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ABSTRACT

The pace of innovations in the field of optical trapping has ramped up in the past couple of years. The implementation of structured light,
leading to groundbreaking inventions such as high-resolution microscopy or optical communication, has unveiled the unexplored potential
for optical trapping. Advancing from a single Gaussian light field as trapping potential, optical tweezers have gotten more and more struc-
ture; innovative trapping landscapes have been developed, starting from multiple traps realized by holographic optical tweezers, via complex
scalar light fields sculpted in amplitude and phase, up to polarization-structured and highly confined vectorial beams. In this article, we pro-
vide a timely overview on recent advances in advanced optical trapping and discuss future perspectives given by the combination of optical

manipulation with the emerging field of structured light.
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I. INTRODUCTION

In 2018, Arthur Ashkin was awarded the Nobel Prize for his
groundbreaking development of optical trapping, which he introduced
in 1970." Nowadays, this technique is well established and used in a
vast number of advanced applications ranging from sensitive rheologi-
cal metrology” * to the study of DNA by, for instance, stretching single
chromatin fibers’ or the formation of 2D and 3D reconfigurable parti-
cle assemblies,”” shaping, e.g., hybrid soft matter,” or functional,
responsive, and even intelligent nano-materials.” In the conventional,
yet powerful trapping configuration [Fig. 1(a)], a single Gaussian light
field is applied for particle manipulation by a combination of optical
gradient and scattering forces." By adding more than a single trap by
acousto-optical, multiplexing, or holographic techniques, light started
in a simple way to get structured. However, from these first
approaches to fully-structured light, simultaneously spatially varying
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in its amplitude, phase, as well as polarization, it is a long and success-
ful way of numerous inventions.

Different approaches of structured light have already proven their
impact in different fields of applied physics, in microscopy as well as
in classical or quantum information technologies.'” For instance, in
light sheet microscopy,'"'* the illuminating light field is shaped by a
cylindrical lens to reduce the background noise of fluorescence, while
in stimulated emission depletion (STED) microscopy,~ a ring-shaped
intensity structure allows for spatial resolution beyond the diffraction
limit. Furthermore, for advanced data communication as well as
higher-dimensional quantum key distribution (QKD), simple trans-
verse light structures are used to encode additional information in the
spatial degrees of freedom of light. To enlarge the transmission band-
width in communication or increase the dimension in QKD and,
thereby, information capacity per photon, spatial modes of light such
as Laguerre-Gaussian (LG), Hermite-Gaussian (HG), or cylindrical
vector beams (CVBs) are implemented (see, e.g., Refs. 14-20).

Within the field of optical trapping, already basic structures of
light enabled an important milestone: in 1998, Dufresne and Gier
introduced holographic optical multiple-particle trapping by
transferring a single light field into multiple trapping beams via micro-
fabricated diffractive optical elements.”’ Advancing from this princi-
ple, in 2000, Liesener et al. developed holographic optical tweezers
[HOT; Fig. 1(b)].*>* By digital lenses-and-grating holograms, they
demonstrated simultaneous, dynamic manipulation of various micro-
objects. This advancement has been enabled by the implementation of
a spatial light modulator (SLM), allowing for phase and amplitude
modification depending on the displayed hologram.”**> Nowadays,
advanced HOT represents an established tool for precise light-assisted
assembly of micro- or nano-objects (see, e.g., Refs. 6, 7, 9, 26-28),
opening new avenues for the controlled fabrication of functional
nano- and meta-materials. HOT has been applied for automated
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trapping potentials
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L
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FIG. 1. In the conventional trapping con-
figuration, a single Gaussian light field is
applied for particle manipulation by a com-
bination of optical gradient and scattering
forces (a); schematic of holographic opti-
cal tweezers enabling dynamic multi-
particle manipulation (b); a scalar light
field can be tailored to include a trans-
verse as well as longitudinal on-demand
variation in intensity and phase paving the
way for two- (2D) or disruptive three-
dimensional (3D) trapping potentials (c);
scalar structured light represents another
useful tool in optical manipulation, as it
allows scalar fields to carry orbital angular
momentum (d); and implementation of
polarization modulation and tight focusing
as powerful customization tools for next-
generation optical trapping [(e) and (f)].

()

trapping, assembling and sorting colloidal particles,” controlling light-
driven micro-tools fabricated by two-photon polymerization,””” to
create bio-hybrid micro-machines,” or for the light-driven assembly
of functionalized organic nano-containers.”

However, trapping multiple objects at a time is not necessarily
linked to HOT. A more advanced approach is to modulate the ampli-
tude and phase of light in such a way that a single, but complexly
structured beam is created, where every intensity spot is acting as a
single optical trap. This scalar light field can be tailored to include a
transverse as well as longitudinal on-demand variation in intensity
and phase, paving the way for two- (2D) or disruptive three-
dimensional (3D) trapping potentials’' * [Fig. 1(c)]. A simple exam-
ple is a higher-order Gaussian beam, e.g., a Hermite-Gaussian mode,
in which each transverse intensity lobe can act as a separate trap. More
advanced examples of complex trapping landscapes created by a single
light field are arbitrarily shaped fields™ *” or optical tractor beams,”*”
as well as accelerated, caustic light fields’” with 3D varying intensity
structures. Such fields allow trapping and attracting multiple objects
simultaneously or guiding particles on curved trajectories, respectively.
Beyond, the spatially varying phase of scalar structured light represents
another useful tool in optical manipulation, as it allows scalar fields to
carry orbital angular momentum (OAM)*' [Fig. 1(d)]. This property
laid the foundation for the nowadays well-known ability to orbit par-
ticles in optical tweezers around a central area,”” " which enabled,
e.g., the realization of an optical tractor beam (optical solenoid beam)
based on a combination of OAM transfer and arbitrarily shaped 3D
intensity landscape.” In addition, light-matter-interaction of these
OAM-beams has unlocked innovative approaches for metrology: it
allows analyzing, e.g., the vorticity in fluids* or the activity in chiral
molecules.”’

In addition to amplitude and phase, the polarization of light also
plays a major role in optical trapping today. The polarization

Appl. Phys. Rev. 7, 041308 (2020); doi: 10.1063/5.0013276
Published under license by AIP Publishing

7, 041308-2


https://scitation.org/journal/are

Applied Physics Reviews REVIEW

handedness is related to the spin angular momentum (SAM) of light,
which is transferable to trapped objects. Already before the implemen-
tation of structured light, SAM was proven to be a means to spin bire-
fringent objects in conventional optical tweezers."" Crucially,
polarization has today become another degree of freedom of light,
which can be shaped spatially within a trapping beam, opening new
perspectives for optical tweezers. On the one hand, spatial polarization
modulation, i.e., vectorial light [Fig. 1(e)], is of specific interest for
trapping and arranging polarization-sensitive objects. On the other
hand, polarization modification allows spatially customizing SAM and
the spin part of the transverse energy (Poynting vector) flow, ">
which then can be in turn transferred to trapped objects. Together
with the ongoing development of light shaping techniques, this field of
research is evolving quickly, contributing significantly to the advance-
ment of optical trapping.

Combining amplitude, phase, and polarization modulation
allows for the joining of the above-mentioned trapping properties of
scalar as well as vectorial light. For instance, this approach facilitates
joint orbital and spin angular momentum modification®' >* in 2D or
3D structured light landscapes. This ability will have a tremendous
impact on future optical trapping applications, enabling on-demand
3D manipulation of trapped objects. By this combination of on-
demand spatial amplitude, phase, and polarization variation, the so-
called fully-structured fields’>*** become available—i.e., optical trap-
ping gets full structure.

Finally, to bring the full structure to the nanoscale and, thereby,
drive next-generation optical trapping in confined environments,
tightly focusing vectorial light is a cutting-edge approach [Fig. 1(f)].
Tight focusing enables the formation of significant longitudinal polari-
zation components,”” representing an additional degree of freedom
in fully-structured non-paraxial light, which can be customized in any
desired way. In that spirit, fully-structuring light has allowed for a
recently presented HOT upgrade: the vector holographic optical
trap,” implementing multiple tightly focused vectorial fields. In gen-
eral, tight focusing allows for novel trapping landscapes, adjustable
trapping forces, and energy flow, as well as complex topological struc-
tures as polarization Mobius strips (see, e.g., Refs. 59-66). Among
these, topological structures of 3D polarization states will revolutionize
the trapping of polarization-sensitive micro- or nano-objects, allowing
for the formation of functional micro- and nano-network structures
and intelligent matter with, for instance, object orientation following
the tailored, 3D twisted polarization topology of Mobius strips.

