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Problem 7: Single-particle-like operators in second quantization (2 points)

Consider free electrons in a box of volume V with periodic boundary conditions. Determine the
momentum operator, the particle-density operator (§(7 — 7;) for a single particle) and the current

1
density operator (2— [p; 0(7 — 73) + 0(7 — 73) p5] for a single particle) in second quantization, using the
m

single-particle energy eigenstates as single-particle basis.

Problem 8: Excited states (4 points)

In the lecture we discussed Koopmans’ theorem for adding a particle to the single-Slater-determinant
ground state of a N-particle system. We had assumed that the ground state |N; 111...100...) had
been optimized within the Hartree-Fock method.

a) Prove Koopmans’ theorem for particle removal, i.e. considering states
IN—-1; m) = |[N—1;11...101...1100...)

in which orbital m (< N) ist empty: show that

(i) (N —L;mlHIN —1;m) = BEJY — ™
and
(i) (N—1;m|HIN —1;m/) =0 for m #m'.

b) Consider particle-hole excitations
IN; mn) = |N; 11...101...1100...010)

in which orbital m (< N) is empty and orbital n (> N) is occupied.

Show that

o HF
<N; mn|H‘N7 m,n/> = (E](\Lo) + en — €m> 5mm’ 6nn’ - Vm’n,mn’ + Vm’n,n’m .

Problem 9: Hubbard model (4 points)

a) In the case of a single atom or ion, the most prominent physics of the electrons is often given
by a (partially filled) localized orbital. This situation can often be approximated by a simplified
Hubbard model of the form

H=> eéhés + Unpiy .
(e

In here, ¢y denotes the energy level of the orbital in a single-particle picture, while U indicates
the extra energy which has to be invested to bring the second electron into the orbital while a
first electron (repelling the second one) already occupies the orbital.

Show that the states [N = 0), [N = 1; 10), |N = 1; 01), and |N = 2; 11) are eigenstates of H,
and calculate their energies. Here, the occupation numbers ny and n| in |N; nq4n)) indicate the
occupation of the spin-up and spin-down state of the orbital.



b) Now consider the case of two such orbitals in close vicinity, i.e., on neighbouring atoms/ions.

In addition to the single-site Hamiltonian, hopping is possible between the sites, yielding a

Hamiltonian

H = e (o + ey oy + dpoor + ¢ oay)
ot (e + el ey + ey + o)
+ U (ﬁ‘lTﬁli + 'fLQT’fLQi)

based on the two orbitals (1) and (2) which occur as spin-up and spin-down, i.e. four single-

particle states in total. Apparently, the configurations |N; niyny1 noyngy) constitute a useful

many-body basis.

i)

ii)

iii)

iv)

Consider the situation of having N = 1 electrons in the system. Show that there are four
corresponding eigenstates of H. Which is their energy?

Consider the situation of having N = 3 electrons in the system. Show that there are four
corresponding eigenstates of H. Which is their energy?

Consider the situation of having N = 2 electrons in the system. Show that there are six
corresponding eigenstates of H. Which are their energies? The lowest-energy state then
constitutes the ground state for N=2.

The Hamiltonian may also be treated within a mean-field approximation (often called
“Hartree-Fock“ approximation). Note that (without proof) this corresponds to replacing

nphy by () iy + (y) fp

in the Hamiltonian. Note further that in the ground state (for a given N), all (7; ,) are
the same (= N/4). Calculate the mean-field ground-state energy for N = 1, N = 2 and
N = 3 and compare your results with the exact values given above.



