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Abstract: We investigate the formation of square, rectangular or squeezed hexag-
onal patterns in a photorefractive single-feedback experiment. Although in general,
hexagonal patterns are predominantly excited in these systems, non-hexagonal pat-
terns may be stable in a certain range of the propagation length. Moreover, a coex-
istence of two hexagons with two di�erent transverse scales is found and explained
by the results of a linear stability analysis. To achieve control of these patterns, we
introduce a two-arm feedback system with a Fourier �lter in one arm and present
results on the stabilization of roll and square pattern in a parameter region where
the hexagonal pattern is the only output without control.
OCIS codes: (190.5330) Photorefractive Nonlinear Optics, (190.3100) Instabilities and

Chaos, (999.9999) Pattern formation, (999.9999) Pattern Control

Introduction

Nonlinear optical systems are well-known to lead to the spontaneous formation of periodic spatial
patterns, e.g. atomic vapours [1], liquid crystals (Kerr slices) [2, 3], organic �lms [4] or photorefrac-
tives [5], where squares and squeezed hexagons were �rst observed in experiment [6]. Photorefractive
materials are well-suited for pattern observation since their intrinsically slow dynamics o�ers the
opportunity to perform real-time measurements and observations. Moreover, low cw powers in the
range of milliwatts are required and in the case of a di�usion-dominated crystal such as KNbO3, no
external voltage has to be supplied providing an all-optical pattern formation system. In all these
systems, a single-feedback con�guration creating two counterpropagating beams in the nonlinear
optical medium gives rise to transverse modulational instabilities above a certain threshold. These
instabilities generally lead to the formation of hexagonal patterns, which were �rst reported for a
photorefractive system by Honda [5]. Following this pioneering work, various other publications
o�ered improved insight into the stages of pattern formation in these photorefractive materials
[7, 8]. A �rst approach to a nonlinear stability analysis [9] and close studies of pattern dynamics
due to angular misalignment and competition behaviour were published recently [10]. Our focus
of interest is to investigate more complex patterns that may arise in the same con�guration for a
certain range of the propagation length without changing the basic interaction geometry. Although
some of these patterns have been observed earlier [6], the appropriate region of instability has not
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yet been investigated. We also explain the coexistence of two hexagons on di�erent transverse scales
by the results of the linear stability analysis.

Since we are able to observe a large number of di�erent pattern states, it is our prefered aim
to get controlled access to all these patterns. From the point of view of usefulness of spontaneous
pattern formation in the growing �eld of optical information processing [11], it is of high interest
to access a maximum number of di�erent pattern states, or to manipulate the system in order to
stabilize a desired solution. Spatio-temporal control is currently of high interest [12]. A common
feature of all these control methods is that they are basically nonintrusive. When the desired state
is reached, the control signal, i.e. the energy removed from, or added to the system tends to a very
small level. The method of manipulation in the Fourier plane is known to provide all these basic
properties of pattern control and is extremely well-known as a powerful tool in modern optics. The
potential of this method was proposed theoretically [13] and soon proved experimentally [14, 15]
for a photorefractive nonlinear system. Here, we present a novel control con�guration using a
two-arm feedback. The control is provided by a second control-arm without changing the basic
interaction geometry. We will show that squares and rolls can be stabilized in parameter regions
where hexagonal patterns are the only stable solution of the system.

Linear stability analysis

Fig. 1. Basic interaction geometry.

The basic interaction geometry is depicted in Fig. 1. A plane wave of complex amplitude F is
incident on a thick photorefractive medium with length l. The backward beam B is produced by
re
ection at a mirror at a certain position L behind the medium. Our analysis is not restricted
to positive propagation lengths since the 4f-4f-con�guration enables us experimentally to produce
negative propagation lengths which are essential for observing a multiple pattern stability. The
principle function of this propagation length L is to introduce a phase lag relative to the central
beam. A di�usion-dominated medium such as KNbO3 o�ers beam coupling properties which are
essential for pattern formation in this con�guration. In this case, a dynamic photorefractive grating
with spacing 2k0n0 is written.

The linear stability analysis presented here is based on the treatment by Honda and Banerjee
given in [8]. It is derived from Kukhtarev's equations for photorefractive two-beam coupling [16]
and based on the assumption that re
ection gratings are dominant in this con�guration, which has
been shown to be unstable against periodic disturbations. The usual equations for contradirectional
two-beam coupling in a di�usion-dominated medium can be written as [8]
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Performing a linear stability analysis for this system of partial di�erential equations and including
the boundary conditions (phase lag by feedback), one can obtain a threshold condition f(�; 
l; L) = 0
for the modulational instability [8]. Given a certain mirror position L, a threshold curve can
be plotted (see Fig. 2 a), where the absolute minimum provides information about the unstable
sideband angle � at a certain mirror position. If the relative minima of this threshold curve are
numbered consecutively, the values of these minima depending on the mirror position for the �rst
to fourth instability "balloon" are plotted in Fig. 2 b).