In the following, we will elucidate this path from elementary
structured light-based trapping approaches to the implementation of
fully-structured non-paraxial light. First, we will introduce the princi-
ples of optical tweezers and outline the evolution from studying the
orientation of tails of comets to HOT, presenting exemplary applica-
tions (Sec. II). Beyond realizing multiple dynamic trapping beams by
HOT, in Sec. I1I we highlight customized 2D and 3D trapping poten-
tials by combining amplitude and phase modulation. Subsequently,
the role of energy flow and optical angular momentum is elucidated,
in particular highlighting the role of transverse phase structuring,
applied in optical trapping and metrology (Sec. IV). Furthermore, we
highlight a timely approach for SAM as well as combined OAM and
SAM modulation. Therefore, next-generation optical trapping based
on polarization modulation and fully-structuring light is presented in
Sec. V. This modulation of light also enables the customization of focal
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trapping landscapes as presented in the last Sec. VI, including recent
findings on their exotic properties, opening new perspectives for
advanced optical manipulation.

Il. FROM THE TAILS OF COMETS TO HOLOGRAPHIC
OPTICAL TWEEZERS

A. Conventional optical tweezers

When light is refracted, absorbed, or reflected by a small particle,
both light and particle generally experience a change in momentum by
the fundamental action-reaction principle of Newton. Already in 1619,
Kepler suggested this transfer of momentum or, more precisely, the
corresponding optical force to be the cause of tails of comets pointing
away from the sun.”” Confirming this suggestion by the electromag-
netic theory,”” Maxwell associated not only energy but also linear
momentum with light waves, which was, subsequently, proven qualita-
tively””*” as well as quantitatively”’ by Lebedev and Nichols and Hull.
Finally, Ashkin put radiation force into practice by developing the
concept of counter-propagating optical trapping.' Today, this ground-
breaking work is considered as the birth of optical tweezers.

In order to realize a stable 3D confinement of particles, the radia-
tion pressure of two opposed laser beams is applied [see Fig. 2(a)].
Therefore, Ashkin did not only observe the scattering force of light,
being proportional to the intensity of light (F sy o< I), but also the gra-
dient force, pulling transparent objects (of higher refractive index than
the surrounding medium) toward areas of highest intensity
(F grad OC VI ).”! Later, the knowledge about these forces was trans-
ferred to what is today known as (conventional) optical tweezers: by
tightly focusing a single laser beam by means of a high numerical aper-
ture (NA) lens, strong gradient forces are created, counteracting the
scattering forces in the propagation direction [see Fig. 2(b)]. This
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FIG. 2. The principle of optical trapping. To realize a stable 3D confinement of par-
ticles, the radiation pressure of two opposed laser beams can be applied. In (a), the
respective counterpropagating optical trapping scheme is illustrated. (b) In conven-
tional optical tweezers, by tightly focusing a single laser beam by means of a high
numerical aperture lens, strong gradient forces (Fg.q) are created, counteracting
the scattering forces (Fsct) in the propagation direction (dashed circle: equilibrium
position). (c) Examples of trapped objects in an optical tweezers (left to right): trans-
parent bead, transparent bead for motor protein analysis, red blood cell, and cylin-
drical particle.
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elegant method leads to a stable optical trapping of dielectric particles
of various different properties in three dimensions and paved the way
for a broad range of applications [see Fig. 2(c)]. For his invention of
optical tweezers and its application to biological systems, Ashkin was
awarded the Nobel Prize in Physics 2018.

With respect to applications, conventional optical tweezers ena-
bles handling single cells, organelles, or macromolecules without phys-
ical contact, ie., non-invasively, making it an unrivaled tool for
addressing biological questions.”””* Furthermore, optical tweezers
allows exerting defined and measuring extremely small forces in the
range of pico-Newton with high precision,”” ’* enabling the investiga-
tion of inter- and intra-cellular processes being responsible for repro-
duction, signaling, or respiration. Optical tweezers for biological and
medical applications has been reviewed extensively, even very recently,
so that we refer the interested reader to Refs. 80-83. In addition, many
other fields of research as colloidal science,” particle separation and
sorting,‘\{f"s7 or microfluidics,*”** among others, have and still do ben-
efit from conventional optical tweezers. For instance, in nanophysics,
the ability to organize matter non-invasively facilitated pioneering
studies in the field of classical statistical mechanics as the first direct
measurement of macromolecular interactions in solution.””””

In some of the named implementations, the conventional optical
trap is dynamically moved by mechanically adapting the beam incident
on the focusing high-NA lens or microscope objective (MO). By chang-
ing the beam’s input angle on the MO, the trap’s transverse position can
be varied, while changes of the divergence of the input beam affect the
longitudinal trap position. Additionally, the implementation of two or
more trapping beams can also be realized mechanically by beam split-
ting, As introduced by Dufresne and Gier,”' holographically, multiple
trapping beams can be shaped by diffractive optical elements. The
increasing demand on creating more than two, possibly multiple
dynamic traps led to the pioneering advancement to holographic optical
tweezers based on a SLM, first presented by Liesener et al. in 2000.”>%

B. Holographic optical tweezers

Holographic optical tweezers (HOT) represents a key advancement
in the history of optical trapping, as it allows for the digital transforma-
tion of a single beam into multiple trapping beams [Fig. 1(b)], being
dynamically and independently adjustable in all three spatial degrees of
freedom. This transformation is typically performed by computer-
generated, thus, digital holograms (CGHs). While at the dawn of the
21st century, these computer-generated holograms were often realized
by static polymeric or silver halogenide holograms; nowadays, SLMs
have become versatile standard tools for this function. As outlined in
Ref. 22, a complex superposition of multiple phase gratings and holo-
graphic lenses is encoded on the SLM to emulate the number of traps in
three dimensions. To allow for a dynamic adjustment of traps,
computer-addressable phase-only SLMs are typically employed,”" posi-
tioned in the conjugated (Fourier) plane of the trapping plane. Since the
gratings-and-lenses approach requires low computational expense and
the SLM allows for a sufficiently fast variation of displayed CGHs, traps
can be dynamically moved in real-time. If high-speed trap movement in
the kHz regime is desired, digital mirror devices (DMDs) can be imple-
mented, replacing SLMs. Note that, despite its advantages, HOT also suf-
fers from the so-called ghost traps or inhomogeneities of individual
traps. To overcome these drawbacks, different approaches have
been suggested.%’% For instance, iterative Fourier transformation

scitation.org/journal/are

algorithms”””* can be used for optimization considering, e.g, the pattern
of the trapping beam, possible pixelation and discretization of the phase
levels, suppression of ghost traps, or other inhomogeneity. Note that the
trapping of complex objects as nanocontainers or arbitrary shaped par-
ticles is even today a challenging topic and thus subject to ongoing
research. For example, a recent study by O’Brien and Grier”® has shown
that colloidal spheres trapped by HOT tend to move farther along the
axial direction than the trap potential suggests, highlighting the demand
for further advancements in HOT by, e.g,, real-time feedback systems.

However, for already 20 years HOT has enabled numerous appli-
cations. It was implemented for the experimental investigation of
infection scenarios at the single cell level,”” for the operation of and
sensing in lab-on-a-chip devices,” for 3D assembly of colloidal par-
ticles in a micro-channel,'”® or for arranging and orienting non-
spherical objects.”” Trapping non-spherical objects by HOT even facil-
itated the realization of bio-hybrid micro-robots by bringing together
nano-containers as carriers and motile flagellated bacteria as the pro-
pelling living organism.”’ Nano-containers were also used to shape
hybrid soft matter.® For this purpose, Barroso et al. assembled surface-
functionalized nanoporous zeolite-L crystals by HOT to construct
arbitrary 3D nanoarchitectures, as exemplified by the schematic repre-
sentation in Fig. 3(a). As the zeolites carry a functionalized polymer
shell, the controlled, instant, and highly efficient particle-particle and
particle-surface adhesion is enabled. Crucially, shaped architectures
remain permanently stable after release from the HOT system, as it is
proven by guiding [Fig. 3(b)] an unbound crystal (red circle) freely
underneath the constructed arch from left to right.

Recently, HOT was also applied to operate micro-rotors to
perform reconfigurable hydrodynamic arrangements and, thereby,
indirect optical trapping,”® as illustrated in Figs. 3(c)-3(g). The laser-
printed micro-rotors are trapped and rotated by HOT. By a feedback
control loop combined with a SLM, the desired flow-field is continu-
ously designed for a specific tracked target and realized by encoding
the respective hologram on the SLM, driving the rotor motion. This
approach enables guiding and embedding absorbing objects by the
flow field, as schematically shown in Fig. 3(c) and visualized for differ-
ent examples in Figs. 3(d)-3(g). With this approach, based on optically
actuated micro-robotics, direct illumination by intense lasers on the
trapping objects can be avoided so that tweezing materials of low dam-
age threshold are facilitated.

Ill. TAILORED SCALAR LIGHT AS ADVANCED
TRAPPING POTENTIALS

By projecting lenses and gratings in conventional HOT into the
conjugated plane, multiple discrete Gaussian trapping potentials can
be created from the initial beam. Therefore, multiple particles can be
trapped and manipulated in 3D space. An alternative, advanced
approach for creating multiple trapping sites is based on complexly
structuring a scalar light field with a continuous intensity landscape,
allowing a more versatile optical manipulation by a single structured
beam. This approach benefits from the huge diversity of known scalar
light fields, embedding additional properties as the transverse energy
flow, optical angular momenta, attracting, accelerating, or non-
diffracting characteristics."’

