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Fourier control of pattern formation in an interferometric

feedback con�guration

M. Schwab, C. Denz, and M. Sa�man1

We present a control method for a minimally invasive manipulation of pattern states occurring

in feedback systems with an optical nonlinearity. An interferometric feedback con�guration

is used to control spontaneously formed patterns by the method of Fourier �ltering. Here, we

present experimental results for a photorefractive two-arm feedback system. A comparison

with results of a numerical simulation based on a thin saturable Kerr-slice model is performed.

A large number of physical, chemical, or bio-

logical systems that are excited beyond an insta-

bility threshold are known to lead to the spon-

taneous formation of periodic spatial structures.

Nonlinear optical systems are well-suited for the

investigation of these structures due to the ease

in accessing relevant control parameters. More-

over, pattern formation in optics o�ers a wide range

of possible technological applications, for exam-

ple in information processing [1]. A simple con-

�guration using a nonlinear optical material and

a feedback mirror for creating the counterpropa-

gating beam is su�cient for observing transverse

structures. Single feedback systems containing liq-

uid crystals or liquid crystal light valves, atomic

vapours, organic �lms, and photorefractive materi-

als show similar behaviour when excited beyond the

instability threshold (see [2] for references). The fa-

vored structure for the photorefractive single feed-

back system is a hexagonal one, but even squares,

squeezed hexagonal or roll patterns [3, 2, 4] can be

excited. For �xed parameters, the nonlinear opti-

cal system selects only one spatial pattern, whereas

other patterns are suppressed and may not be ac-

cessible to the observer.

Optical pattern control represents a fast grow-

ing �eld of research and has attracted consider-

able interest [5]. Especially in the realm of tech-

nological applications, it is of interest to control

the pattern the system selects, i.e. to access the

maximum number of di�erent existing patterns in

a special parameter region. In this context, the

stabilization and manipulation of otherwise unsta-

ble pattern states is currently of high interest. A

control method based on spatial �ltering in the

Fourier spectrum of the pattern was proposed the-

oretically [6, 7], and soon afterwards demonstrated

experimentally [8, 9, 10, 11]. Spectral control tech-

niques are extremely attractive for optical systems

since the Fourier space is accessible in real-time

1Optics and Fluid Dynamics Department, Risø National

Laboratory, Postbox 49, DK-4000 Roskilde, Denmark

by using a single lens. The control method orig-

inally proposed in [6] has the important property

that it is basically noninvasive. When the desired

state is reached, the control signal declines to a

very small level as in conventional electronic con-

trol schemes and otherwise unstable states of the

underlying system are stabilized. Here, we present

results for minimally-invasive control of a photore-

fractive feedback system by using a Michelson-

interferometer feedback scheme.

As shown in �g. 1, we investigate a pattern

forming system with a two-arm interferometric

feedback. The pattern arm of the interferometer

provides the majority of the energy in the feed-

back loop and serves as the unperturbed pattern

forming system. The other arm, which we call

the control arm, �lters a small portion of energy

in order to control and select the patterns in the

pattern arm. This Michelson-like control method

represents an extension and an improvement of our

previously published ring control [9] or linear con-

trol scheme [10], since the pattern forming and the

control arm are completely separated from each

other. We distinguish between the terms positive

control, where the control signal is fed back con-

structively (and thereby enhancing a desired pat-

tern) and negative control. In the latter case, un-

wanted components are suppressed by destructive

feedback of the control signal which nearly vanishes

when achieving the desired state. In the case of

the positive control, the control signal (i. e. the en-

ergy that is fed back into the system) tends to a

certain steady-state level, whereas negative control

implies that the control signal declines to a very

small level in the desired pattern state. In this

context, the term "minimally" means for the pos-

itive control that the control signal should be as

small as possible at the very �rst stage of control

and in the asymptotic steady state. By applying

this positive control technique, we are able to ex-

cite rolls and squares in a parameter region where

only a hexagonal pattern is experimentally avail-
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Fig. 1: Experimental setup. M=mirror, v.m.=virtual mirror, PD=piezo driver, FF=Fourier �lter, L=propagation

length, BS=beam splitter. Grey-shaded inset: Theoretical model with nonlinear slice and forward (F) and backward

beam (B)

able without any control. For the negative control

method, the minimally-invasive property also im-

plies the minimization for the initial stage of the

control process as well as the fact that the con-

trol signal declines to a very small but non-zero

level. This negative control method is su�cient to

rotate the spatial orientation of the hexagonal pat-

tern. It is worth mentioning here that we do not

restrict ourselves to a "noninvasive" stabilization

of otherwise unstable states as proposed in [6, 7].