Fig. 2. Results from the linear stability analysis: a) Threshold curve for n0L=l=-1.6, b) theoretical values
for the minima of the threshold curves for varying values of L

Fig. 2 b) extends previous results of the linear stability analysis [9], taking into account
negative propagation lengths. One can see clearly the strange behaviour of the sideband angle-
curve in a region near n0L=l=-0.5. It is probable that the special shape of the curve may give rise
to unexpected patterns in this parameter region. However, a nonlinear stability analysis is required
for explaining the occurence of di�erent pattern types.

Multiple pattern stability

The experimental setup is depicted in Fig. 3. Light obtained from a frequency-doubled Nd:YAG
laser operating at 532 nm is focused by a lens L1 of focal length of f=600 mm onto the exit face
of an Iron-doped KNbO3 crystal (l=5 mm), producing a spot with a Gaussian diameter of 320 �m.
The crystal was slightly inclined (about 4 degrees) in order to avoid undesired back-re
ections from
the crystal surfaces.

By means of a 4f-2L-4f-System with f=100 mm, the incoming beam is back re
ected, thus
providing the counterpropagating beam. Considering ABCD-matrix formalism, this con�guration
can be shown to be completely equivalent to a simple single mirror feedback con�guration. Thus,
a virtual mirror with a distance of L from the photorefractive medium is obtained. The basic
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Fig. 3. Experimental setup. M=mirror, v.m.=virtual mirror, L=propagation length

advantage of this system is that negative propagation lengths can be achieved, which allows to
access a broader range of stationary patterns, including squares and rectangles. The laser beam
is linearly polarized along the crystal a-axis to exploit the large r13 component of the electrooptic
tensor in this direction, resulting in a minimum input power for pattern observation of just 0.5 mW,
which is extremly low compared to other pattern forming systems. A beam splitter between the
focusing lens and the photorefractive medium enables to observe the far �eld, and by means of a
lens and a microscope system, the near �eld, respectively. The direction of the crystal c-axis is
arranged to give rise to depletion of the incoming and ampli�cation of the backward re
ected beam,
a con�guration that is necessary for the observation of transverse structures in this material. The
re
ectivity of the feedback system including all elements was measured to be R = 83%. The only
stable solution for positive propagation lengths is a hexagonal one, as depicted in Fig. 4 a).

Higher order harmonics of the hexagonal pattern are clearly seen in experiment. They sat-
urate the explosive instability of the �rst order hexagon and are essential for the stability of a
hexagonal pattern [9]. This hexagonal structure is well-known to be dominant for many di�erent

Fig. 4: Experimentally obtained patterns: a) predominant hexagonal structure, b-e) other pattern geome-
tries for the multiple pattern region
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nonlinear optical materials and is reported for a number of other non-optical pattern forming sys-
tems. However, when the virtual mirror is shifted into the crystal, i.e. when negative propagation
lengths are achieved, a remarkable pattern transition occurs: In a small parameter region of the
propagation length around n0L=l = �0:5, di�erent non-hexagonal structures may appear, being ei-
ther stable or alternating in time due to pattern competition. Square patterns, squeezed hexagonal,
rectangular or parallelogram-shaped strucures (see Fig. 4 b-e) can be found. Outside this multiple
pattern region, no other patterns than hexagonal ones can be observed experimentally. The reason
for the occurence of these patterns can only be found by a nonlinear analysis, since a linear stability
analysis only accounts for the occurence of a special transverse wavevector to become unstable when
excited beyond the instability threshold. A previously derived nonlinear stability analysis [9] only
deals with positive propagation lengths and explains hexagons as the predominant stable solution.

However, detailed investigations of the results of the linear stability analysis taking into
account higher order instability balloons may give useful information about the pattern type. Fig. 5
shows the measured values for the hexagon instability angle � as a function of the normalized
propagation length n0L=l (virtual mirror is inside the crystal for values �1 � n0L=l � 0) together
with the theoretical results of the linear stability analysis (�rst and second instability balloon). The
measured values agree well with the theoretical curves. As predicted in [10], a coexistence of two

transverse ~k-vectors appears for larger positive or negative propagation length as indicated in the
�gure.

Fig. 5. Sideband angle � as function of the normalized propagation length n0L=l. Theoretical curve is
displayed together with experimental values for the transverse scale (circles and squares)

Here, a second instability balloon (see Fig. 3 in [10]) takes the absolute minimum of the
instability curve thus leading to a degeneration of the transverse wave-vector. This leads to a
coexistence of two hexagons on two transverse scales tilted by 30 degrees relative to each other.
The multiple pattern region described earlier is also indicated in the �gure. Since a large number
of various transverse ~k-vectors occurs for �1 � n0L=l � 0, no further experimental values are
displayed here.
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Previously, we reported a remarkable pattern collapse for the region where now the multiple
patterns were found using a di�erent crystal. We explained it with a photorefractive coupling
strength being too low for the observation of transverse structures. Since the coupling gain was
higher in the experiments we report here, this in turn proves our assumption in [10].

A transition to a roll pattern can be observed for all values of the propagation length, but
low re
ectivities (R = 4%). The re
ectivity border for pattern formation was just R = 2%, which
is remarkably low.