Scalar structured light fields include a spatially varying amplitude
and/or phase distribution, whereby the polarization of light does not
change in space. Nowadays, it is straightforward to shape these light
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(c) Rotor schematic: single target control
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FIG. 3. Exemplary applications of holographic optical tweezers (HOT). Top: the realization of hybrid soft matter by zeolites with NH,-functionalized polymer brushes building an
arch-type structure.® (a) Barroso et al. assembled surface-functionalized nanoporous zeolite-L crystals by holographic optical tweezers to construct arbitrary 3D nanoarchitec-
tures; (b) Shaped architectures remain permanently stable after release from the holographic optical tweezers system, as it is proven by guiding an unbound crystal (red circle)
freely underneath the constructed arch from left to right [Adapted with permission from Barroso et al., Part. Part. Syst. Charact. 35, 1800041 (2018). Copyright 2018 Wiley-
VCH Verlag GmbH & Co.].” Bottom: HOT-driven micro-rotors for indirect optical trapping of absorbing particles;*” (c) Rotor schematic for single target control; (d)—(g) different
examples of guiding/enclosing absorbing objects by reconfigurable hydrodynamic manipulation. Adapted from Butaite et al., Nat. Commun. 10, 1215 (2019). Copyright 2015

Author(s), licensed under a Creative Commons Attribution 4.0 License.”®

fields experimentally using, for instance, SLMs or DMDs (digital mir-
ror devices).'” These devices may allow for amplitude or joint ampli-
tude and phase modulation. The combined modulation facilitates
arbitrary scalar light fields and is enabled by, e.g., a phase-only SLM.
Following the ansatz of Davis et al,”* a weighted blazed grating
approach is applied to encode not only phase (¢ € [0, 2n]) but
also amplitude (A € [0, 1], normalized) information in a phase-only
hologram.”*”" When the desired light field (in the image plane of the
SLM) is represented by E = A - exp (¢), Davis et al. assumed the
SLM transmission function to be exp (iA¢). With the help of mixed
Fourier-Taylor series, one can derive the required hologram

O, = A'mod[¢ + ¢, — A'm, 27, (1)

generating E in its first diffraction order. Spatial separation of diffraction
orders is realized by ¢, representing a blazed grating (with a periodic,
spatially varying linear phase ramp). A’ is the corrected amplitude func-
tion, with sinc(1 — A’) = A. For details on this approach, the interested
reader is referred to the respective Refs. 24 and 51.

In addition to holographic approaches based on SLMs or DMDs,
there are various other methods to shape scalar light fields, representing

an own field of research. For instance, also static as well as tunable g-
plates'”"'%* are established tools not only for amplitude and phase but
also for polarization modulation (see Sec. V). Additionally, plasmonic
or dielectric metasurfaces'”” "’ represent a continuously increasing
research area, opening various innovative approaches for beam shaping.
A thorough review of these topics is out of the scope of this manuscript.
More details can be found in Refs. 108-110.

The ongoing advancement of modulation techniques still
improves the already great accessibility of scalar structured light fields,
so that a manifold of applications, including optical trapping, can ben-
efit from it. In the following, we will concentrate on the light fields’
intensity structure, giving an insight into how, in turn, realized scalar
trapping potentials have allowed for the advancement of optical

trapping.

A. From standard 2D to elegant 3D structured
Gaussian potentials

Most established scalar structured light fields might be higher-
order Gaussian modes, namely, standard Hermite-(HG),
Laguerre-(LG), or Ince-Gaussian (IG) beams.'"' ™" These self-similar
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light fields represent exact analytical solutions of the paraxial wave
equation in Cartesian, polar, or elliptical coordinates, respectively.
They do not change their extended transverse distribution significantly
upon propagation, however showing divergence. This property makes
them perfectly suited for optical trapping applications: on the one
hand, their transverse intensity distribution does not change within
the trapping volume. On the other hand, they can easily be generated
by SLMs positioned in the conjugated (far field) or image plane of the
trapping plane. The extended 2D transverse intensity structure of
higher-order Gaussian modes makes them useful candidates for spe-
cialized potential landscapes. For instance, almost 30 years ago, the
application of HG beams facilitated the alignment of non-spherical
parﬁcles.31 Furthermore, the transverse 2D structure of LG modes or,
more precisely, their collinear superposition allowed for size-selective
trapping of spherical particles.”” Additionally, IG beams have been
successfully used as complex continuous trapping potentials, "
enabling optical assembly of silica spheres into 2D microstructures.
They also allow for 3D optical particle structures taking advantage of
the self-similar propagation behavior of IG light fields combined with
longitudinal optical binding.'"” Particle chains are formed within the
diverging light structure, since each particle acts similar to a spherical
lens, confining light and, thereby, increasing gradient forces behind
itself.

Recently, another, less prominent class of higher-order
Gaussian trapping potentials has been introduced into the field of
optical trapping: elegant Gaussian beams.''®''” These fields are
complementary to standard self-similar Gaussian beams, as they
show dynamic structural changes upon propagation, i.e., they are
not only structured in 2D but even 3D space. In contrast to stan-
dard Gaussian beams, elegant Gaussian beams include a complex
valued argument in the respective Hermite/Laguerre/Ince polyno-
mials, resulting in an additional phase variation and, thus, in a
modification of the usually spherical wave front of Gaussian
beams.””"'* It has been demonstrated’’ that this class of Gaussian
beams creates high gradient forces at small scales, being of special
interest for trapping core-shell particles and nanocontainers.” As
illustrated in Fig. 4, Alpmann et al. compared the features of a fun-
damental Gaussian beam with those of elegant and a standard
higher-order HG fields as trapping potentials for elongated par-
ticles. Depending on the chosen potential, dynamically realized by
holographic beam shaping, different particle orientations are
enabled. Structural changes of elegant HG modes in the propaga-
tion direction allow for enhanced trapping forces, revealing 3D
structured scalar light fields as an innovative tool for advanced
optical micromanipulation.

B. 3D particle control by tailored propagation of light

In addition to elegant Gaussian beams, there is a broad variety of
scalar 3D structured light fields with tailored propagation behavior.
Applying a single 3D structured light field, one can also optically
manipulate particles in multiple transverse planes in 3D space simulta-
neously, enabling 3D particle assemblies. Even so-called tractor beams
are facilitated, which allow attracting trapped particles against the scat-
tering force, i.e., counter the beams propagation direction.

A well-known class of light fields shaped in 3D space is non-
diffracting or propagation-invariant beams.''” In contrast to typically
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diffracting beams as Gaussian light fields, non-diffracting fields are tai-
lored to keep their transverse amplitude, phase, and polarization distri-
bution unchanged for a specific propagation distance (“non-
diffracting distance”). To realize this propagation behavior, all spatial
frequency components in the far field of non-diffracting light fields
are, in an ideal case, found on an infinitesimally thin ring around the
optical axis. Each point on this ring creates a plane wave in real space,
propagating under a defined angle to the optical axis. Simplified, the
non-diffracting structure can be understood as the result of interfer-
ence of these plane waves. Interestingly, these beams also “self-heal” if
being partially disturbed by an obstacle:''” plane waves passing the
object enable the self-reconstruction of the transverse field distribution
after a corresponding shadow region of the obstacle.

One of the most established non-diffracting beam classes is the
Bessel beam class exhibiting a ring-shaped transverse intensity profile,
experimentally approximated by Bessel-Gaussian (BG) light fields.'*’
In addition to this class of circular transverse symmetries, there are
other classes as, for instance, Mathieu beams'”' having a transverse
shape belonging to the elliptical coordinate system, or the class of dis-
crete non-diffracting light fields'”” of custom transverse intensity dis-
tribution. The respective propagation-invariance and self-healing
properties have proven to be valuable tools for simultaneous particle
manipulation at different longitudinal z-distances and the 3D arrange-
ment of micro-particles. In 2002, Garcés-Chavez et al. demonstrated
the ability to apply a single first-order Bessel beam to simultaneously
trap particles in the beams on-axis intensity maximum in two distant
sample cells located in different (x, y)-planes, both within the non-
diffracting distance of the light field.”*'** Although particles in the first
cell disturb the trapping beam, the light field is fully reconstructed in
the second cell, re-allowing for optical trapping. Combined with opti-
cal binding, even longitudinal particle chains are forming per cell.
Beyond, Mathieu beams were implemented for 3D arrangements of
spherical as well as non-spherical particles,” additionally considering
more complex transverse intensity structures. Here, the ellipticity
parameter and mode number as well as the choice between even, odd,
and helical Mathieu beams allow for the on-demand adaption of trans-
verse potential landscapes with multiple trapping sites, whereby the
non-diffracting and self-healing property is kept.