We perform a minimally-invasive manipulation and

control of patterns, and demonstrate the selection

of di�erent pattern states. Our aim is to manipu-

late the system in a way that other patterns become

stable in parameter space regions, where, without

any control, the hexagonal pattern is the only ex-

perimentally obtainable solution.

The experimental setup is depicted in �g. 1.

The beam derived from a frequency-doubled

Nd:YAG-laser operating at a wavelength of � = 532

nm was focused onto the exit face of a photorefrac-

tive KNbO3:Fe-crystal measuring l = 5:2mm along

the c-axis. Polarization was chosen to be along the
crystal's a-axis to exploit the large r13-component
of the electrooptic tensor. The propagation direc-

tion of the light was nearly parallel to the c-axis of
the crystal which was oriented such that the incom-

ing beam was depleted when passing the crystal.

The power incident on the crystal was P = 10 mW

and the Gaussian diameter of the beam was mea-

sured to be d = 320�m. Feedback is provided by an
interferometric setup of Michelson-type, separating

the pattern from the control arm. Both feedback

arms are basically identical 4f-4f imaging systems,

containing lenses of focal lengths f = 100 mm and

mirrors M1 and M2, respectively. A beam splitter

right after the �rst lens in the feedback arm pro-

vides access to the control arm, where manipulation

in Fourier space is performed. Amplitude masks of

di�erent shapes can be inserted in the Fourier plane

that is created between the two lenses.

Let us now assume that only the pattern arm

operates, i. e. the control arm is closed. The 4f-4f

imaging system with a di�raction length L creates

a virtual mirror at a distance L behind the crys-

tal [12], incorporting the fundamental advantage

that negative propagation lengths can be achieved

and that the Fourier spectrum of the pattern is au-

tomatically created between the two lenses of the

feedback arm. The lenses were adjusted to give a

virtual mirror (v.m.) position of L = 1 mm behind

the crystal in order to create a hexagonal pattern

with a large aspect ratio.

Transverse instability in this geometry is known

to be due to re�ection gratings [2, 13] with a wave

number of kg = 2k0n0, where k0 is the wave num-
ber of the incoming beam, and n0 the linear re-

fractive index of the crystal. KNbO3 is known

to be a purely di�usion-dominated material ex-

hibiting pure energy-coupling between the counter-

propagating beams. It is noteworthy that in cer-

tain parameter space regions, especially for situ-

ations when the virtual mirror is inside the crys-

tal, a number of di�erent pattern states exist, as
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square, squeezed hexagonal [3] or even rectangular

or parallelogram-like patterns [14]. Nevertheless,

the structure the system selects for the given vir-

tual mirror position of L= 1 mm is purely hexago-

nal, as depicted in �g. 2, top left picture.

Fig. 2: Experimental (left) and theoretical results de-

rived from a numerical simulation (right) for in-phase

control. Top row: Hexagonal pattern appearing without

control in the far and near �eld, middle and lower row:

Results for the preparation of a roll and a square pattern

with �lters as indicated in the insets, grey-shaded in the

simulations.

The propagation lengths of both arms of the

Michelson interferometer can be adjusted indepen-

dently and the relative phase of the two arms can

be monitored easily at the appropriate exit of the

beam splitter. A piezo-driven mirror is used for

controlled adjustment of the relative phase of both

arms, i.e. for achieving negative (relative phase

' = �) or positive (relative phase ' = 0) control.

This scheme allows us (by means of an attenuator

in the control arm) to adjust continuously the con-

trol strength in order to minimize it. The re�ectiv-

ity ratio of both feedback arms was R1=R2 = 1:5
with R1 = 15:8% and R2 = 10:5%. R1 and R2

