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Abstract: A major current challenge in the field of structured light represents the development
from three- (3d) to four-dimensional (4d) electric field structures, in which one exploits the
transverse as well as longitudinal field components in 3d space. For this purpose, non-paraxial
fields are required in order to be able to access visionary 3d topological structures as optical
cones, ribbons and Möbius strips formed by 3d polarization states. We numerically demonstrate
the customization of such complex topological structures by controlling generic polarization
singularities in non-paraxial light fields. Our approach is based on tightly focusing tailored
higher-order vector beams in combination with phase vortices. Besides demonstrating the
appearance of cones and ribbons around the optical axis, we evince sculpting arrays of Möbius
strips realized around off-axis generic singularities.
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1. Introduction

Structured light has achieved paramount importance within the last decades [1–4]. On the one
hand, structured light fields enable advanced applications in areas such as optical manipulation
[5–7], classical as well as quantum information technologies [8–11], material machining [12,13],
metrology [14,15], and high-resolution imaging [16,17]. On the other hand, light fields structured
in its different degrees of freedom have proven to be fundamentally meaningful, unveiling
elementary properties of electromagnetic waves especially with respect to optical singularities
(e.g. [2,3]). These fields are not only artificially created by different means of sculpting light as
by spatial light modulators (SLMs) [18–23], q-plates [24], interferometric techniques [21,25–28],
and many more, but also appear in nature in the blue daylight sky or in optical speckle fields
[3,29]. Hence, the study of complex singular light fields enables new insights into the general
and not yet fully explored, nor understood, nature of light.
Recently, in addition to spatially structuring the amplitude and phase of light, spatially

shaping the polarization as a third degree of freedom has come to the fore, mainly enabled by
advances in modulation techniques [1,19,23–25,30]. Even though the importance of polarization
modulation has quickly been accepted, current findings are mainly limited to the paraxial
regime. Consequently, investigations were concentrated on three-dimensional (3d) fields E(x, y, z)
of two-dimensional (2d) polarization, in which the polarization of light is purely transverse,
oscillating solely within the plane orthogonal to the beam’s propagation direction. However,
polarization of light is a three-dimensional feature, including full elliptical polarization states.
A major current challenge is therefore the development from these spatial 3d structures of 2d
polarization to four-dimensional (4d) cases, exploiting all three field components E(x, y, z) =
[Ex(x, y, z), Ey(x, y, z),Ez(x, y, z)]T , i.e. the longitudinal in addition to typical transverse electric
field contributions. Similar to 4d materials, the term 4d light fields is chosen for fields which are
structured in 3d space and additionally include a fourth dimension [31]. This dimension can be
accessed in non-paraxial light fields as e.g. in tightly focused beams where radial components of
the input light field form significant longitudinal focal field contributions [32–35] as the focal
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field’s fourth dimension [31]. However, strong focusing brings theoretical investigations out of the
paraxial regime, and thus represents a major actual conceptional challenge. Consequently, only
few studies up to now represent the spearhead towards the understanding of 4d field structures
and its subsequent implementation, applying tight focusing properties of polarization structures
e.g. for the creation of tailored focal fields [34,36–39] as optical needles. From a fundamental
perspective, longitudinal field components enable the formation of complex 3d polarization
topologies as optical cones, twisted ribbons and Möbius strips, as first predicted by I. Freund [40]
and experimentally proven by T. Bauer et al. in 2015 [41,42]. Typically, these topologies appear
around generic polarization singularities, namely, C-points (points of pure circular polarization)
and L-points (points of pure linear polarization), in which the orientation or handedness of
polarization is undefined, respectively [43–47]. Within the 3d volume of a non-paraxial 4d
field, these singularities form lines of pure circular or linear polarization meandering throughout
3d space, appearing as points if a chosen 2d plane is considered. The investigation of the 3d
polarization ellipses around these singular points can reveal complex topologies forming intended
cones, ribbons or Möbius strips.
First simple but yet striking examples of 3d polarization topologies have been demonstrated

