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The phonon dispersion curves, spectrum and specific heat of solid J2 and Br 2 
are calculated using a general central force parameter model, which is fitted to the 
available experimental data. The influence of the intramolecular degrees of freedom 
on the elastic constants and the compressibility is shown. The usefulness of group 
theoretical methods in the investigation of normal modes of vibrations in crystals is 
illustrated by applying them to the decomposition of the dynamical matrix. 

1. Introduction 

In  the present paper  the phonon  dispersion curves for solid J2 are 
determined within a central force model. The analogous calculations 
were done for  Br2 but  the results are not  given here. Former  at tempts 
with a Lennard-Jones-potential  as an empirical potential funct ion 
taking into account  the polarizability of the dumbbell  molecules could 
not  explain the infrared data satisfactorily [1 ]. Fur ther  it is not  sufficient 
to consider additional quadrupole  interactions alone. One must  ulti- 
mately pay regard to covalent intermolecular bonding.  The phonon  
dispersion curves are calculated in the harmonic  approximat ion for  the 
symmetry directions 27, A, A and H '  ~ K  of the Brillouin Zone (BZ) 
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Fig. 1. First Brillouin Zone of the J2-crystal 

* Extract from a dissertation (D 26), Giegen. 

19 Z. Physlk, Bd, 258 



264 c. Falter: 

(Fig. 1). The classification follows in terms of the irreducible multiplier 
representations (IMR) of the point group of the wave vector k, called 
G0k. Some directions of symmetry can be completely factorized by 
group theory. The same projection technique is used in the calculation 
of the elastic constants and the compressibility in order to have simpler 
analytic expressions in the investigation of these quantities in the non- 
rigid-molecular model as well as in the rigid-molecular lattice. 

The eigenvectors (EV) for the vibrations in the long wave limit and 
the geometry of the lattice are given in [1]. The crystal structure of iodine 
belongs to the space group Cmca (D~). 

2. Symmetry of the Dynamical Matrix and Its Eigenvectors 

The relevance of symmetry to simplification of physical problems 
is of great importance. For example the translational invariance of the 
equations of motion in the Born-von-Karman theory implies, that the 
solutions transform according to the irreducible representations of 
the translation group. This fact reduces the problem of crystal vibrations 
to the solution of a 3r-dimensional eigenvalue problem, where r is the 
number of atoms per unit cell. The matrix of this problem is the so 
called dynamical matrix t (k). 

O h  
t~j v (k) = (M, My)- 1/2 ~ r  [i (k, Rn)]. (1) 

0 4  . 

k is the wave vector, M~ is the mass of the atom at site/~, and r is 
zJ 

the force tensor between atoms at sites (0#) and (he), t(k) is in our case 
a Hermitian matrix of dimension 12 x 12. In terms of its EVs {e (j)} and 
corresponding eigenfrequencies (EF) {w (j) (k)} the atomic displacements 
may be written as 

u ~ = (M,) - ' /2  e(i) ~ exp {i [(k, R m) - a) (j) (k) t] }. (2) 

Let the crystal be subjected to a symmetry operation of the space group 
G: ((~ [ a): = (~ I R h + v~)}, with ~r as an orthogonal transformation, R h as 
a primitive translation and r~ as a non-primitive translation, which is 
unique for each ar The EVs then transform according to [2] 

e'~ ) = O (k, (~[R n + v~}) e~ j). (3) 

O operates in the vibration space L(k), which can be factorized into a 
particle space Lp (k) and an euclidean space LE (k). 

L(k) = Lp(k) x LE(k ). (4) 
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With respect to this partition the explicit form of O is given by the 
unitary operator [2] 

O (k, (~ [R h + v,))~'? = ~s 6 (/z, F (v ~)) exp [i(k, {~r h + v~}-2 R ~_ RV)]. (5) 

The 6-symbol expresses the fact, that particle v is carried into # by the 
operation (~1Rn + v~). 