are de�ned as the intensity re�ectivities (including

both passes through the beam splitter, lens system

and mirror re�ectivities) of the pattern arm and the

control arm, respectively. The propagation lengths

of both arms were adjusted to be L = 1 mm lead-

ing to identical transverse scales of the hexagonal

patterns created by both arms individually. Con-

trol is performed in the Fourier plane of the control

arm, where Fourier �lters of appropriate shapes can

be inserted. The Fourier �lters we use are binary

amplitude masks with di�erent shapes: A slit �lter

for positive control of rolls, a cross �lter for pos-

itive control of squares and a three-fold slit �lter

for negative control of hexagons. Examples for the

experimental positive control of a roll and a square

pattern are depicted on the left of �g. 2. The cen-

tral spot was always blocked in our experiments in

order to avoid undesired e�ects from two-beam in-

terference which may lead to di�erent complicated

pattern formation e�ects [15]. The system adjusts

to the presented symmetry of the Fourier �lter (as

shown in the insets) and selects the corresponding

solution. Clear and rapid switching behaviour on

time scales comparable to the time constant of the

crystal of less than 1 s were observed. When the

control path was closed, the predominant hexago-

nal structure always reappeared. Note that in the

case of positive control, the control signal does not

vanish. Therefore, it is not a stabilization of unsta-

ble states, but an improvement compared to previ-

ous approaches that used a single feedback arm [8].

The control signal (de�ned as the control intensity

with respect to the intensity in the original pattern

forming arm without control) was just 4.7 %, but it

was su�cient to control the behaviour of the whole

system. This value was the best obtainable in our

experiment, a further minimization may be possi-

ble by optimizing the experimental setup (wave-

front alignment, relative phase of both arms etc.).

The control strength in the notation given in [6, 7]

can be calculated to be s = 0:3 for roll and square

pattern control. In both cases, the power absorbed

by the �lter declines to a small level.

As an example of negative control, we manip-

ulated the orientation of the hexagonal pattern by

using a three-fold slit mask, where the slits were

tilted by 60Æ relative to each other (see. �g. 3).

Here, the control signal (the power reinjected into

the system) tends to a very small level as suggested

and calculated in [6] with the di�erence that, in this

case, our aim is not to stabilize unstable states as

the "negative control" de�ned in [6] requires. Here,

we manipulate a given stable pattern regarding its

orientation. Note that the system remained in the

chosen position when the control arm was closed.

For comparison with theory, we performed a nu-

merical simulation using the same two-dimensional

feedback (see inset of �g. 1). A numerical analysis

of the photorefractive two-beam coupling equations

in the presence of re�ection gratings and di�rac-

tion is computationally expensive. Therefore we

use a simpli�ed generic model based on a transmis-

sion grating mediated interaction in a thin slice of

a sluggish medium with cubic nonlinearity (see [16]

for details). The numerical simulation was per-

formed using the same values as given in the ex-

periment (L=1 mm, �=532 nm, and R1=R2=1.5).

The simulation started from an initial hexagonal

pattern (as depicted on the top right of �g. 2),

which is the solution for this system without using

a Fourier mask. When a spatial �lter was inserted

c
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Fig. 3: Rotation of the hexagon position by out-of-phase

control. Experimentally obtained pattern (left, with �l-

ter in the inset) and result from a numerical simulation,

�lter grey-shaded, on the right.

(grey-shaded region) with a certain geometry, the

system adjusted to the situation given, and a roll

or a square pattern could be excited. Comparing

the experimental on the left and the numerical re-

sults on the right side of �g. 2 yields a complete

qualitative agreement, despite the di�erences in the

nonlinearities used for experiment and numerical

simulation. We were also able to show pattern ma-

nipulation using negative control.

For manipulation of a hexagonal pattern, we

used the same three-fold slit mask as in experiment

(�g. 3). Starting with a hexagonal pattern with

Fig. 4: Control signal fed back into the system as per-

centage of the energy with respect to the total energy

in the pattern arm. Results of the numerical simulation

leading to Figure 3 right.

two spots arranged on the vertical axis, we were

able to turn the hexagon position by feeding back

destructively unwanted components. As a result,

a rotated hexagonal pattern with two spots on the

horizontal axis can be obtained. Here, as an im-

portant property of this control method, the con-

trol signal nearly vanishes when the desired state is

selected. The control signal, i. e. the fraction of en-

ergy re-injected into the system relative to the total

power in the pattern arm, is depicted in �g. 4. The

signal declines from the initial to a very small value

of 1:35� 10�5 at t=� � 9 and then approaches an

asymptotic value of about 0.4 %.

In conclusion, we showed the e�ciency of this

method to control, manipulate and select sponta-

neously formed patterns. Only a small control sig-

nal was applied to the system proving the e�ec-

tiveness and minimally-invasive character of this

method.
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