}_1 + \vec{e}_2) - 7(\vec{e}_1 - \vec{e}_3) - 6(\vec{e}_2 + \vec{e}_3)$$

d*)
$$\vec{h} = 4(\vec{e}_1 \cdot \vec{e}_2) \cdot \vec{e}_3 + 5(\vec{e}_1 + \vec{e}_2) - 2(\vec{e}_3 \cdot \vec{e}_3) \cdot \vec{e}_3$$

$$e^*$$
) $\vec{i} = 3(\vec{e}_2 \times \vec{e}_3) - 6(\vec{e}_1 \times \vec{e}_3)$

$$\mathbf{f}^*) \quad \vec{j} = (\vec{e}_1 \cdot \vec{e}_3) \cdot \vec{e}_2 - (\vec{e}_1 \times \vec{e}_2) + (\vec{e}_3 \times \vec{e}_2)$$

Aufgabe 14: Abstand von Punkten

Berechnen Sie jeweils den Abstand zwischen den beiden Punkten:

a)
$$(4, 3)$$
; $(-1, -4)$

b)
$$(6, -3)$$
; $(-6, 1)$

$$c^*$$
) $(1, 2, 3)$; $(4, 5, 6)$

Aufgabe 15*: Vektoren in komponentenfreier Darstellung

Beweisen Sie die Dreiecksungleichung für Vektoren:

$$\left| \left| \vec{a} \right| - \left| \vec{b} \right| \right| \, \leq \, \left| \vec{a} \, + \, \vec{b} \, \right| \, \leq \, \left| \left| \vec{a} \right| \, + \, \left| \vec{b} \, \right| \right| \, .$$