recently [41,42,48–52], not only by tight focusing but also off-axis interference of two customized
beams [48], scattering from high-index dielectric nano-particles [50], or by the application of
all-dielectric metasurfaces [52]. However, a general framework to access intriguing 4d structures
of light revealing sophisticated even not yet known topologies has not yet been developed.
Within our study, we numerically evince the on-demand customization of generic polarization
singularities in 3d space and, thus, of complex optical topologies in the non-paraxial regime. We
are even able to demonstrate the formation of a customizable polarization Möbius strip array.
Our method is based on defined tailoring of non-paraxial light fields by tightly focusing vector
beams of spatially varying linear polarization in combination with additional phase vortices
(see Sec. 2.). We apply vector fields of higher order [35,53], i.e. the states of polarization
surrounding the included non-generic V-point singularity of undefined polarization [3,35] rotate
multiple times while going around the on-axis singularity. By the inclusion of an additional
phase vortex embedding a point of undefined phase (phase singularity), we change the symmetry
of the vector beam in such a way that the resulting focal 4d light field includes unknown 3d
topologies centered on- (see Sec. 3.) as well as off-axis (see Sec. 5.) within the focal 2d plane
(z = 0). We demonstrate the control of C- and L-singularities (see Sec. 4.) in the non-paraxial
regime by adapting the phase and polarization singularity indices σ12 and l, respectively, of the
incident paraxial light field, proving the ability to customize intriguing topological structures
even at the nanoscale of strongly focused light.

2. Method

In general, paraxial vector fields exhibit an inhomogeneous polarization distribution in which the
polarization in the transverse plane covers only the equator of the Poincaré sphere, thus containing
exclusively linear states of polarization [35,47,54–56]. In such paraxial fields the inhomogeneous
distribution of linear polarization states can result in non-generic vectorial polarization singular-
ities, namely V-points, in which the complex electric field vector E = [Ex,Ey]

T (Ez ≈ 0) and
therefore the polarization cannot be defined [57,58]. In order to describe the singularity and the
transverse pattern of different vector fields, the complex Stokes field

Σ12 = S1 + iS2 = A12 exp(iφ12) (1)

with A12 =
√

S21 + S22 and φ12 = arg(Σ12) is defined for the paraxial regime [57–59]. Here, Si with
i = {0, 1, 2, 3} represent the normalized Stokes parameters. Thus, V-points can be identified as
phase singularities in φ12, and are characterized by the Stokes field index σ12 =

1
2π

∮
dφ12 [57,59]
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(|σ12 |/2 ∈ N; σ12 = 2η, η: Poincaré-Hopf index [57]) representing its order. Furthermore, a
relation between singularity index and overall polarization distribution can be found [53,58].
Examples for vector fields including singularities are illustrated in Fig. 1. Here, the polarization
distribution as well as the phase φ12 of two different higher-order vector beams with σ12 = ±8
are presented. Solid black lines depict linear polarization states and solid red lines visualize the
flow lines. Around V-points with a positive singularity index (σ12>2), a flower-like polarization
distribution is found, whereas for a negative singularity index (σ12< − 2), a spider-web-like
structure appears. These higher-order structures typically contain |σ12 − 2| ζ -lines, along which
the polarization states are oriented radially towards the on-axis singularity [47], and |σ12 − 2|
flower petals or spider web sectors, respectively. Hence, the number of radial components inside
transverse patterns of a vector beam is strongly related to the V-point and its singularity index.
This feature of vector beams is key for controlling singularities as well as complex topologies in
tightly focused light fields, as we will prove in the following sections.

Fig. 1. Higher-order vector beams with singularity index (a) σ12 = 8 and (b) σ12 = −8
forming vectorial flowers and spider webs, respectively. Illustrated are the linear polarization
distributions including red flow lines and the corresponding Stokes field phase φ12.