Hence, scalar non-diffracting light fields allow for complex trap-
ping potentials based on tailored transverse intensity structures propa-
gating unchanged. However, on the basis of these non-diffracting
beams, one is also able to design 3D trapping potentials additionally
sculpted longitudinally as an optical tractor beam.” Ruffner and Grier
have shown that, by coherently superimposing coaxial Bessel beams, a
scalar light field of longitudinally periodic intensity variations can be
realized. By holographic beam shaping via a SLM, the researchers
demonstrated the entrapment of multiple particles in the maxima of
the periodic intensity variation. Ruffner and Gier included a time-
dependent relative phase shift between the superimposed beams by
dynamically adapting the CGHs. By this approach, intensity maxima
and, thus, trapped particles can be moved along the optical axis and
counter to the direction of propagation, i.e., a conveyor (/tractor) beam
is realized. Note that within the past few years, various different tractor
beams have been designed, exclusively based on not only 3D structured
light but also, e.g., the so-called optical pulling force and, therefore, spe-
cific particle parameters.'”*'*> A detailed review of the class of optical
tractor beams and recent advances can be found in Ref. 126.
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FIG. 4. Comparison between fundamental
Gaussian, elegant HG, and standard HG
beam (HG mode numbers: n,= 2, n, = 0)
for optical alignment of elongated par-
ticles, namely, zeolite-L nanocontainers.**
For each case, the transverse experimen-
tal intensity profile (top left), a bright field
microscope image of the trapped particle
(top view; bottom left), and a sketch of

. Zeolite Alignment

| Nearfield
Intensity Gradient

Zeolite Alignment

zeolite alignment in longitudinal intensity
profile (right) are shown. The graph shows
the intensity gradient V//Inean along the
white dashed lines for each case. Adapted
with permission from Appl. Phys. Lett.
106, 241102 (2015). Copyright 2015 AIP
Publishing LLC.**

C. Intensity singularities in 3D caustic light fields

Another family of beams enriching the variety of 3D structured
scalar beams are caustic light fields, known in ray optics for centu-
ries.'””'*® Caustics are an ubiquitous phenomenon in nature and
everyday life, observable, e.g., when light is refracted in shallow water
or a glass of wine.'”* They represent an envelope of a family of rays,"*’
whereby their topology is classified by catastrophe theory via unique
potential functions.'**'**"*! Considered in theoretical ray optics, caus-
tics correspond to intensity singularities of infinite intensity. In wave
optics, the increase in intensity is finite but, however, shows a strong
intensity gradient. Hence, caustic light fields are of specific interest for
optical manipulation not only because they show a 3D varying spatial
intensity structure but also due to strong intensity gradients, being
related to strong optical forces.

A well-known example for caustic light is the Airy beam,'*” real-
ized experimentally for the first time in 2007.""*""* The Airy beam
represents the optical analogon of a fold catastrophe and exhibits a
curved propagation trajectory of its transverse intensity structure, as
illustrated in Figs. 5(a) and 5(b). The curved trajectory is also followed
by its propagating intensity singularity [intensity maximum in (a)],
forming the caustic line [red line in (a) and (b)]. Because of this unique
accelerating beam propagation, it is perfectly suited to realize an opti-
cal “snow blower,” as shown by Baumgartl et al. in 2008.” Figure 5(c)
presents the principle of the implemented approach: the curved inten-
sity structure of an Airy beam is used to push dielectric microparticles

by gradient and, in particular, scattering forces from one compartment
into another.

Beyond Airy beams, a broad range of different caustic light fields
were introduced the past few years, including Pearcey, swallowtail, or
butterfly caustics.'”””"*” Also, these fields embed promising 3D charac-
teristics for optical micromanipulation. For instance, the Pearcey beam
shows, on the one hand, a curved trajectory, allowing for particle guid-
ing on an s-shaped path."** On the other hand, tight confinement of
light is found upon propagation without explicitly focusing, paving the
way for enhanced gradient forces at the nano scale.

For moving trapped particles on the bent trajectory of a caustic light
field, as exemplified by the optical snow blower, the Poynting vector, ie.,
the energy flow of light, plays a major role. It defines not only the scatter-
ing force acting in the beam propagation direction but may also cause
transverse movement of particles by its orbital or spin contributions. In
the following, we outline the role of energy flow density and related opti-
cal angular momenta for optical trapping. Here, in addition to intensity,
the beneficial properties of the two additional degrees of freedom of fully-
structured light, namely, phase and polarization, become clear.

IV. ENERGY FLOW DENSITY AND OPTICAL ANGULAR
MOMENTA
A. Fundamental properties

Bekshaev et al. give a detailed description of internal flows and
energy circulation in light, which can be found in Ref. 49. Following
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FIG. 5. Airy beam as an example of caustic light fields for optical micromanipulation: (a) transverse intensity structure (top) and corresponding rays [blue lines; (x, z)-plane]
enveloping the parabolic caustic (red curve). Along this curved line, the transverse intensity structure propagates, as shown by holographically realized experimental images in
(b). (c) Sketch of the Airy beam acting as optical snow blower of spherical particles. (a) and (b) Image courtesy of Alessandro Zannotti, WWU Miinster, Germany. (c) Image

courtesy of Kishan Dholakia, University of St. Andrews, UK.

their description, here, we give a short summary of terms being rele-
vant for optical trapping.
Optical trapping and manipulation of particles are based on the

momentum transfer of light with the momentum density given by*”'*

ﬁ: §p/C2. (2)

Here, Sp o< E x H (E and H: electric and magnetic fields) represents
the time averaged Poynting vector, giving the measure of the energy
flow (or energy flow density) of light. Hence, Eq. (2) establishes the
relation between Poynting vector and the dynamic attributes of light."”
Furthermore, this relation, in turn, established the use of “momentum
density” and “energy flow density” as synonymous terms.

For monochromatic light, the total energy flow can be written as the
sum of its orbital and spin contributions (orbital and spin flow density,
OFD and SFD), namely, p = p_ -+ p,, depending on the phase and
polarization of light, respectively. The energy flow lines of the total energy
flow as well as of its contributions are always continuous. However, inte-
grated over the transverse (x, y)-plane, the spin contribution to the total
beam momentum is zero."""'** Note that, as the so-called “virtual” con-
tribution to the energy flow, SFD was thought to be unmeasurable or
non-observable'** and does not exert force on absorbing Rayleigh par-
ticles. Based on these facts, researchers had mainly focused on studying
the orbital (canonical) momentum density. However, the measurabil-
ity' 7 as well as applicability'”” of SFD was demonstrated in 2014,
increasing the interest in this originally virtual part.

Considered in the paraxial regime, the spin flow p, (SFD) is
purely transverse, whereas the OFD p_ also includes a longitudinal
component.”” In the following, we will concentrate on the transverse
parts per unit z-length (linear momentum densities) in the paraxial
regime, denoted as 1_5(5,0) with B = 130 + B,. We consider polarized,
paraxial light E = [Ex, E,]" (Jones formalism) with E; = A; exp (ig;),
j = {x, y}. In this case, the orbital and spin parts of the energy flow
are directly related to the phase ¢ and polarization handedness S; of
light, respectively, with' ™’

—

1 - 1
Bo= 1 (LV), +1,V$), Pi=——(@xVSs) ()

2k

and  V =[0/0x,0/0y,0/02)", I; = |E}|*, &. = [0, 0, 1]",  wave
number k, and the normalized Stokes vector'®® § = $/s0
= [So, Si1, S2, S3]T. The (normalized) Stokes vector is a typical way of

representing fully as well as partially polarized fields with sy € [0, 1]
giving the intensity of light, S1,3 € [—1, 1] representing horizontal/
vertical, diagonal/antidiagonal, or right-/left-handed circular states of
polarization, respectively. Hence, S; defines the polarization handed-
ness of the considered light field.

As visible from Eq. (3), for spatially structured phase ¢(x, y) or
polarization handedness S;(x, y), a spatial change in OFD or SFD,
respectively, can be realized. The optical angular momentum of light is
directly related to this energy flow and can be transferred in an optical
trap to the captured object. It is T=L,+ §Z (Refs. 49 and 149) with
orbital angular momentum L, (OAM) and spin angular momentum

—

S. (SAM) given by™

Zzzj?xﬁo &7, S, = [?xﬁs d’7, (4)
with 7 being the spatial coordinate. Therefore, analogous to OFD and
SED, the OAM and SAM are dependent on the phase and polarization
of light, respectively.

The SAM S, is associated with the polarization by a momentum
of (S,) = = per photon, with +# (—#) corresponding to left-handed
(right-handed) polarization as manifested by the sign of the S; Stokes
parameter.”” Taking advantage of the transfer of momentum, SAM
has proven its benefit in, e.g., spinning trapped birefringent objects*’
in optical tweezers or sorting chiral particles due to the interaction of
polarization handedness and particle chirality.””'*" In recent years,
the question how to spatially structure SAM has become central with
respect to the advance of tailored SFD structures. This will be dis-
cussed in more detail in Sec. V.

