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Thema 1: Theoretische Atomsondentomographie Thema 2: Entwicklung organischer Solarzellen
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Fig. 4: Schematischer Aufbau einer organischen Solarzelle (links), Foto einer organischen
Solarzelle (Mitte), Entwicklung der Effizienz org. Solarzellen (rechts).
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Fig. 1: Prinzip der Atomsonden- —— Pcay
Tomographie [Prof. Dr. G. Schmitz, 16y — a8 | @ (A

- _ _ Fig. 2: Untersuchung von self-assembled monolayers
Institut fur Materialphysik] [Prof. Schmitz, Stuttgart (ehem. WWU Materialphysik)]
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Fig. 5: Absorptionsspektren verschiedener  Fig. 6: Mdgliche Bausteine von organischen Solarzellen.
organischer Molekule im Vergleich zum

Sonnenspekrum. [Prof. Dr. C. Denz,
Angewandte Physik]
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Fig. 3: Schnappschusse aus einer ab initio Molekulardynamik-Simulation von
SH-C,H,-C,F4 auf einer Au(111)-Oberflache
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Fig. 7: Multiskalensimulation der Struktur einer organischen Solarzelle

Thema 3: Beschleunigte Molekulardynamik- Thema 4: Lichtsteuerbare Materialien
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V(r), V(r)=E,

- V*(r)= Vir)+AV(r), V(r)<E IW@ @

Fig. 11: Cis und frans

5 trans Isomere von
AV(r)= (£~ Vir)) Azobenzol. Durch
at(E-V(r) Lichteinstrahlung
kann Arbeit
‘ verrichtet werden.
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Beschleunigung:

Fig. 8: Schematische Potentialflachen:
Original (schwarz) und modifiziert (rot). At¥=ArePAVIrt)] Fig. 12: Simulation lichtinduzierter
Phasenubergange in einem Azobenzol-
Flussigkristall
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Minireview: Alignment of Carbon Nanotubes (G. Scalia)
H3C N \CH3 Ny Highlights: Lead-free Actuator (J.F.Scott)
Bhem Pubsoc Original Contributions: Switching of Dithioazobenzene Bridges
| Eu ropé' (1.Stich et al), Molecular Magnet Confined In a Nanocage
(P.Lemmens, S.K.Pal et al)
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Fig. 13: Makroskopische lichtinduzierte Fig. 14: Optomechanisches Schalten von

Fig. 10: Freie Energiefliche eines Dipeptids aus einer beschleunigten Simulation Veranderungen in einem Azo-Material. Azobenzol in einem molekularen Bruchkontakt