We investigate the tightly focusing properties of flower- and web-shaped vector fields of
index σ12 including additional global phase vortices of topological charge l (counterclockwise
azimuthal change of phase around on-axis phase singularity divided by 2π). These paraxial
vectorial fields can be described by

Ein =
[
cos

(σ12
2
· ϕ

)
, sin

(σ12
2
· ϕ

)]T
· exp (ilϕ) (2)

with |σ12 |/2 ∈ N and the azimuthal angle ϕ ∈ [0, 2π] in polar coordinates. Note that global
phase vortices do not effect the polarization structure at z = 0. This means, in the presented case,
the paraxial polarization distribution for l = 0 and l , 0 is the same, representing flower or web
structures, purely defined by the σ12 dependent vector in Eq. (2).
In general, by tightly focusing a paraxial light field, e.g. vector beam, a non-negligible

longitudinal polarization component is created and the complex electric field vector E =
[Ex, Ey, Ez]

T is no longer purely transverse with Ez ≈ 0, but three-dimensionally oriented with
Ez , 0 [33,60,61]. In order to determine the focal electric field E and its components Ex, Ey, and
Ez with Ein as input light field, we solve Richards and Wolf integrals [60] by using a fast Fourier
transform operation as described in [34,62]. Numerically calculating the focal field distribution
E (numerical aperture NA = 0.9, refractive index n = 1), we examine the resulting polarization
pattern inside the tight focus (z = 0) with respect to its non-paraxial 3d polarization singularities
and its hidden topological structures.

3. From cone to strip

By tightly focusing higher-order vector beams, an inhomogeneous 2d polarization pattern of
linear states is transformed into a complex arrangement of elliptical 3d polarization states in 3d
space [40–42,63–66]. Consequently, 4d fields are formed. In order to determine the polarization
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distribution in such a non-paraxial field, we only consider polarization states inside the focal
plane, i.e. z = 0. We use the calculated electric field vector E(r) = [Ex(r), Ey(r), Ez(r)]T with
r = (x, y, z)T to trace the polarization ellipses and their respective 3d orientation in this plane.

In contrast to paraxial light fields, conventional Stokes parameter analysis cannot be applied to
understand the polarization distribution in non-paraxial light fields and therefore in the focal plane
due to the 3d electric field nature in each plane. In the non-paraxial regime, Stokes parameters
would require an extension to 3d to be applicable [67,68]. However, the full structure can be
deciphered by deriving the major axis α, minor axis β and normal vector γ of the polarization
ellipse defined by [69]

α =
1

|
√
EE |
<

(
E
√
E∗E∗

)
, β =

1
|
√
EE |
=

(
E
√
E∗E∗

)
, γ = = (E∗ × E) , (3)

Tightly focusing pure vector beams (Eq. (2) with l = 0) result in a focal polarization distribution
(z = 0) where all major axes either lie in the focal plane or are perpendicular to it. This effect is
due to the discrete relative phase values observed for the transverse (0 or π) and longitudinal
(π/2 or 3π/2) component, in this case, only allowing for these orientations, as evident from our
previous work [34]. In contrast, combining these vector beams with phase vortices, a variety of
polarization topologies is expected due to symmetry breaking between orthogonally polarized
contributions of Ein: Typically, paraxial vector modes can be represented as superpositions of
orthogonal spatial modes of likewise orthogonal polarization. For circular polarization bases,
spatial modes carry opposite helical charges with l1,2 = ±σ12/2, whose relation will be distorted
by the intended addition of phase vortices resulting in a change of focal topology. To analyze
this effect by an illustrative example, we calculate the electric field distribution E(x, y, 0) of a
focused vectorial flower structure with σ12 = 8 and an additional phase vortex of topological
charge l = 1. This phase vortex causes the intended asymmetry with the respective paraxial field
carrying vortices of charge ±σ12/2 + l, i.e. l1 = 4 + 1 = 5 and l2 = −4 + 1 = −3, in its two
circular polarization bases.
Numerical results are shown in Fig. 2, where 2(a) illustrates the normalized intensity contri-

butions |Ex,y,z |
2 ∈ [0, 1] as well as the phase distributions ϕx,y,z ∈ [0, 2π] of each electric field

component, 2(b) the total intensity distribution |E |2 ∈ [0, 1] and 2(c)–2(e) the created polarization
topologies in the focal plane (z = 0). The ratio between the maximum intensity of |Ex,y,z |