The OAM L, is determined by the spatial structure of light. For
a phase vortex configuration exp (i) [¢ € [0, 27]: polar angle; cf.
Fig. 1(d)], ie, an azimuthally varying phase, the OAM is associated
with (L,) = ¢% per photon.""*>">*'>* Here, ¢ describes the topological
charge of the phase vortex, given by the change of phase (counter-
clockwise) around the central point of undefined phase—a phase sin-
gularity—divided by 27.'°”'"* Note that the topological charge
represents the singularity index of the embedded phase singularity,
around which the respective OFD rotates. It is well known that OAM
carrying beams can be applied to orbit transparent particles around
the optical axis or also spin absorbing particles enclosed in the beam’s
dark center at the position of the phase singularity,”” ** as it was
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already proven a quarter of a century ago. Today, there is a manifold
of detailed reviews on OAM and its benefit for various applied fields
of research, ranging from optical communication to high-resolution
imaging (STED microscopy) and, obviously, optical manipulation
(see, e.g., Ref. 155 and references therein). Hence, in the following we
concentrate on giving an insight into innovative OAM structures in
complex light fields and its use in applied optics by the example of
optical metrology.

B. Customized phase flow

The probably best known example of OAM carrying light fields is
self-similar helical LG beams, representing exact solutions of the para-
xial wave equation in polar coordinates. Its transverse intensity struc-
ture shows concentric rings. The number and diameter of rings are
defined by the radial mode index and topological charge, respec-
tively.''* In general, there is a broad variety of OAM beams being able
to orbit or spin trapped particles. They embed the phase factor
exp (i) (¢ € [0, 27]: polar angle) and, thus, the respective energy
flow circulation around the central singularity. Another example for
OAM beams, applied in optical trapping, is higher-order Bessel
beams.'”” As LG beams, circular symmetric higher-order Bessel beams
show a ring-shaped intensity structure with the number and diameter
of the rings depending on the mode indices. However, while LG beams
are self-similar, Bessel beams are propagation-invariant, belonging to
the class of 3D structured, non-diffracting light fields (see Sec. III B).
Hence, particles can be trapped in an longitudinally extended, non-
diffracting volume. Recently, this property was also demonstrated in
the so-called circular Airy vortex beams.'” These beams impart OAM
of charge ¢ and show a ring-shaped transverse intensity structure with
an autofocusing, self-bending propagation behavior on parabolic trajec-
tories.'” Chen et al. applied these OAM beams to guide particles on
curved trajectories in 3D space based on the beams’ sophisticated prop-
agation behavior. Additionally, such a beam allows to orbit trapped
silica microparticles within the transverse circular intensity rings.

As visible from Eq. (3), phase-dependent energy flow P,, does not
necessarily require a circular symmetric field distribution as in LG,
Bessel, or circular Airy vortex beams. Also light fields following ellipti-
cal coordinates can incorporate continuous phase flow topologies
enabling the OFD, thus, OAM-dependent manipulation of particles.
For example, self-similar helical IG beams or non-diffracting helical
Mathieu beams, following the elliptical coordinate system, also carry
an azimuthally varying phase structure'” being related to transverse
energy circulation.'®’ Here, the transverse gradient of phase is spatially
inhomogenous, i.e., the phase does not increase linearly surrounding
the optical axis. Therefore, the OFD varies spatially and the OAM per
photon does not only depend on the topological charge ¢, but particu-
larly its ellipticity.*”'®" This has been experimentally demonstrated
by a slit diffraction-based metrology approach'® and was also visual-
ized based on nonlinear self-action of the light field in a nonlinear
optical crystal.'*”

Hence, the adaption of mode indices as the radial mode index,
topological charge, or ellipticity of all light fields we presented until
now enables the customization of energy flow for specific trapping
applications. However, typically, the change of these mode indices is
directly related to a change of the transverse extent of the intensity
structure, which in turn represents a change in the trapping potential.
Depending on the trapping application, such a change can be desired
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but also unwanted. This change does not happen for an annular field
profile with intensity distribution and radius both being independent
of the topological charge ¢ of the embedded phase vortex. This prop-
erty is provided by the so-called perfect optical vortex (POV)
beams.'*” ' In such a beam, the phase gradient (azimuthally linear)
can easily be increased and, therefore, the strength of OAM/OFD
enlarged, without changing the intensity profile, i.e., trapping potential
landscape, first applied by Roichman et al. in 2007.'°>'** Furthermore,
this concept was implemented for optical trapping in 2013 by Chen
et al,'* shaping respective fields by a combination of an axicon, a
SLM, and a lens. By analyzing the rotation rate of particles trapped in
POV beams of integer as well as fractional topological charge ¢, Leach
et al. experimentally verified the theoretical findings that the OAM per
photon of a fractional vortex'*” is £ — sin (27¢) /2r. POV beams of
fractional ¢ have also been a topic of interest lately: Tkachenko et al.
applied particle rotation to analyze if the realization of perfect frac-
tional vortex beams is fundamentally possible.'”® Furthermore, POV
beams have also pioneered optical trapping and manipulating low-
refractive-index particles, which is typically challenging due to strong
repelling forces.'”” Liang et al. enclosed the low-refractive-index parti-
cle between an on-axis point trap and a surrounding quasi-POV
beam, allowing for rotating the particle at ¢-controlled speed.

Beyond, even light fields of tailored OAM fully independent of
any mode indices can be shaped. For instance, Rodrigo et al. demon-
strated the ability to customize light fields including their phase gradi-
ent along curves, even knotted geometries, in 3D space and applied
created structures in optical trapping.’”"”" Beyond, Rodrigo and
Alieva introduced the so-called polymorphic beams and nature
inspired energy flow circuits (see Fig. 6) as tailored tools for optical
micromanipulation.'”® As indicated in Fig. 6(a), researchers presented
a broad variety of accessible tailored fields including custom phase flow
geometries (top: transverse intensity distribution; bottom: transverse
phase structure). The respective OFD allows guiding particles on prede-
fined trajectories in the trapping potential, as illustrated by the example
in Fig. 6(b). Here, following the tailored OFD, particles are guided with
spatially varying speed along a spiral-shaped intensity distribution.

C. OAM beams for optical metrology

Besides being used for guiding trapped particles, OAM-carrying
light fields represent a valuable tool for optical metrology. In this case,
the interaction of low-intensity OAM beam with particles, not being
trapped, is applied. Advancing the field of optical activity, researchers
demonstrated that the OAM of structured light can be used to enhance
circular dichroism related to chiral molecules.”” Furthermore, in laser
remote sensing, a technique was proposed enabling the direct mea-
surement of the transverse velocity component of a target by letting it
interact with an OAM mode."”""*'"” For this purpose, the light scat-
tered back from the target is detected, containing information about
the target’s position and velocity at each instant. For extracting the
information, the scattered light is interfered with a reference beam. In
2015, Belmonte et al. implemented this OAM-based principle in fluid
dynamics to measure the local vorticity of a flow," by analyzing the
light scattered from microparticles, as indicated in Fig. 7. Hence, struc-
tured OAM beams do not only advance optical trapping, but its low-
intensity interaction with different objects as particles in fluidic sys-
tems or chiral molecules has opened up new perspectives in the field
of optical metrology.
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FIG. 6. Customized optical current in polymorphic beams.'*® (a) Examples of intensity (top) and phase (bottom) distribution of polymorphic beams (Fourier plane). The first
example shows a constant phase gradient along the curve (constant |P,|), whereas the star and spiral structure embed a spatially varying gradient. (b) Application of
Archimedean spiral beam of inhomogeneous phase gradient for manipulation of silica micro-spheres (left: setup sketch; top right: intensity/phase of trapping beam with arrows
indicating strength of OFD; bottom right: bright field microscopy images of trapped and sgiraled spheres). Adapted from J. A. Rodrigo and T. Alieva, Sci. Rep. 6, 35341 (2016).
Copyright 2015 Author(s), licensed under a Creative Commons Attribution 4.0 License.'®

V. VECTORIAL LIGHT AS A PIONEERING TOOL
FOR OPTICAL MANIPULATION

phenomenon for decades. It appears even naturally in the blue day-
light sky."”” Recent technical advances in light shaping methods have

As the third degree of freedom of fully-structured light, polariza-
tion can play a valuable role in optical micromanipulation. On the one
hand, the polarization of light can be beneficial for handling
polarization-sensitive objects, e.g., exciting responsive molecules in
trapped nano-containers.'”* On the other hand, the polarization of
light enables the transfer of SAM (/i per photon) to trapped
objects’®"*"!*! as well as the creation of SFD (P;) topologies,” both
depending on the polarization handedness S; € [—1, 1]. Typically, the
spin of light is applied via beams of spatially homogeneous polariza-
tion, although spatially structured polarization is a well-known
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FIG. 7. Belmonte et al. implemented the orbital angular momentum (OAM)-based
principle in fluid dynamics to measure the local vorticity of a flow, by analyzing the
light scattered from microparticles, as indicated this figure. Reproduced with permis-
sion from Belmonte et al., Optica 2, 1002 (2015). Copyright 2015 The Optical
Society.

allowed customizing polarization. Thus, nowadays, it is straightfor-
ward to realize vectorial beams of inhomogeneous polarization as
vector fields of linear polarization states varying in orientation or ellipse
fields, which additionally include elliptical or circular states.'”” Within
the latter, spatially varying S, thus, SAM structures and complex SFD
topologies can be realized. The accessibility of these vectorial beams
opens new perspectives for optical trapping, especially since the mea-
surability'*”~"*® as well as applicability'"” of the virtual SFD part has
been proven in different approaches. For instance, SFD can push and
twist a probe Mie particle in an evanescent field.""” Even though the
spin contribution is typically orders of magnitude weaker than the
radiation pressure force of the orbital part, this originally “virtual”
property is attracting rising attention.