If we restrict ourselves to the following subgroup of G, the group of 
k, Gk:{(~la)l~tk=k+K(k,~) and (~]a)~G},K: vector of the recip- 
rocal lattice, we have the commutation rule 

[O (k, {~1 a}), t(k)]_ = 0, (6) 

where (O(k, (~] a))) provides a 3r-dimensional unitary representation 
of Gk. Instead of dealing with Gk, we can use the purely rotational 
elements {R) of Gk, which constitute the point group Go~ of k. With 
each Re Go k we associate a matrix O (k, R) by 

O (k, R) = exp [i(k, R h + VR) ] 0 (k, {RI R h + vR}) (7) 

and prove, that {O(k, R)} provides an unitary multiplier representation 
of Go~ [2] 

0 (k, R~) 0 (k, R j) = (9 (k, R i, R j) 0 (k, R, R j) (8) 
with 

~b (k, g,, gy) = exp [i ( k -  R71 k, VR~)]. (8 a) 

If k is in the interior of the BZ, or the space group is symmorphic, q5 
equals unity and we have an ordinary representation of Gok. Only for 
some k on the surface of the BZ in the case of a non-symmorphic space 
group the representation can differ from an ordinary one. The IMR 
are tabulated in Kovalev's book and the irreducible representations of 
the space groups are given by Zak [3]. The relation 

[O(k, R), t(k)]_ =0 (9) 

holds also for the operators (O(k, R)). Now the dynamical matrix t(k) 
can be factorized by means of a similarity transformation with a matrix 
Uk. U~ can be determined with the help of the operators 

P~k)(k)=(f~/h) ~, x~[)(k, R)* O(k, R), (10) 
R~Gok 

i , k = l  ...f~ (fs=dimension of the IMR (~(s) (k, R)}), s = l  . . .q (q= 
number of inequivalent IMR), a =  1 ... c~ (c~ = number of times the s-th 
IMR is contained in {O(k, R)}), h denotes the order of Go~. The numbers 
c~ are given by standard methods [4]. 

c~=h -I  ~, z(k,R)z(S)(k,R) * (11) 
ReGok 

19" 



266 C. Fal ter :  

with Z and X (s) as characters of {O(k,  R)} and {z(Sl(k, R)} respectively. 
By applying p~/(k) to an orthogonal basis of L(k) ,  we can project out c~ 
symmetry-adapted vectors {b(k ~'"'~ a = l  ... c~}. The partners of these 
vectors may be generated by applying to them the operator p}~/(k) with 
i :t=k. In practice this can be done by constructing an operator-table from 
Eq. (10). All these vectors can be orthonormalized and arranged lexico- 
graphically to form the matrix U~, where all the vectors belonging to 
the same s and i are grouped together. Similarity transformation of 
t (k) by U~ gives the blockdiagonal matrix 

diag {t(k) (~' o} = U + t (k)  Uk (12) 
(s, i) 

that means, one has to solve the eigenvalue problem in the subspaces 
L(~, 0 (k) c L(k) of dimension c~ only. Every EF e) (~, "~(k) is at least 
f~-fold degenerate and we have f~ diagonal blocks, each of dimension % 

3. Model Calculations 

As mentioned before van-der-Waals- and quadrupole interactions 
alone are not sufficient for solid J2 and covalent bonding was not 
considered in [1]. But there is a specific interaction in solid J2 and Br2 
between neighboring molecules, which arises from partial intermolecular 
covalent bonding and which causes different charge distribution of the 
molecule in the solid phase and in the gas phase. This leads for example 
to the fact, that the distances between nonbonded nearest neighbors and 
next nearest neighbors in the same ac-plane are smaller than nonbonded 
nearest neighbors in different ac-planes [1, 5]. 

