## Problem 7: Single-particle-like operators in second quantization

Consider free electrons in a box of volume $V$ with periodic boundary conditions. Determine the momentum operator, the particle-density operator ( $\delta\left(\vec{r}-\vec{r}_{i}\right)$ for a single particle) and the current density operator $\left(\frac{1}{2 m}\left[\vec{p}_{i} \delta\left(\vec{r}-\vec{r}_{i}\right)+\delta\left(\vec{r}-\vec{r}_{i}\right) \vec{p}_{i}\right]\right.$ for a single particle) in second quantization, using the single-particle energy eigenstates as single-particle basis.

## Problem 8: Excited states

In the lecture we discussed Koopmans' theorem for adding a particle to the single-Slater-determinant ground state of a $N$-particle system. We had assumed that the ground state $|N ; 111 \ldots 100 \ldots\rangle$ had been optimized within the Hartree-Fock method.
a) Prove Koopmans' theorem for particle removal, i. e. considering states

$$
|N-1 ; m\rangle=|N-1 ; 11 \ldots 101 \ldots 1100 \ldots\rangle
$$

in which orbital $m(\leq N)$ ist empty: show that

$$
\begin{equation*}
\langle N-1 ; m| \hat{H}|N-1 ; m\rangle=E_{N, 0}^{(\mathrm{HF})}-\epsilon_{m}^{(\mathrm{HF})} \tag{i}
\end{equation*}
$$

and
(ii)

$$
\langle N-1 ; m| \hat{H}\left|N-1 ; m^{\prime}\right\rangle=0 \quad \text { for } \quad m \neq m^{\prime} .
$$

b) Consider particle-hole excitations

$$
|N ; m n\rangle=|N ; 11 \ldots 101 \ldots 1100 \ldots 010\rangle
$$

in which orbital $m(\leq N)$ is empty and orbital $n(>N)$ is occupied.
Show that

$$
\langle N ; m n| \hat{H}\left|N ; m^{\prime} n^{\prime}\right\rangle=\left(E_{N, 0}^{(\mathrm{HF})}+\epsilon_{n}-\epsilon_{m}\right) \delta_{m m^{\prime}} \delta_{n n^{\prime}}-V_{m^{\prime} n, m n^{\prime}}+V_{m^{\prime} n, n^{\prime} m}
$$

## Problem 9: Hubbard model

a) In the case of a single atom or ion, the most prominent physics of the electrons is often given by a (partially filled) localized orbital. This situation can often be approximated by a simplified Hubbard model of the form

$$
H=\sum_{\sigma} \epsilon_{0} \hat{c}_{\sigma}^{\dagger} \hat{c}_{\sigma}+U \hat{n}_{\uparrow} \hat{n}_{\downarrow} .
$$

In here, $\epsilon_{0}$ denotes the energy level of the orbital in a single-particle picture, while $U$ indicates the extra energy which has to be invested to bring the second electron into the orbital while a first electron (repelling the second one) already occupies the orbital.
Show that the states $|N=0\rangle,|N=1 ; 10\rangle,|N=1 ; 01\rangle$, and $|N=2 ; 11\rangle$ are eigenstates of $\hat{H}$, and calculate their energies. Here, the occupation numbers $n_{\uparrow}$ and $n_{\downarrow}$ in $\left|N ; n_{\uparrow} n_{\downarrow}\right\rangle$ indicate the occupation of the spin-up and spin-down state of the orbital.
b) Now consider the case of two such orbitals in close vicinity, i.e., on neighbouring atoms/ions. In addition to the single-site Hamiltonian, hopping is possible between the sites, yielding a Hamiltonian

$$
\begin{aligned}
H & =\epsilon_{0}\left(\hat{c}_{1 \uparrow}^{\dagger} \hat{c}_{1 \uparrow}+\hat{c}_{1 \downarrow}^{\dagger} \hat{c}_{1 \downarrow}+\hat{c}_{2 \uparrow}^{\dagger} \hat{c}_{2 \uparrow}+\hat{c}_{2 \downarrow}^{\dagger} \hat{c}_{2 \downarrow}\right) \\
& +t\left(\hat{c}_{1 \uparrow}^{\dagger} \hat{c}_{2 \uparrow}+\hat{c}_{1 \downarrow}^{\dagger} \hat{c}_{2 \downarrow}+\hat{c}_{2 \uparrow}^{\dagger} \hat{c}_{1 \uparrow}+\hat{c}_{2 \downarrow}^{\dagger} \hat{c}_{1 \downarrow}\right) \\
& +U\left(\hat{n}_{1 \uparrow} \hat{n}_{1 \downarrow}+\hat{n}_{2 \uparrow} \hat{n}_{2 \downarrow}\right)
\end{aligned}
$$

based on the two orbitals (1) and (2) which occur as spin-up and spin-down, i.e. four singleparticle states in total. Apparently, the configurations $\left|N ; n_{1 \uparrow} n_{1 \downarrow} n_{2 \uparrow} n_{2 \downarrow}\right\rangle$ constitute a useful many-body basis.
i) Consider the situation of having $N=1$ electrons in the system. Show that there are four corresponding eigenstates of $H$. Which is their energy?
ii) Consider the situation of having $N=3$ electrons in the system. Show that there are four corresponding eigenstates of $H$. Which is their energy?
iii) Consider the situation of having $N=2$ electrons in the system. Show that there are six corresponding eigenstates of $H$. Which are their energies? The lowest-energy state then constitutes the ground state for $N=2$.
iv) The Hamiltonian may also be treated within a mean-field approximation (often called "Hartree-Fock" approximation). Note that (without proof) this corresponds to replacing

$$
\hat{n}_{\uparrow} \hat{n}_{\downarrow} \quad \text { by } \quad\left\langle\hat{n}_{\uparrow}\right\rangle \hat{n}_{\downarrow}+\left\langle\hat{n}_{\downarrow}\right\rangle \hat{n}_{\uparrow}
$$

in the Hamiltonian. Note further that in the ground state (for a given $N$ ), all $\left\langle\hat{n}_{i, \sigma}\right\rangle$ are the same ( $=N / 4$ ). Calculate the mean-field ground-state energy for $N=1, N=2$ and $N=3$ and compare your results with the exact values given above.