In the following, we will give an overview over different modula-
tion approaches for shaping vectorial, i.e., polarization-structured light
in the paraxial regime and detail how these techniques have been
applied to spatially vary angular momenta or create spin flow
topologies.

A. Superposition principle and customized SFD
structures

A polarization-structured light field can typically be decomposed
into two scalar fields E, and E, (E,,, = EJ, - exp (i¢,,,)) of orthogo-
nal polarization following

EZgu‘Eu+€v'Ev- (5)

Here, €, and €, represent two orthogonally polarized unit vectors
(€, L €,; Jones formalism). Thus, at each point in space, the state of
polarization of E is defined by the local amplitude (B, €0, 1))
and phase (¢, , € [0, 27]) relation between the scalar basis fields E,
and E,.
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Due to the diversity of scalar modes of light that can be used as
basis states, various different vectorial light fields have been intro-
duced. For instance, aiming at polarization-structured fields solving
the vectorial Helmholtz equation in polar coordinates, helical LG or
BG modes of orthogonal OAM and orthogonal polarization can be
superimposed, resulting in cylindrical vector beams (CVBs)'’® or vec-
tor BG (vBG) beams,'”” """’ respectively. These classes include not
only vector fields as radially or azimuthally polarized beams but
also ellipse fields depending on the input beams’ polarization.
Moreover, by combining a fundamental Gaussian and a LG mode, full
Poincaré beams'®’ can be realized, including all polarization states of
the Poincaré unit sphere. Beyond cylindrical symmetry, self-similar IG
or non-diffracting Mathieu beams of elliptical/hyperbolic shapes allow
forming complex polarization-structured fields, namely, Ince-Gaussian
vector modes (IVMs)'®! or Mathieu-Poincaré beams,'® respectively.
When choosing the appropriate mode indices, the resulting vectorial
beams inherit the propagation characteristics, as self-similarity, non-
diffraction, and self-healing, of their scalar ancestors.'” %7181 Thus, the
scalar mode indices as well as the input polarization states ensure a
broad variety of adaptive polarization-structured fields.

Following the mathematical description of these light fields, a
straightforward approach for their realization represents an interfero-
metric system for the on-axis, co-propagating superposition of two

(a) (b)

i
u
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scalar, orthogonally polarized modes. Various different systems have
been developed (see, e.g., Refs. 53, 183-193), enabling the superposi-
tion of mostly arbitrary scalar modes. The respective transformation
of relative amplitude and phase differences into spatially varying states
of polarization is best visible by the combination of a plane wave
(polarization &, = [0,1]") and a scalar structured field (polarization
¢, = [1,0]"), as exemplarily shown in Fig. 8. Considering linear hor-
izontal and vertical polarization as basis states, this approach results in
a spatial polarization structure following [E? - exp (i,), 1)7, directly
determined by amplitude E%(x,y) and phase ¢,(x,y) (see Stokes
parameters in Fig. 8). Researchers demonstrated that by this approach
S; and, thus, the SAM are spatially shaped depending on EJ(x, y) and
¢,(x,y), giving rise to complex, customizable SFD configurations.”’
Complex SFD topologies in ellipse fields can also be sculpted by vari-
ous other combinations of scalar beams (e.g., Refs. 194 and 195), all
opening new perspectives for particle manipulation by the energy flow
of light. Beyond, these configurations are not only interesting for opti-
cal trapping or manipulation but also allow for the visualization of sin-
gular field properties: fix point within these energy flow configurations
can be identified as polarization singularities (see Sec. V B) of the
respective polarization structure.

Although interferometric approaches allow creating a broad vari-
ety of vectorial light fields and, thus, energy flow structures, their

FIG. 8. Shaping SFD structures by an
interferometric approach.”” Combination
of plane wave (E,) and (a) scalar LG
mode E, results in a complex polarization
structure [normalized Stokes parameters
in (b), top/bottom: theory/experiment].
Spatially varying S; is directly related to
custom SFD topology Ps, illustrated in (c)/
(d) (simulation/experiment). Arrows: SFD
flow, white/black dots: centers/saddle
points, background: S;. Adapted with per-
mission from Otte et al, J. Opt. 21,
064001 (2019). Copyright 2019 IOP
Publishing.”®
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applicability is typically limited due to spatiotemporal inaccuracies
caused by non-perfect on-axis superposition of combined beams.
Tackling this issue, researchers developed more robust designs, '
eg., by the reduction of optical elements.'”” Moreover, different
single-beam approaches have been developed, avoiding issues of inter-
ferometric two-beam techniques. We exemplify these approaches in
Sec. V B.

B. From single-beam approaches to fully-structured
light

Single-beam methods are simplifying the realization of vectorial
light fields. Among them, the so-called g-plates'’"'"” represent an
established tool, consisting of a thin layer of liquid crystals between
two glass plates, with a fast axis orientation forming a singular pattern
of topological charge q. Depending on the polarization handedness,
this plate can change the topological charge ¢ of a circularly polarized
input beam by *24. Hence, a linearly polarized beam will be trans-
formed into a superposition of two OAM beams of orthogonal circular
polarization, i.e., a vectorial light field is shaped.] 72196197 By rthermore,
also metasurfaces,' """ intracavity approaches,””” and gradient index
lenses™”’ have been recently developed for the direct, robust realization
of vectorial fields.

An even broader range of accessible vectorial light fields can be
achieved by holographic shaping methods.”"*>°>'%19020120% Here, the
common key element represents a SLM, which introduces a phase shift

(b)
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between orthogonal polarization components of an incident light field.
In this case, a digital hologram applied on the SLM determines the
resulting polarization structure, allowing for on-demand beam shaping.
For example, vectorial light fields embedding complex configurations
of polarization singularity can be tailored, contributing to the topical
field of singular optics.lz’—‘m Therefore, before impossible studies on
V-, C-, or L-singularities,u’— i.e, points or lines of undefined polariza-
tion, polarization orientation, or handedness, respectively, have been
enabled. Figures 9(a) and 9(b) give two examples of holographically tai-
lored vector fields, having a central, higher-order V-point singularity,
characterized by the singularity index o1, = E[Sdtl)lz /21 =4 with
@y, = arg(Xy2), and complex Stokes field £;, = S; + iS,."° The sur-
rounding vectors typically form flower- (g1, > 0) or web-structures
(12 < 0) dependent on the sign of the singularity index.”"*" It has
been shown that the position, number, and index of embedded singu-
larities as well as the shape of surrounding light field can be customized
by the SLM and wave plates.”””"’

In addition to pure polarization modulation, some of the approaches
described can even combine the independent customization of amplitude,
phase, as well as polarization (e.g,, Refs. 52, 55, 186, and 205). Thus, fully-
structured fields™” can be shaped, enabling the realization of customized
optical trapping potentials. In particular, the combination of spatially
structured OAM and SAM paves the way for advanced optical trapping
with customized optical angular momenta. Figures 9(c) and 9(d) show a
recent example, in which Alpmann et al. realized an OAM-carrying light
field with a ring-wise variation of SAM.”