2 to
the maximum of |E |2 is written in white letters within intensity illustrations. We determine the
polarization topology on circles around the optical axis having three different radii, shown as
dashed white lines in 2(a) and 2(b). We trace the major axis (blue lines with blue and green
ending points in Figs. 2(c)–2(e)) of the polarization ellipses which are located on these circles
with 2(c) corresponding to the smallest circle, 2(d) to the medium sized circle and 2(e) to the
largest circle. In the xy-plane, the projections of the polarization topologies are visualized.
The focused vectorial flower configuration reveals an eight-lobe intensity structure for its

transverse components and a six-lobe structure for its longitudinal component as well as in its
total intensity distribution, as illustrated in Figs. 2(a) and 2(b). Similar intensity distributions
are generated if we focus the vectorial flower structure without a phase vortex [31,34,70]. In
this case, as outlined in [34], the number of focal intensity lobes is related to the singularity
index σ12 or, more precisely, the number of ζ-lines of the input field given by |σ12 − 2|: Purely
radially oriented states as found on ζ -lines create maxima in longitudinal components, thus, |Ez |

2

includes |σ12 − 2| maxima. Further, x- and y-oriented focal components reveal |σ12 | maxima at
positions corresponding to the input field’s horizontal and vertical polarization components. Even
though the intensity distributions for a focused vectorial flower without and with a phase vortex
(l = 1) resemble, the key difference of both focal structures is hidden in the phase distribution
of each component which change dramatically if the vortex is added, resulting in intriguing 3d
polarization topologies.
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Fig. 2. Polarization topologies around the optical axis: We show the intensity distribution
of (a) each component |Ex,y,z |2 ∈ [0, 1] and their respective phase ϕx,y,z ∈ [0, 2π] as well
as (b) the total intensity structure |E |2 ∈ [0, 1] of a tightly focused vector beam with the
singularity index σ12 = 8 and a topological charge of l = 1 (z = 0). All intensity structures
are normalized with respect to their maximum, whereby the ratio of the maximum of
|Ex,y,z |2 to the one of |E |2 is shown within the intensity images in (a). Furthermore, (c)-(e)
3d polarization topologies inside the focal 2d plane are shown, whereby each topology
is observed by tracing the major axis (blue lines with blue and green endpoints) on three
different circles (white dashed line in (b) |E |2 and its components (a) |Ex,y,z |2; z = 0). The
black circles in (c), (d), and (e) correspond to the small, medium, and large white circle in
(b) at z = 0, respectively.

The created electric field and its phase distributions yield different topological structures for
each circle. For the smallest circle, a cone-like structure is observed with respect to the major
axis of the polarization ellipses (Fig. 2(c)). On this circle, a stronger longitudinal z-component
than transverse x-/y-component can be found, causing the major axis to be arranged in a cone
structure. By increasing the radius of the circle the transverse components become stronger.
Therefore, the major axis starts to wiggle in the transverse directions as illustrated in Fig. 2(d).
Hence, the cone structure degenerates into a ribbon topology without full twists on the medium
sized circle. Here, the longitudinal component is still the dominant one, such that no twists are
generated by the major axis. In contrast, by exploring the major axes on the largest circle 2(e), the
focal field reveals a twisted ribbon topology with six twists, since the azimuthal periodicity of
intensity lobes and phase values changed significantly for longitudinal components on this circle
(cf. Fig. 2(a), |Ez |

2). The number of twists corresponds to the number of maximal intensity lobes
in |Ez |