In fitting the a.,lun(2" 1)_ and B(a4~,2Lmodes this covalent bonding type 
requires the consideration of neighbors up to 9-th order in the coupling 
constants and gives rise to relatively great values (compared to van-der- 
Waals interaction alone) for the intermolecular spring constants f2 and f9 
between the atoms ( 1 - 4 ' )  and ( 1 - 3 ' " )  [6, 7] (Fig. 2). Neighbors of 
order 10 and 11 turn out to be unessential. For the identification of 
EVs of Fig. 2 in [1] and the notation used in this paper we should notice 
the following changes: 01 _~n(2',~lu 1), 02 _~ Au, 03 ~ B~4s 21, L4._~ B3g ' 
L3 ~ B1 g, L2 ~ A~ ~  21, L1 _~ B(2ag, 21, /2 ~ A(g 1' 11, 11 ~ B(2~ 1 / (see Fig. 4). 
The potential was further fitted to the internal vibration frequency and 
the reciprocal compressibility x-1. The fit to 1r gives relatively small 
values for the coupling between molecules of the same orientation in 
the lattice as opposed to the values off2 andf9 (see parameter set A in the 
Appendix). On the other side the contribution of the covalent bonding 
is comparable to that in the directions off2 and f9 [5], so that one could 
regard the experimental value of x-1 as being to small. For this reason, 
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Fig. 2. Jz-lattice. The hatched particles belong to planes at distance b/2 below or 
above the drawing plane (ae-plane). The arrows represent couplings 

besides the parameter set A, fitted to x-~, another set B is given, which 
is not in agreement with ~c -~, but which seems more realistic with 
respect to the coupling of molecules of the same orientation in one plane. 
At this point we want to remark, that for solid Br2 the analogous calcula- 
tions have been done, with the exception of a fit to t~ -~, because the 
experimental value of this is not known (see Table 1 in the Appendix). 

The elastic constants and ~-1 for J2 and Br2 were investigated in the 
usual Born lattice theory as well as in the limit of an infinite intra- 
molecular force constant. The elastic constants are given by [8, 9]. 

Cij, k l = ~ i k ,  j l .  ~ ^ ^ ~# ~,v ~v (13) Cjk, i l - -Ci j ,  kl'~- Z Cm, i jRmn n, kl" 
mlt 
11 V 

By means of the method developed in Chapter 2 the inhomogeneous 
part of the coefficient matrix (t~ij) for the internal displacements of the 
sublattices of the crystal can be inverted in a blockdiagonal form, 
because this matrix commutes with the set of operators {O(k=  0, R), 

.uv R~Go: Point group of the crystal}. The relevant matrix (Rmu), which 
solves the problem and which can be derived from making use of the 
projector techniques mentioned above, has the form 

u v  (L) - 1  ( K ) _  u~ 

LK~Si ~? (A )LK~, UFj , 

vl i 

(14) 
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Fig, 3. Asymptotic curve for the reciprocal compressibility x-  1. to- 1 in dyn- cm- 2, 
fl in 104 dyn �9 cm- 1. The zero-point is arbitrary 

where 

with 

and 

ALK = <~(Z) I C [ ~(K)>, C' = U~ C U r 

{~(L): orthonormal set of vectors, orthogonal to the 
homogeneous solutions of (~} 

U r : =  Uk= 0. 

In the rigid molecule approximation one must take the limit of 
infinite intramolecular force constant f l  in Eq. (13). Fig. 3 shows the 
asymptotic curve of rc - t  02, parameter set A). This curve gives good 
agreement of the rigid molecule approximation with the usual theory 
in the actual range of intramolecular spring constant. Table 2 in the 
Appendix gives a comparison of the elastic constants and x - t  in both 
approaches, Voigt notation is used. 

