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Problem 7: Single-particle-like operators in second quantization (2 points)

Consider free electrons in a box of volume V with periodic boundary conditions. Determine the

momentum operator, the particle-density operator (δ(~r − ~ri) for a single particle) and the current

density operator (
1

2m
[~pi δ(~r−~ri) + δ(~r−~ri) ~pi] for a single particle) in second quantization, using the

single-particle energy eigenstates as single-particle basis.

Problem 8: Excited states (4 points)

In the lecture we discussed Koopmans’ theorem for adding a particle to the single-Slater-determinant

ground state of a N -particle system. We had assumed that the ground state |N ; 111 ... 100 ...〉 had

been optimized within the Hartree-Fock method.

a) Prove Koopmans’ theorem for particle removal, i. e. considering states

|N − 1; m〉 = |N − 1; 11 ... 101 ... 1100 ...〉

in which orbital m (≤ N) ist empty: show that

(i) 〈N − 1;m|Ĥ|N − 1; m〉 = E
(HF)
N, 0 − ε

(HF)
m

and

(ii) 〈N − 1; m|Ĥ|N − 1; m′〉 = 0 for m 6= m′ .

b) Consider particle-hole excitations

|N ; mn〉 = |N ; 11 ... 101 ... 1100 ... 010〉

in which orbital m (≤ N) is empty and orbital n (> N) is occupied.

Show that

〈N ; mn|Ĥ|N ; m′ n′〉 =
(
E

(HF)
N, 0 + εn − εm

)
δmm′ δnn′ − Vm′ n,mn′ + Vm′ n, n′m .

Problem 9: Hubbard model (4 points)

a) In the case of a single atom or ion, the most prominent physics of the electrons is often given

by a (partially filled) localized orbital. This situation can often be approximated by a simplified

Hubbard model of the form

H =
∑
σ

ε0 ĉ
†
σ ĉσ + U n̂↑ n̂↓ .

In here, ε0 denotes the energy level of the orbital in a single-particle picture, while U indicates

the extra energy which has to be invested to bring the second electron into the orbital while a

first electron (repelling the second one) already occupies the orbital.

Show that the states |N = 0〉, |N = 1; 10〉, |N = 1; 01〉, and |N = 2; 11〉 are eigenstates of Ĥ,

and calculate their energies. Here, the occupation numbers n↑ and n↓ in |N ; n↑ n↓〉 indicate the

occupation of the spin-up and spin-down state of the orbital.
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b) Now consider the case of two such orbitals in close vicinity, i. e., on neighbouring atoms/ions.

In addition to the single-site Hamiltonian, hopping is possible between the sites, yielding a

Hamiltonian

H = ε0

(
ĉ†1↑ ĉ1↑ + ĉ†1↓ ĉ1↓ + ĉ†2↑ ĉ2↑ + ĉ†2↓ ĉ2↓

)
+ t

(
ĉ†1↑ ĉ2↑ + ĉ†1↓ ĉ2↓ + ĉ†2↑ ĉ1↑ + ĉ†2↓ ĉ1↓

)
+ U (n̂1↑ n̂1↓ + n̂2↑ n̂2↓)

based on the two orbitals (1) and (2) which occur as spin-up and spin-down, i. e. four single-

particle states in total. Apparently, the configurations |N ; n1↑ n1↓ n2↑ n2↓〉 constitute a useful

many-body basis.

i) Consider the situation of having N = 1 electrons in the system. Show that there are four

corresponding eigenstates of H. Which is their energy?

ii) Consider the situation of having N = 3 electrons in the system. Show that there are four

corresponding eigenstates of H. Which is their energy?

iii) Consider the situation of having N = 2 electrons in the system. Show that there are six

corresponding eigenstates of H. Which are their energies? The lowest-energy state then

constitutes the ground state for N=2.

iv) The Hamiltonian may also be treated within a mean-field approximation (often called

“Hartree-Fock“ approximation). Note that (without proof) this corresponds to replacing

n̂↑ n̂↓ by 〈n̂↑〉 n̂↓ + 〈n̂↓〉 n̂↑

in the Hamiltonian. Note further that in the ground state (for a given N), all 〈n̂i, σ〉 are

the same (= N/4). Calculate the mean-field ground-state energy for N = 1, N = 2 and

N = 3 and compare your results with the exact values given above.
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