I~~~V \ |
[—~~~\N\\ 7/
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FIG. 9. Holographic customization of vec-
torial light. (a) and (b) Vector fields of
flower shape tailored by a combination of
the SLM (Adg: SLM hologram) and
quarter wave plates,””” embedding a
higher-order central V-point identified as
®, phase singularity (black lines: polari-
zation states, red: flow lines). Adapted

with permission from Otte et al., J. Opt.
18, 074012 (2016). Copyright 2016 IOP
Publishing.”* (c) Fully-structured light
field including tailored amplitude, phase,
and polarization.” Here, the light field car-

ries OAM of a helical LG mode (¢ = 3) as
well as a ring wise variation of polarization

handedness, thus, SAM. The transverse
variation of OAM, SAM, and total angular

momentum (per photon) along white

dashed line is shown in (d). Adapted from
Alpmann et al., Sci. Rep. 7, 8076 (2017).
Copyright 2015 Author(s), licensed under a
Creaive ~ Commons  Attribution 4.0

License.” Polarization is analyzed by spa-

tially resolved Stokes polarimetry.”***
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C. Shaping polarization in 3D space

Until now, mainly transverse structures of polarization, its cus-
tomization, and analysis have been investigated. However, recently,
due to vastly improving the ability to shape polarization on demand,
the 3D propagation behavior of light can be accessed. Considering, for
instance, the 3D optical manipulation of polarization-sensitive objects,
the expansion of trapping volumes, or the customization of fully-
structured light for elongated particles, the importance of 3D struc-
tured polarization becomes clear.

As described in Sec. V A, based on the superposition principle,
one can realize vectorial light fields inheriting the propagation behav-
ior of its scalar ancestor. For instance, by combining scalar
propagation-invariant BG or Mathieu fields with an appropriate
choice of mode indices, the formation of non-diffracting, self-healing
vector Bessel-Gaussian (vBG) or Mathieu-Poincaré fields, respec-
tively, is facilitated.””~'7%"'%> Moreover, it has been shown that vBG
fields of transversely homogeneous, but longitudinally inhomogeneous
or transversely as well as longitudinally inhomogeneous states of
polarization can be shaped™” based on a transverse-to-longitudinal
modulation strategy.”"’

However, 3D structured polarization is not limited to fields based
on non-diffracting beams: researchers demonstrated the ability to
sculpt 3D varying polarization distributions based on the fundamental
concept of counter-propagation.””*"**"”  Therefore, orthogonally
polarized LG or CVBs were combined, enabling significant changes in
polarization within propagation distances of a wavelength. Within the
study of counter-propagating CVBs of orthogonal polarization, reveal-
ing entanglement beating,”” Otte et al also found paraxial spin-
orbit-coupling in free space. This behavior of SAM and OAM is of
topical interest, recently studied in more detail by Li et al.”"” who eluci-
dated the role of orbit-orbit and spin-spin interaction between the

scitation.org/journal/are

electric and magnetic fields. Figure 10 explains the pioneering result of
Otte et al, showing counter-oscillating spin and orbital angular
momentum upon propagation. Light fields including this custom
property are of specific interest for 3D optical manipulation in a
counter-propagating trapping configuration, as they enable the orbit-
ing/spinning of trapped objects only in scalar planes, whereas in purely
vector planes no effect of angular momentum is expected.

VI. FOCAL FULLY-STRUCTURED TRAPPING
LANDSCAPES

Structured light is not only important due to its valuable on-
demand OFD and SFD characteristics: it gets especially interesting if
we tightly focus (numerical aperture NA > 0.7) structured light of
specific phase/OAM or polarization/SAM properties. When changing
from the paraxial to the non-paraxial regime, significant longitudinal
polarization components are formed in addition to typical transverse
field components in the focal light field; thus, E = [E,, E,, E,]". These
fields embed specific non-paraxial properties, being of utmost interest
for optical trapping, in which tightly focused fields are frequently used.
For instance, in the non-paraxial regime, the division of energy flow
into S;-dependent spin and /-dependent orbital parts is no longer
valid.”'"*"" Furthermore, the conversion from SAM to OAM is
found,”"” ”'” which can alternate the orbital rotation speeds of trapped
particles, as proven experimentally.”'” This conversion is still of topical
interest: recently, Arzola et al. demonstrated that spin-orbit interac-
tion by tight focusing gives rise to series of subtle, but observable,
effects on the dynamics of a trapped dielectric micro-sphere.”'®

One of the most powerful advancements is the implementation
of polarization-structured light as the initial beam, allowing for fully-
structured focal light, innovative custom trapping landscapes, until
now unexploited trapping forces, complex 3D instead of typical 2D

FIG. 10. Paraxial spin-orbit coupling in
free space.” (a) The counter-propagating
superposition of orthogonally polarized
CVBs results in a 3D structured vectorial
light field of oscillating vectorness. (b) The
graph (bottom) illustrates the correspond-
ing variation of the von Neumann entan-
glement entropy upon propagation
(classical ~ consideration, Ex € [0, 1])
which is maximal/minimal for the vector/
Z scalar field distribution (top: intensity and
polarization). SAM (dashed orange line)
and OAM (solid orange line) are counter-
oscillating upon propagation, revealing
paraxial spin—orbit coupling in this free-
space configuration. Adapted from Otte
et al., Light Sci. Appl. 7, 18009 (2018).
Copyright 2015 Author(s), licensed under
a Creative Commons Attribution 4.0
License.”
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polarization states and topologies, and many more. In the following,
we will give an insight into these cutting-edge innovations enabled by
sculpted polarization.

A. Basic vector fields for optical trapping

If a polarized light field is tightly focused, initial radial polari-
zation components will be tilted, forming significant longitudinal
focal field contributions, whereas azimuthal electric field compo-
nents stay unaffected (see Fig. 11). It has been shown that this
behavior already makes basic vectorial light fields (first-order vec-
tor beams, |012| = 2), namely, radial and azimuthal (cylindrical)
vector beams, attractive for optical single-beam trapping: a purely
radially polarized vector field enables the realization of a tighter
focal spot.”” Compared to a linearly polarized trapping beam, this
focusing behavior of radial beams results in a larger axial, but
smaller transverse trapping efficiency.”'” Thus, the general perfor-
mance of optical tweezers can be improved due to reduced scatter-
ing forces.”” Comparing the basic vector to Gaussian beams,
Zhong et al. revealed higher axial trapping forces on core-shell
magnetic microparticles for both radial and azimuthal fields.”'” In
addition, it has been shown that azimuthal beams exhibit stronger
lateral trapping forces than radially polarized ones.”””'” Based on
these findings, Moradi et al. recently studied the influence of the
numerical aperture, spherical aberration, and particle size on the
trapping stiffness of radially, azimuthally, and linearly polarized

—
&
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beams.””’ Beyond, in 2019, Li et al. have shown that the tightly
focused vector beam can exert chirality-tailored optical forces,
enabling the selective trapping and rotation of small chiral
particles.””’

To achieve further advancement of these applications, researchers
recently focused multiple basic vector and scalar fields in a joint trap-
ping plane,” shaping an array of higher-order Poincaré sphere
(HOPS) beams™ (|g15| =2, [¢| =1) as input. More precisely,
Bhebhe et al. designed a vector HOT (see Fig. 12)—the further devel-
opment of standard HOT (see Sec. I1). To realize HOPS beams based
on the superposition principle (see Sec. V A), the according hologram
carries the spatially multiplexed information of all imparted scalar
modes, following the group’s former presented approach to realize
multiple vector beams by a single SLM.'*” Subsequently, realized
HOPS beams are tightly focused. In addition to other combinations,
Bhebhe et al. combined a radial, an azimuthal vector, and a linearly
polarized OAM beam in the trapping plane.

B. Focal field customization by polarization
modulation

In addition to implementing multiple beams to form a complex
trapping landscape, advanced polarization customization of a single
input beam, also combined with amplitude and/or phase modulation,
represents another innovative way to create trapping potentials. These
may embed, e.g., custom 3D intensity distributions, 3D polarization

|Ex[?

IE,

|E,?

FIG. 11. Tight focusing properties of vec-
torial light. (a) Concept of the realization of
longitudinal focal field contributions by ini-
tial radial components (black arrows),
while azimuthal components stay unaf-
fected (gray arrows/dots; wave vector
k = [k, ky,kz]T). (b) and (c) Focal inten-
sity contributions |Ey.,.,|* for focusing a

1 purely (b) radial and (c) azimuthal vector
field (top: transverse input polarization;
NA = 0.9). The ratio of the maximum of
|E,..|* to the one of |E, [ is given within
respective images.
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topologies, and/or energy flow configurations. For instance, different
researchers combined the initial radial or azimuthal vector fields with
specific diffractive optical elements before tight focusing, enabling the
formation of an optical bubble,”*** optical needle,”””** or optical
chains of voids**’ within the focal intensity structure. Additionally, it has
been demonstrated that these basic vector fields can be applied in combi-
nation with, e.g., sector-shaped obstacles”” or annular vortex phase
masks”*” to shape the corresponding energy flow in the focal field.

Going beyond focusing basic vector fields, recently, Li et al.
implemented a tightly focused vectorial beam with radially varied
states of polarization to allow enantioselective optical trapping of chiral
nanoparticles in spatially separated locations.””” In this case, a double
focus of specific chirality-sensitive properties was shaped, taking
advantage of the ability to tailor the focal trapping landscape depen-
dent on polarization customization of the input field.