Fig. 4 represents the phonon dispersion curves for parameter set 
A for solid J2 in the direction of symmetry Z, A, A and H ' ~  K. The 
notation is related to the BZ from Fig. 1. The classification of the bands 
follows according to the IMR of Go k from the eigenvalue equation 

t ( k )  e(k s' ~' i)=co(s, ~)2 (k  ) e(kS, ~, o (15) 

and from the fact, that apart from accidental degeneracies the EVs 
corresponding to each eigenvalue of an operator transform irreducibly 
under the symmetry group of the operator, this means 

f ~  

O(k,  R) e~ ~' a, o _- Z ~,'-(~)zl", t '~, R) e[ ~' ~' ''). (16) 
i ' =  1 
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Fig. 4, Phonon dispersion curves of J2 for parameter set A in the symmetry directions 
27, A, A and H' ~ K. For the internal vibrations the zero-point is shifted arbitrarily 

For  the F-point the point group G O of the crystal is the important one 
and the classification can be done easily in terms of two character 
criteria for infrared active and raman active modes [10, 11]. The modes 
B~ ,, B2, and B3, are infrared active and Ag, B 1 g, B 2 g and B 3 g turn out 
to be raman active, while the A.-mode is inactive. 

The connection of branches of the dispersion relation is given by 
compatibility relations. For example if a symmetry line {k) meets at a 
symmetry point ko, where Gk c G,o , then one can subduce with Gk from 
a given irreducible representation of G,o a representation of Gk, which 
has to be decomposed into its irreducible limit-representations (k ~ ko). 
This process involves the compatibility relations [12, 13]. One can easily 
establish these relations by using the known IMR and the decomposition 
formula (11). Besides the degeneracy caused by spatial symmetry time 
reversal can produce additional degeneracies of the dispersion curves 
[2, 13, 14]. The reason is essentially the following property of the 
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dynamical matrix: 
6~V(k)=t~V(-k) *. (17) 

If an element at_ eGo exists, such that at_ k = - k ,  then we can form a 
new group Go k, -k = Go ~ + at_ Go k, in which Go k is an invariant subgroup. 
We are able to show, that there are certain representations O(k, R), 
l~eGok,-k, which commute with t(k), where the representations of the 
coset e_ Go k are anti-unitary matrix operators [2]. 

Under some circumstances the enlarged number of symmetry 
elements produces additional degeneracies. In [2, 13] there is a character 
criterion to test every k for additional degeneracy due to time reversal. 
In our case the points F, K, T and the directions 2, A and A are not 
influenced (type 1 of the criterion), while the point O1 has this additional 
degeneracy (type 3). We want to call special attention to the fact, that 
classification of the k-points by time reversal sometimes reduces the 
expense of computation time very much. 

As suggested from the crystal structure the frequencies at the F-point 
are very plausible. The intermolecular forces within the ac-layer will be 
greater than those between different layers, and therefore the vibrational 
frequencies of the in-plane motions are higher than those of the out-of- 

B(4', 2) plane motions. This means that the frequencies of the B~2s , 11., 3 u ,- 
A(gl, 21_, B2 (ag,21_modes and naturally the internal modes A(gl' 11 and B(2~ 1 ) 
are higher than those of the A,-, B, g- and B3g-modes. The frequency of 
B(a4~ e) is the highest external one, because this vibration involves the 
greatest change of the shortest intermolecular distance (EFs are given 
in Table 3 of the Appendix). 

The values of the elastic constants C~k, derived from the extra- 
polated gradients of the dispersion curves (Fig. 4) are in good agreement 
with the values calculated directly from relation (13). 

The specific heat for constant volume is given by 

Cv \ t?T Iv 
with 

<E>r = Eo + h ~ <n.(k)>r co (') (k) 
k,o" 

r 

= E o + h  ~ (exp[hco/kBT]-l)-looZ(oo)do9 
0 

Eo = Zero-point energy, <n~ (k)>r = Thermal phonon population number, 
Z(@ = Phonon-spectrum. 

