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Abstract—We investigate the origin of dynamics of hexagonal pattern formation in a photorefractive
single feedback system. By introducing an asymmetry, we induced different complex motion behaviours.
A visualization method is presented and means to control the dynamics in the case of fixed external
parameters are discussed. © 1999 Elsevier Science Ltd. All rights reserved.

1. TRANSVERSE STRUCTURES IN PHOTOREFRACTIVE MEDIA

In a variety of nonlinear optical media, spontaneous pattern formation due to light beam
interaction can be observed. For collinear pump beams, the cylindrical symmetry of the con-
figuration around the propagation axis gives rise to a predominantly hexagonal structure. Pre-
vious experiments were performed using atomic vapor [1], liquid crystals [2], liquid crystal light
valves [3], bacteriorhodopsin[4] and photorefractive crystals [5, 6].

A linear stability analysis of the coupled differential equations for the case of contradirectional
two-wave mixing was performed recently [7]. Above a certain threshold, the light intensity profile
shows a modulational instability in the transverse direction, giving rise to spatial sidebands with
a certain transverse wave vector K, determined by the minimum of the corresponding threshold
curve. A self-organizing process then leads to an equidistant spot array in the far field determined
by the same K;. The simplest realization of this condition is a complete hexagonal structure
which can be monitored in the far field or as a honeycomb structure in the near field [see Fig.
1(a,b)]. Here, we present investigations on the origin and control of hexagonal pattern dynamics
arising in a photorefractive single feedback system. After recalling the theoretical aspects, we
introduce the experimental setup and the essential properties of this system. A method to visualize
the dynamics of hexagonal pattern is presented and different motion behaviours are discussed.

2. THEORETICAL TREATMENT

A schematic representation of the studied system is given in Fig. 2. The photorefractive medium
is pumped by a frequency-doubled Nd:YAG Laser (4A=1532nm). Using a thin biconvex lens, a
double-pass 2/~2f imaging system with a feedback mirror at its end provides the feedback beam.
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Fig. 1. (a) Honeycomb structure in the near field (image of the beam at the end of the crystal). (b) Hexagonal structure
in the far field with second and third harmonics.
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Fig. 2. Schematic experimental setup—SB =spatial sidebands, M = mirror, v.M. = virtual mirror, L = propagation length.

Using ABCD matrices, one can show that this system is not completely equivalent to a simple
mirror feedback setup, but it has the advantage that the virtual mirror can be moved even inside
the crystal by moving the feedback mirror, i.e., negative propagation lengths can be achieved.
The physical role of the feedback path with a virtual mirror position L from the crystal is to
introduce a phase lag of k,0>°L between the pump (or the feedback) and the emerging sidebands
emitted at an angle 6 with respect to the propagation axis.

To analyze the threshold condition for the instability of wave vectors in the transverse plane,
we start with the usual two-wave mixing equations, taking into account the beam profile in
the transverse direction. With the assumption that reflection gratings are dominant in this
configuration, these coupling equations can be written as [7]
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where F and B are the amplitudes of the forward and backward wave (pump and feedback), z is
the direction of propagation, k, the wave number in vacuum, n, denotes the linear refractive
index of the nonlinear medium, y is the complex photorefractive coupling coefficient and V2
denotes the transverse Laplacian. The amplitudes of the forward and backward wave with weak
modulations of wave vector k, in the transverse direction can be written as

F(7)=F,(2) x [+ F, ,(2)exp(ik, 7, )+ F_ (2)exp(— ik, 7,)] 3)
B(7) =By (2) x [1+ B, (2)exp(ik 7, )+ B_, (z)exp(— ik, 7,)] 4)
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Fig. 3. Threshold curve for normalized propagation length n,L//= —0.7 (solid line) and curve of the minima for all
parameter values — 1 <n,L//<1 (dashed). Selected parameter values are n,L//= —1 and 0 (point 1), n,L//= —0.7 and

—0.3 (2), noL/l= —0.5 (3) and n,L/I=1 (4).

where F,, and B, are the relative amplitudes of the spatial sidebands. Assuming a feedback
reflectivity of unity and no absorption in the medium (see [7] for details), the threshold condition
for transverse instability can be obtained. In Fig. 3, an exemplary plot of the threshold coupling
strength y/ is shown (solid line) for the normalized propagation length n,L/I= —0.7 (virtual
mirror inside the crystal with length /). The graph of the minima of the threshold curves for
—1<n,L/I<1 is displayed in the same figure as a dashed line. This parameter curve starts for
nyL/l= —1 (point 1) and increases via point 2 (n,L//= —0.7). The turning point is denoted as 3
with a parameter value of nyL//= —0.5. Then, the direction is reversed passing point 2 at
nyL/l= —0.3, point 1 at nyL//=0 and ending at point 4 at n,L//=1. The corresponding angles of
sideband generation as a function of the normalized propagation length are shown in Fig. 4. The
angle of the sidebands increases with larger L, transits over a sharp rectangular-like plateau and
decreases again, showing a symmetry around the central region of the crystal.

3. EXPERIMENTAL PATTERN OBSERVATION

Figure 5 shows the experimental setup in detail. We used a frequency-doubled Nd:YAG Laser
operating at a wavelength of 532 nm with a maximum output power of 100 mW. The nominally
undoped KNbO;-crystal measured /=5.6 mm along the c¢-axis and was slightly tilted in order to
reduce the influence of reflections from its surfaces. The direction of the crystal’s c-axis was
chosen to be in the direction of the pump beam, which leads to depletion of the input and
amplification of the feedback beam. The beam diameter inside the crystal was approximately
350 um, the power incident on the crystal was 22 mW and the polarization was chosen to be in
the direction of the crystal’s a-axis in order to take advantage of the large r;;-component of the
electrooptic tensor.