2 and to the number of ζ-lines in the incident vector beam, respectively.
In general, a fundamental relation can be observed between the twisted ribbon structure and

the incident vector field with respect to the singularity index σ12 and the topological charge
l. We explored the topological structures created inside the focal field for different singularity
indices σ12 ∈ [4, 10] and topological charges l ∈ [0, 7] of the incident vector beam. For a
chosen singularity index σ12 and a topological charge of 0<l< |σ12/2| − 1, the focal field and its
polarization topologies reveal a similar behavior like in Fig. 2. Consequently, the major axes
create cone structures as well as twisted ribbons with |σ12 − 2| twists for certain radii of the
circles. As evident from our previous work in [31], larger topological charges (l ≤ |σ12/2| − 1)
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result in a point or donut-like intensity structure, which yield cone topologies or ring structures,
where all the major axis lie in the focal plane.

Hence, tightly focusing higher-order vector beams including phase vortices can form intriguing
3d topological structures with respect to their polarization ellipses around the optical axis.
Furthermore, these topologies, e.g. the twisted ribbons, can be controlled by the focused
singularity index σ12 and the topological charge l, allowing us to create arbitrary ribbons
with a defined number of twists. In the following, we will explore on- as well as off-axis
generic polarization singularities and their immediate surrounding topologies to obtain a deeper
understanding of the generated polarization pattern inside these focused vector fields.

4. Controlling C- and L-singularities

Sophisticated 3d polarization topologies like Möbius strips are typically hidden around generic
polarization singularities in non-paraxial 4d light fields [71,72]. These generic singularities, being
stable upon minor perturbation [73], are meandering lines of circular and linear polarization in
3d space. If these lines pierce a 2d plane, e.g. the focal plane, points of pure circular polarization,
C-points, and points of linear polarization, L-points, appear. Here, we search for and investigate
these polarization singularities in tightly focused higher-order vector beams with additional phase
vortices.

In the representation of Eq. (3) for the 3d polarization ellipse, a C-point arises if the polarization
ellipse degenerates into a circle in which the major and minor axis cannot be specified, i.e. α = β.
Moreover, the 3d electric field vector E and the rectifying phase θ define the complex scalar field
[69]

ΨC = E · E = (α2 − β2)ei2θ (4)
which gives zero (ΨC = 0) if a C-point arises [65,69,74]. Thus, by calculating the intersection of
the zero-lines <(ΨC) = 0 and =(ΨC) = 0 inside the focal plane of our focused vector beams,
generic C-points can be located. In contrast, an L-point is created if the polarization ellipse
degenerates into a line, thus the minor axis vanishes while the major axis remains well defined,
leading to the normal vector γ = 0 [69]. Consequently, the zero-lines corresponding to the
components of the normal vector γ = (γx, γy, γz) can be used to find L-points in the focal plane.
For our analysis, we first numerically calculate the tight focus (z = 0) of a particular vector

beam with an optional additional phase vortex. Second, we use the calculated focal electric
field vector E to determine the complex scalar field ΨC by Eq. (4) and the normal vector γ by
Eq. (3). Furthermore, by means of the zero-lines of<(ΨC), =(ΨC) and γx,y,z, the generated focal
polarization distribution can be searched for polarization singularities.

In Fig. 3 we illustrate the numerically calculated zero-lines of 1)<(ΨC),=(ΨC), and 2) γx,y,z on
the intensity distribution |E |2 of tightly focused flower vector beams with σ12 = 8 and topological
charge l ∈ [0, 5]. For the case of 3(a) σ12 = 8 and l = 0, the zero-lines 3(a1)<(ΨC) (blue) and
=(ΨC) (orange) lie on top of each other, thus, instead of a singular C-point a line of circular
polarization states is found. This line of circular polarizations in the focal plane represents a
non-generic singularity (C-line in 2d space). Additionally, L-points are not generated either for
this case since the zero-lines of 3(a2) γx,y,z (red, yellow, green) have no joint intersection.
If we increase the topological charge l, C-points as well as L-points are created in the focal