Z(og)dog(dog~O) denotes the number of EFs of the crystal within 
the interval (~o ... co+dr@ Using the root sampling method we can 
get an approximation for the phonon spectrum, which is illustrated 
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Fig. 5a and b. Histogram of the phonon spectrum approximation. Z(co) is given in 
logarithmic scale while co is linear (a). Specific heat of J2 for several parameter sets (b) 
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in Fig. 5a in form of a histogram for the parameter set A of J 2 "  For this 
purpose we calculate the corresponding EFs from Eq. (15) for a great 
number of homogeneously distributed /c-vectors in the BZ (about 
9000/c-points in the BZ were used). In order to have the best effectiveness 
as possible that means the greatest density of/c-states for a given expense 
of calculation, we choose the elementary region of the BZ as the domain 
for the /c-vectors weighting them according to the symmetry of the 
phonon bands. Numerical integration in the formula for Cv gives the 
specific heat of solid J2. Fig. 5 b shows the specific heat curve for several 
parameter sets. Set C was introduced because set A does not reproduce 
the experimental data for C V in the range of low temperature. Therefore 
in case C the gradients of the acoustic branches were enlarged by varying 
the parameters. Set C itself yields a too large value of x -  1 (see Appendix). 
It is however an open question how far the available experimental data 
for the specific heat are valid especially because the experiments are 
very old [15]. Further for set C there results a coupling between molecules 
of the same orientation respectively between molecules of different 
layers which seems to be to strong. Finally the parameter set B is a 
compromise for an eventual insecurity in measuring re-1 or the specific 
heat respectively. 

4. Appendix 

The value for ~c-1 in the case of parameter set C for J2 is 1.61468 �9 
1011 dyn .  cm -2. 

Table 1 

Force constants Parameter set 
between atoms 
(see Fig. 2) J2 Br2 
�9 10  4 dyn �9 cm-1 A B A 

1--2: f l  11.500 11.500 20.700 
1-- 4': f2 0.642 0.642 0.557 
1 -- 10': f3 0.062 0.250 0.217 
1--6': f4 0.030 0.060 0.069 
1--5: fs 0.040 0.080 0.052 
1--7': f6 0.025 0.025 0.020 
1 - - 9 : f 7  0.055 0.150 0.130 
1--6: fs 0.015 0.030 0.026 
1 - -  3 " :  f 9  0.422 0.422 0.343 
1--8': flo 0.010 0.010 0.010 
1--3': fll  0.010 0.010 0.010 
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Elastic Parameter set 
constants 
and x-1 J2 Br2 J2 Br2 

" 1011 dyn �9 cm -2 A B A A ( f l=  ix3 ) A(f l=  o0) 

Cll 0.76061 1 . 7 5 5 3 7  1 . 7 7 0 9 9  0.76600 1.78116 
ClZ 0.09855 0 . 1 9 7 2 5  0.16342 0 . 0 9 8 2 0  0.16271 
(713 0.82408 1 . 1 3 5 4 4  1 . 1 3 9 9 9  0 . 8 3 8 6 9  1.15828 
C66 0.10247 0 . 2 0 2 9 8  0 . 1 6 8 9 0  0 . 1 0 2 4 7  0.16890 
Cs5 1.04084 1 . 1 8 5 7 2  1 . 1 3 6 2 5  1 . 0 9 8 9 6  1.16059 
C2z 0.32678 0 . 5 8 0 7 5  0 . 5 1 1 5 5  0 . 3 2 6 6 3  0.51158 
C23 0.08614 0 . 1 0 6 6 6  0 . 1 1 2 6 5  0 . 0 8 5 1 8  0.11138 
C44 0.09486 0.10836 0 . 1 0 3 6 6  0.09486 0.10366 
C33 3.70798 3 . 9 4 5 4 4  3 . 5 0 2 0 9  3 . 7 4 7 9 9  3.53489 
x-1 0.75698 1 . 0 1 7 8 1  0.95742 0 . 7 6 4 9 8  0.96582 

The force-constant  tensors given here complete the tensors intro- 
duced in [1] for  the extended model  of this paper. The connect ion 
between the force-constant  tensor elements and the springs follows 
f rom the geometry of the lattice (Fig. 2) and Table 1 in [1]. The limiting 
frequencies for  the F-point  are the following. 2 (s' a) (k).. = m (co (s' ") (k)) 2 
by definition. 