Lens 1, with a focal length of f=100 mm, was used to focus the beam into the crystal with the
beam waist at its back surface. The 2f-2f-feedback system provides the feedback beam with a
controllable position of the feedback mirror, i.e., a change in the transverse scale is possible.
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Fig. 4. Sideband angles 0 of the far field structure as function of the normalized propagation length n,L//, solid line:
theory, squares: experiment.
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Fig. 5. Experimental setup—L =lens, M =mirror, BS =beamsplitter, MLS =microscope lens system.

Beam splitter 1 enables us to monitor the patterns in the near and far field, and the beam
diameter, simultaneously.

The squares in Fig. 4 indicate the experimental results for exactly counterpropagating beams,
showing a good agreement with the theoretical treatment. Near the center of the crystal, no
patterns could be observed in our recent experiments. This is, in fact, the region where Honda et
al. observed squares and squeezed hexagons [8]. Maybe the photorefractive coupling constant y
was too small in the present case, as the dashed curve in Fig. 3 indicates. With y/~ 6, a parameter
region of —0.7<n,L/I< —0.3 exists, for which the threshold for sideband generation is above
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Fig. 6. Visualization method of Thiiring ez al. [10].

the value of y/ in the present system. Thus, sidebands with angles >0,,,, cannot be generated.
With 0,,,,=0.9° (see Fig. 3), the estimated photorefractive coupling strength for the present study
is p/=5.5. A change of the photorefractive coupling constant, y, by changing the input beam
polarization and a change of the intensity of the incident beam did not result in a measurable
change of the transverse scale.

Asymmetries were induced by shifting lens 1 in the transverse direction. As a result of these
asymmetries, the photorefractive index grating is read out with a different angle, causing a flow
in the near field [9]. Thus, various different spatio-temporal structures can be observed in the far
field. At the same time, the asymmetry is a parameter to control the collinearity of the pump and
feedback beams, i.e., static hexagonal structures can be achieved in any parameter region by this
method. If the reflectivity of the feedback system was reduced, a remarkable transition could be
observed: In the region of a feedback reflectivity of 0.25 <r<0.35, roll patterns were favoured,
making it possible to observe competition between roll and hexagonal patterns when a small
misalignment of the pump with respect to the feedback beam was present. Exactly collinear
beams lead to an hexagonal pattern with emphasis on two spots.

4. PATTERN DYNAMICS INDUCED BY NONCOLLINEAR PUMP BEAMS

We are interested in the visualization of the dynamics in this system when a small non-
collinearity is introduced and use the method proposed in [10]. Figure 6 gives a quick survey on
this effective visualization method. The distribution of spots on a circle with radius k; is projected
to a linear dimension with the polar coordinate ¢ as the cartesian axis. The time axis is chosen
to be perpendicular to this direction and enables us to visualize the dynamics of the system. As
a result, every movement of the spots on the circle results in an appropriate pattern change in
the cartesian coordinates. For example, a static hexagon causes six stripes, travelling parallel in
the positive y-direction (time-axis). The major advantage of this method is that a single image
provides us with all the information on the dynamics instead of a sequence of many single pattern
images.

Various types of pattern motion have been observed for a maximum feedback reflectivity of
r=0.95. The favoured situation is the one depicted in Fig. 7. Two stable spots (rolls) and a
rocking motion [11] of the other four can be observed, causing us to name it ‘Rock n’ Roll
motion’. The axis determined by the stable spots is always perpendicular to the lens shift and, as
a consequence, to the periodic flow in the near field. The frequency of the motion depends linearly
on the magnitude of the introduced beam misalignment. Even the orientation of rotation can be
reversed by changing the direction of misalignment. In the special case of larger misalignments
(>0.3°), the movement of the other spots seems to vanish and a roll pattern is left in the far field.
Another type of motion is the one depicted in Fig. 8. Here, a slow rotation and a fast leap back
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Fig. 7. Rock n’ Roll motion with two stable spots (opposite to one another) and a periodic rocking motion of the other
four. Left: Temporal evolution, middle and right: motion snapshots indicating the stable spots for this motion.
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Fig. 8. Rocking motion with all six spots rotating and jumping back to their initial position. Left: Temporal evolution,
middle and right: motion snapshots indicating slow rotation and fast leap back.

to the initial position characterizes this movement, which is called rocking motion [11]. Even this
motion is temporally stable, but control of the frequency is not as easy as in the case of the Rock
n’ Roll motion. A small change in the misalignment causes more complex rocking motions, as
indicated in Fig. 9. The scenario given here consists of a rocking motion with two different time
scales. The regular rocking motion is evident, but even the single spots wobble in a periodic
manner with a higher frequency than the one of the rocking motion. The exact parameter regions,
e.g., the corresponding angles of misalignment for these different types of motion are currently
under investigation.

5. CONCLUSIONS

We have shown that the dynamics of hexagonal pattern formation in a photorefractive feedback
system can be induced and controlled by the noncollinearity of the pump-and feedback beams,
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Fig. 9. Complex rocking motion containing two different time scales. Left: Temporal evolution, middle and right: motion

snapshots with indicated movement and preferred spots, the other four spots wobble periodically.

whereas the transverse scale depends only on the propagation length. A variety of different
scenarios can occur, e.g., situations with stable and moving spots named ‘Rock n” Roll motion’
and more complicated rotation-like motions. Further investigations concerning the parameter
regions for these different types of motion are currently in progress.
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