plane as evident from the intersections of the respective zero-lines. For 3(b) l = 1 and 3(c)
l = 2 the polarization distribution includes 3(b1),(c1) six C-points and 3(b2),(c2) six L-points in
regions where |E |2 , 0. Furthermore, between two C-points there is always an L-point located
and vice versa. The case with topological charge 3(d) l = 3 shows 3(d1) no C-point within the
intensity structure |E |2 , 0, but 3(d2) an individual L-point on the optical axis. In contrast,
for 3(e) l = 4, 3(e2) no L-point is generated, but 3(e1) a C-point can be found on-axis. Here,
two of each zero-lines of <(ΨC) and =(ΨC) intersect at the C-point marking a (non-generic)
higher-order C-point or two very close generic C-points of first order. If the topological charge
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Fig. 3. Generic singularities in focal structures: We show the zero-lines inside the focal
plane of a tightly focused higher-order vector beam with singularity index σ12 = 8 and
additional topological charge l ∈ [0, 5] in (a)-(f) with increasing l. The background shows
the normalized intensity structure |E |2 ∈ [0, 1]. By examining the intersection points of the
zero-lines, 1) C-points (blue, orange line: <(ΨC) = 0, =(ΨC) = 0) as well as 2) L-points
(red, yellow, green line: γx,y,z = 0) can be detected. (color version online)

is increased to l = 5, 3(f1) two C-points and 3(f2) no L-point are created within the respective
donut-like intensity structure.

In general, a defined relation between the focused higher-order vector beam with phase vortices
and the generated polarization singularities can be observed. From the numerical simulations
above and from additional calculations for vector beams with σ12 ∈ [4, 12] and l ∈ [0, 7] we
derive

I) l = 0 : no polarization singularity,

II) 0 < l < |σ12 |/2 − 1 : |σ12 − 2|C- and L-points,

III) l = |σ12/2 − 1| : one L-point in the center,

IV) l = |σ12 |/2 : one C-point in the center.

As evident from case II), the number of generated C- and L-points within the tight focus
corresponds to the number of ζ -lines in the incident higher-order vector beam. Consequently, the
ability to tailor the singularity index σ12 and the topological charge l of the incident vector beams
in turn allows controlling the number of generated polarization singularities within the tight
focus and, thus, to create complete polarization singularity networks [75] within the non-paraxial
regime.

5. Creating an optical Möbius strip array

Polarization ellipses around generic polarization singularities may reveal intriguing 3d topological
structures in non-paraxial light fields. Here, we restrict ourselves to topologies around C-points
and investigate these by tracing the major axis of the polarization ellipses on a circle, which lies
in the focal 2d plane around respective singularity.

In non-paraxial fields complex 3d topologies can be generated. In order to fully identify these
topologies, we investigate three different projections onto different planes [40,71,72]. The first
projection plane is the xy-plane, e.g. the focal plane, onto which the major axis is projected. For
this projection plane, two indices I and Λ can be defined, where I describes the winding number
of the projected axis for one cycle around the circle and Λ defines the number of ζ -lines created
by the projections [43,44], respectively.
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The two additional projection planes correspond to a radial plane τ0 and a tangential plane π0
[40,71,72] as visualized in Fig. 4. The major axis α on the circle σ associated with different
angles ρ ∈ [0, 2π] is projected onto each plane τ0 and π0, resulting in the projections R and T,
respectively. An index is referred to each projection plane, which defines the winding number of
the major axis or the projections R and T, respectively, after a 2π-cycle around the circle σ. The
indices can be calculated from [71,72]

τα =
δ(2π) − δ(0)

2π
, πα =

δ(2π) − δ(0)
2π

, (5)

in which δ(ρ) corresponds to the angle between the projection R or T and the x′-axes.

Fig. 4. Projection of the major axis α of a polarization ellipse onto the (a) radial projection
plane τ0 and the (b) tangential projection plane π0.