To enable a controlled realization of focal intensity land-
scapes, singular light fields with a central singularity (|oj,| > 2) are

(a) (b)
!
y

(=0
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FIG. 12. Vector HOT enabling the
dynamic implementation of multiple HOPS
beams for particle manipulation.”® (a)
Scheme of developed vector HOT used
for trapping dielectric 2 um-particles. (b)
Experimental image of trapped particles
(top view) with insets of transverse inten-
sity and polarization of applied HOPS
beams  (non-focused distributions).
Adapted from Bhebhe et al., Sci. Rep. 8,
17387 (2018). Copyright 2015 Author(s),
licensed under a Creative Commons
Attribution 4.0 License.”

the structures of choice. For instance, tightly focusing higher-order
vector fields””” of index |g1,| > 2 results in characteristic trans-
verse intensity distributions depending on the sign of the central
singularity’s index.”” More precisely, dark stars or bright flowers
are shaped for positive or negative input indices, respectively. A
direct relation between input singularity index and the resulting
number of star points or flower petals facilitates the controlled for-
mation of focal intensity landscapes. This customization can even
be advanced by adding a phase vortex to the electric input field.
This enlarges the range of accessible intensity, thus, trapping land-
scapes,””” enabling the tuning of the focal field according to the
trapping object, as exemplarily illustrated in Fig. 13. The focal field
intensity can be adapted so that an elongated nano-container is
stably aligned with the optical axis [see (b) and (c) ¢ =3].
Additionally, the customized 3D polarization is of similar interest
as the intensity for trapping nano-containers that embed polariza-
tion sensitive, responsive molecules. The respective focal field can

FIG. 13. Exemplary trapping of cylindrical zeolite-L nano-containers by higher-order vector field (a1, = 8) with additional phase vortices of charge ¢ (NA = 1.4, oil immersion
objective, zeolites in water, trapping wavelength 2 = 532 nm). The trapping concept is shown in (a). By implementing phase vortices, the (b) transverse intensity distribution (nor-
malized) can be tuned, influencing (c) the zeolite orientation (top view; insets indicate orientation). Note that focal fields can have valuable 3D polarization properties: for ¢ = 3

strong longitudinal field contributions are found,”**

which could be applied to excite polarization sensitive molecules aligned in the channels of the zeolite (along the long axis).
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FIG. 14. Optical polarization Mdbius strips shaped by tightly focusing CVBs*® (experimental results). CVBs are formed by (a) g = 1/2- and (b) g = 3/2-plates, and the focusing
objective has a NA of 0.9. Major axes of 3D polarization ellipses are traced on a circle located in the focal plane around the optical axis (see the white dashed circle in insets
of focal intensity distribution). One half of the major axes are colored blue, while the other half is colored green for improved visualization. Reproduced with permission from
Bauer et al., Science 347, 964 (2015). Copyright 2015 The American Association for the Advancement of Science.®

be simultaneously applied for trapping as well as excitation of C. 3D polarization topology, its analysis and future
loaded molecules by its polarization topology. In the presented potential

case, for fzf 3ht,h§ foca%;ield .embedls strlong longitliidirllal ﬁel}(li com- Non-paraxial fully-structured fields may also include complex
For}e?ts’ which could excite molecules arranged along the zeo- topologies as optical cones, ribbons, and Mdobius strips. These have
ite's long axis. already been predicted in 2005 by Freund”* and were proven

Ejn MO E]2 Probe IE

(b)

2

FIG. 15. Single-shot identification by the nanotomographic approach based on the self-assembled responsive monolayer.”** (a) Concept of the measurement procedure (Eiy:
input electric field, MO: microscope objective, |E' |2: normalized transverse focal field intensity, probe: fluorescent monolayer on glass, |E'/|2: normalized transverse intensity of
fluorescent response). (b) Exemplary measurement results for tightly focused (NA = 0.8) vector field with a4, = 8 and additional phase vortex of charge ¢ = 2. Left: experi-
mental/theoretical fluorescence distributions (red/blue). Right: intensity values within ring-shaped subspace of detected transverse fluorescence dependent on angular position
(cf. white rings in left images; red/blue experiment/simulation). Adapted from Otte ef al., Nat. Commun. 10, 4308 (2019). Copyright 2015 Author(s), licensed under a Creative
Commons Attribution 4.0 License.””*
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experimentally 10 years later by Bauer et al.*” Figure 14 illustrates respec-
tive experimental results realized by tightly focusing a CVB shaped by a
g-plate of charge (a) g= 1/2 and (b) q = 3/2. Here, the major axes of 3D
polarization ellipses are traced on a circle (white dashed circle in insets of
total focal intensity), forming the 3/2- and 5/2-twist Mobius strip. The cir-
cle is located in the focal plane (z= 0) around the optical axis. Since this
experimental proof, the range of studied complex topological structures,
especially Mobius configurations, has increased significantly, not only
realized by tight focusing.”**"" *** For instance, researchers demonstrated
the creation of optical Mbius strips with exotic twisting behavior,””" ana-
lyzed Mobius strips around points of purely transverse spin density,””
and realized extended arrays of Mobius strips around focal singular points
of adaptable number and index.”’

Customized 3D topological structures are pioneering the optical
fabrication of novel functional media based on non-trivial topologies
or the assembly of polarization-sensitive particles. For example, imple-
menting custom polarization topologies, polarization-sensitive nano-
objects can be arranged in order to form novel functional chiral meta-
surfaces by bottom-up assembly.

For those next-generation applications, the experimental analysis
of focal fully-structured light fields is essential. However, due to their
nano-scale details as well as their 3D polarization nature, methods typ-
ically applied in the paraxial regime are not applicable for the non-
paraxial analysis. Hence, within the past few decades, researchers
intensively worked on detection methods.””******* For instance,
Bauer et al. presented an approach based on scanning the focal field by
a scattering gold nano-particle, enabling the measurement of
focal amplitude, phase, and 3D polarization with high precision™** (see
Fig. 14). Going beyond scanning the field of interest, a nano-
tomographic method”*’ has been developed, allowing for the single-
shot identification of focal fields and their non-paraxial properties.
This method is based on the implementation of a responsive nano-
system, more precisely, a self-assembled monolayer of fluorescent mol-
ecules, with a response depending on focal amplitude, phase, and 3D
polarization. The respective working principle is illustrated in Fig. 15.
These emerging methods now enable the detailed analysis of custom-
ized non-paraxial light fields and, thereby, advance the implementa-
tion of future optical trapping and manipulation applications.

VII. CONCLUSION

Although optical trapping is established in the optics community
for already half a century, the pace of innovations is still unchanged. In
particular, the implementation of structured light, which has led to path-
breaking inventions in, e.g., high-resolution microscopy or optical com-
munication, has unveiled a huge unexploited potential for optical
trapping. On the one hand, scalar beam shaping has enabled HOT,
advanced trapping potentials by light fields, which are 2D or even 3D
sculpted in amplitude and phase, and the transfer of tailored OAM/
orbital energy flow on trapped objects. On the other hand, recent
advancement in polarization modulation has opened up a whole
new class of light fields for optical manipulation: vectorial and fully-
structured beams. Customized spin angular momentum, trapping
potentials tailored for polarization-sensitive particles, and 3D extended
vectorial flelds embedding a not yet exploited kind of paraxial
spin—orbit-coupling will pave the way for next-generation trapping
applications. Beyond, the topical, still emerging field of tightly focusing
scalar, vectorial, or fully-structured light fields reveals the ability to tailor

REVIEW scitation.org/journal/are

focal trapping potentials, trapping forces, energy flow, and 3D polariza-
tion topologies, among others. Recently studied innovative non-paraxial
light fields may enable, for instance, the formation of novel functional
media as chiral metasurfaces by light-assisted bottom-up assembly of
polarization-sensitive or -responsive objects taking advantage of, in
particular, the 3D polarization of structured non-paraxial light.

Optical trapping by structured light has also recently spread in
various related fields: in 2019, the holographic acoustic tweezers
(HAT) was introduced,” based on the principle of HOT.
Additionally, SAM and OAM in acoustic beams were studied,”*” and
an acoustical equivalent of an OAM beam, orbiting trapped objects,
was created.”*" Furthermore, plasmonic effects are implemented for
strengthening optical trapping and binding of nano-particles*** or for
the realization of nano-aperture tweezers with light shaped at the
nano-scale to manipulate nano-particles or analyze viruses, DNA frag-
ments and proteins,"**>*** and tightly focused vectorial light fields
allow for plasmonic trapping of metallic particles.”"” Moreover, also
atom trapping follows the example of implementing structured light;
for instance, in 2018 Selyem et al. studied the shaping of atomic popu-
lations using a near resonant laser beam with a holographically con-
trolled 3D intensity profile.”** Furthermore, using a DMD, in 2016
Gauthier et al. shaped the configurable microscopic optical potential
for the trapping of a Bose-Einstein condensate.”*’ Hence, structured
light not only has found its way into the field of optical trapping, com-
ing along with continuing progress, but also significantly advances
applied research fields as acoustic, plasmonic, and atomic trapping.
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