Table 3 

Eigenfrequen- 
des for the 
k =  0-motion 
1013 Hz 

Parameter set Force-constant tensors 

Ag(1, I) 

Ag(1,2) 

Big 
B[ag, 1) 

B(3g, z) 

Bag 

Au 
B 2/,1) 
s12:,2) 
B2 u 
B(34 ~ , 1) 

B(4~ , 2) 

J2 {!70i} 1--9: 0 
A B A 0 

{ y8 - e s  -~8 } 3.3820 3.3850 5.6535 1-- 6: -- es % -- ~s 

0.5416 0.6977 0.8276 ~8 -- ~s fls 

0.2513 0.3369 0.4459 f f19 0 --891 
3.4168 3.4200 5.6763 1 -- 3 " :  { 0 0 [ 0  

t--~9 0 %J 
0.8385 0.9470 1.1077 

0.2856 0.3633 0.4659 1--8':'Y10~ el0 ~10 el0 S~ii} 
0.2096 0.2096 0.2465 (--  ~1o -- ~1o 
0 700 0 700 09 00 

0 0 0 1--3':  ~ O 0 ~ 0  

0 0 0 

0 0 0 

1.2200 1.2200 1.400 
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Big: 2 (z' a)(F)= -4 {~4 + ~8 + 2 ~ io}  

B3g : 2 ( 4 , 1 ) ( / , ) = _ _ 4 { ~ 4 + ~ 6 + ~ 8 }  

Au : .~(l', i ) ( / ' )= _4{c~6+2~jo} 

Blu: 2(2', 1)(/,)= _4{/32 + /39 + 2~1o + /311 } 

B3.: 2(4" 2)(/')= - 4  {cz2 +/36 + ~9 +2/31o + ~,1}, 

2(" l ) ( F ) -  w ,  + V" _ ((O" - F")2 + 4B" 2)1/2 Ag: i(1, 2)( / , ) - - ' - "  

2(3' " ( r ) - - " +  c"_+ ((A"- c") 2 + 4 B "  2)~/2 ,  Bzg: 2(3, 2) ( / ' )  - ~  

A " =  - {/3i + 2/32 + a3 + 274 +2ya} 

B " =  - {a~ +6s  + 2~4+2~s} 

C"= -{~ l  + /33 + 2/34 + 2fls + 2~9 +4/3io + 2Cql} 

D"= -{/31+~3 + 2~4 + 2?s + 2/39 +4yio + 2/3~1} 

F " =  - {~  + 2 ~  2 +/33 +2/34+2/36 +2/38}" 

The reduction for the A and 2;-direction in k-space 
dimensional partial problems with the solutions 

/_?)(A): 

involves 

/~4) (A): 

r 1/2 

2{ 4+ 6+ 8+2 1o 2 1ocos(  t 1 ,2 - -  m 

C 1/2 

_ 
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gg)(.r): 

L(3)(~:): 

2(2) 1 , 2 - - - 2 { ~ 4 + 2 ~ s + 2 c % + ~ s + 2 ~ 1 0 } + 4 ~ s c ~  

+ 2 (c~24 + as z + 4 Cq2o + 2 c~,~ c~ s cos (k:, a)  

1 , 2  ~ 

+ 2 (c~4z + c~82 + 4C~2o + 2~4 e8 cos(k : ,a )  

The calculations were performed on the IBM 7094 of the DRZ Darmstadt and on 
the CD 3300 of the University of Giel3en. I am very grateful for helpful discussions 
with Prof. Dr. W. Ludwig, TH Darmstadt and for some valuable remarks of Prof. 
J. Zak, Technion-Israel Institute of Technology, Haifa. 
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