As an illustrative example, we explore a tightly focused vectorial flower structure with σ12 = 8
and an additional phase vortex of charge l = 1. In total, the focal structure contains six C-points
(cf. Fig. 3(b1)). As shown in Fig. 5(a), we consider a circle (white dashed line) around the top
C-point above the optical axis in a lobe of the intensity structure |E |2. Tracing the major axis α
of the polarization ellipses on this circle reveals a hidden optical polarization Möbius strip as
visualized in Fig. 5(b). We observe the major axes (blue lines with blue and green endpoints)
undergoing half a twist on circles surrounding this C-point. The projection of this Möbius strip
onto the xy-plane shows a lemon-like [47] distribution in the polarization states’ orientation with
indices I = 1 and Λ = 1. The additional projection onto the radial and tangential plane τ0 and π0
are presented in Figs. 5(c) and 5(d), respectively, where solely the blue endpoints of the major
axis are projected as red dots, while going along the circle. Both projections exhibit an index
of τα = πα = 1/2. All indices and especially the identified Möbius strip topology is perfectly
consistent with the theory presented in [71,72]. Note that, due to the complex surrounding
polarization structure, we expect to observe multi-twist Möbius strips around a C-point of higher
order (/ two very close first-order C-points) as tailored in Fig. 3(e1).
Up to this point, we analyzed the polarization topology around a single C-point and we

deciphered an optical polarization Möbius strip. As presented above, the investigated focal
structure does not only contain a single but six C-points. Hence, we expect complex polarization
topologies around the other C-points as well, forming an intriguing 3d topology network. To
investigate this, we extend our analysis and additionally explore the topologies around the other
C-points. The results are presented in Fig. 5(e) revealing a unique optical polarization Möbius
strip array in a tailored non-paraxial field which consists of six Möbius strips located around each
C-point. To the best of our knowledge, such a complex structure has not yet been demonstrated.
The major axes (blue lines with green and blue endpoints) and therefore the Möbius strips are
depicted at the observed position within the normalized intensity structure |E(x, y, z = 0)|2. In
the xy-plane the projections (blue lines) of each Möbius strip is shown. All Möbius strips entail



Research Article Vol. 27, No. 21 / 14 October 2019 / Optics Express 29693

Fig. 5. Topologies around off-axis singularities: We explore a tightly focused vectorial
flower with σ12 = 8 and phase vortex with l = 1, whose intensity structure |E |2 is shown in
(a). Presented are the (b) 3d polarization topology around a C-point (white dashed line in
(a)), which is formed by tracing the major axis, and the corresponding projections onto the
planes (c) τ0 and (d) π0. Moreover, the overall polarization topology around all C-points
is illustrated in (e), where the background corresponds to the total normalized intensity
|E(x, y, 0)|2, revealing an optical polarization Möbius strip array.

the same structure with the same indices, whereby each Möbius stripe is oriented in such way
that the ζ -lines point away from the optical axis. The number of created Möbius strips is equal to
the number of C-points within the tight focus, which in turn can be controlled by tailoring the
incident vectorial field. Consequently, by choosing a well-defined incident singularity index σ12
and a topological charge l, we are able to generate arbitrary optical Möbius strip arrays.

6. Conclusion

We demonstrated the customization of complex networks of generic 3d polarization singularities
as well as intriguing 3d polarization topologies in non-paraxial structured 4d light fields. By
tightly focusing tailored paraxial vector beams of chosen index σ12 combined with an additional
phase vortex of charge l we realize focal light fields whose electric field components around the
optical axis form cones and strips with a σ12- and l-dependent number of twists. Beyond, we
evince the control of generic L- and C-singularities, adapting their number and position by σ12
and l. These focal generic singularity networks embed interesting polarization topologies: each
C-point corresponds to a half-twist Möbius strip, so that together they form a not yet observed
optical Möbius strip array. Our results are forward-looking for the optical fabrication of novel
functional media based on non-trivial topologies or the assembly of polarization sensitive particles
via optical manipulation. For instance, polarization sensitive nano-objects could be arranged
following custom polarization topologies in order to form novel functional chiral metasurfaces
by bottom-up assembly. Beyond, our findings give new insights into the fundamentals of light,
contributing to the investigation of 3d polarization structures including its complex singularities
and topologies.
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