Pattern control by two-arm feedback

The preceding chapters show clearly that pattern forming systems o�er a great variety of possible
solutions. However, in most parameter regions, only one special pattern, predominantly a hexagonal
one, is excited. Other patterns such as square or squeezed hexagonal patterns may be underlying
as stable or unstable solutions.

These pattern forming systems are potential candidates for applications in the large growing
�eld of optical information processing, e.g. for pattern recognition or encryption [11]. For this
reason, one has to gain immediate access to a full set of possible solutions, either stable or unstable
for a maximum number of basic functions. For this purpose, mechanisms need to be developed
in order to access these di�erent patterns. Since pattern formation is always accompanied by the
stabilization of the appropriate ~k-vectors, spatial �ltering in the Fourier plane is an adequate means
of pattern control and manipulation. An important aspect of a suitable control method is that the
control signal should tend to a very small level when the desired state is reached. Consequently,
Fourier-space techniques have been shown to be a proper choice for the stabilization and selection
of unstable patterns [13]. Positive control enhances a desired solution by allowing only the correct
Fourier components to pass the �lter. On the other hand, negative control annihilates the undesired
solution thus favouring a di�erent, desired pattern. In the case of negative control, the feedback
control signal tends to zero when the desired state is reached.

Here, we present an extension of previous control experiments, implementing a two-arm,
Michelson-like feedback con�guration [3] which avoids the problems of bidirectional signal propa-
gation in ring control con�guration in [15]. The setup for pattern control is depicted in Fig. 6.

Fig. 6. Left: Experimental setup for control. FP=Fourier plane, PD=Piezo Driver. Right: Experimental
results for pattern control, top: without control arm, middle and bottom: with control arm and Fourier
�lter shaped as indicated in the �gure.
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In contrast to Fig. 3, an additional beam splitter in the feedback arm allows for separation of
the pattern arm and the control arm. In the second (control) arm, a Fourier mask is inserted with
an appropriate shape to achieve pattern control. We also used a piezo-driven mirror for controlled
adjustment of the relative phase of both arms. Only a part of the system's energy is coupled out
and reinjected into the system compared to [14], where Fourier control was performed invasively in
the feedback arm itself. Nevertheless, in both cases, the energy absorbed by the �lter tends to a
very small level.

The main physical parameters remained the same as in the appropriate experiment with
only one feedback arm. The re
ectivity ratio of the two arms is R1=R2 = 1:5, and the propagation
length is adjusted to be L=1 mm for both arms. We also made sure that for both arms individually,
hexagons with the same size (thus con�rming the equality of both propagation lengths) appeared
as the only stable solution. The experimental results are depicted in the inset of Fig. 6 together
with the corresponding Fourier �lter shape. The central spot was always blocked by the Fourier
masks in our experiment in order to avoid undesired e�ects from two-beam interference which may
lead to di�erent pattern formation e�ects [3].

In a parameter space region where only hexagonal patterns are predominant, we managed
to excite a roll or square pattern by positive control in every desired orientation. Thus, we were
able to switch from hexagons (no control) to rolls or squares (controlled system) by using a slit or
a cross-shaped mask. The control signal was in both cases very small, only 4.7 % of the energy in
the original control arm. The time to form these new, controlled patterns was less than one second,
and in the range of the photorefractive time constant for this crystal. By using an appropriate
three-fold slit �lter, we also succeeded in locking the hexagon position to a desired orientation by
positive and negative control. In the latter case, the control signal nearly vanished when the desired
hexagon orientation was chosen. We repeated this control scheme in the multiple pattern region
(for n0L=l = �0:5), which gave similar results. A more detailed analysis of this two-arm feedback
control system is being published elsewhere, together with a theoretical model based on a simpli�ed
model with a saturable Kerr medium as the nonlinear element. This novel control scheme is a clear
improvement to previous results, since we were able to separate the pattern forming arm and the
control arm.

Conclusion

We have shown that a photorefractive feedback system o�ers a variety of di�erent spatial patterns.
The occurence of nonhexagonal patterns is restricted to a small parameter region where the virtual
mirror is placed inside the crystal, allowing for negative propagation lengths. This multiple pattern
region coincides with a strange shape of the corresponding curves for pattern size vs. propagation
length derived from a linear stability analysis. In the multiple pattern region, a temporal alternation
of di�erent patterns is possible. This is, to the best of our knowledge, the �rst observation of a
multiple pattern parameter region. This observation may not be restricted to photorefractives and
could be observed in other optical pattern forming systems.

We also discovered a coexistence of two hexagonal pattern which can be explained by the
existence of two instability balloons competing for the absolute minimum of the threshold curve.
We could clearly separate the parameter regions of these coexisting hexagons, pure hexagons and
multiple stability.

In addition, we presented a control system in a two-arm feedback con�guration allowing for
the stabilization of these various patterns in a parameter region where only hexagonal patterns
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were dominant. Negative control was achieved for turning the hexagon position. This novel control
method is an improvement to earlier achievements, since a clear separation between the pattern
forming arm and the control arm is possible.
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