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Fourier control of pattern formation in an interferometric
feedback configuration

M. Schwab, C. Denz, and M. Saffman'

We present a control method for a minimally invasive manipulation of pattern states occurring
in feedback systems with an optical nonlinearity. An interferometric feedback configuration
is used to control spontaneously formed patterns by the method of Fourier filtering. Here, we
present experimental results for a photorefractive two-arm feedback system. A comparison
with results of a numerical simulation based on a thin saturable Kerr-slice model is performed.

A large number of physical, chemical, or bio-
logical systems that are excited beyond an insta-
bility threshold are known to lead to the spon-
taneous formation of periodic spatial structures.
Nonlinear optical systems are well-suited for the
investigation of these structures due to the ease
in accessing relevant control parameters. More-
over, pattern formation in optics offers a wide range
of possible technological applications, for exam-
ple in information processing [1]. A simple con-
figuration using a nonlinear optical material and
a feedback mirror for creating the counterpropa-
gating beam is sufficient for observing transverse
structures. Single feedback systems containing lig-
uid crystals or liquid crystal light valves, atomic
vapours, organic films, and photorefractive materi-
als show similar behaviour when excited beyond the
instability threshold (see [2] for references). The fa-
vored structure for the photorefractive single feed-
back system is a hexagonal one, but even squares,
squeezed hexagonal or roll patterns [3, 2, 4] can be
excited. For fixed parameters, the nonlinear opti-
cal system selects only one spatial pattern, whereas
other patterns are suppressed and may not be ac-
cessible to the observer.

Optical pattern control represents a fast grow-
ing field of research and has attracted consider-
able interest [5]. Especially in the realm of tech-
nological applications, it is of interest to control
the pattern the system selects, i.e. to access the
maximum number of different existing patterns in
a special parameter region. In this context, the
stabilization and manipulation of otherwise unsta-
ble pattern states is currently of high interest. A
control method based on spatial filtering in the
Fourier spectrum of the pattern was proposed the-
oretically [6, 7], and soon afterwards demonstrated
experimentally [8, 9, 10, 11]. Spectral control tech-
niques are extremely attractive for optical systems
since the Fourier space is accessible in real-time
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by using a single lens. The control method orig-
inally proposed in [6] has the important property
that it is basically noninvasive. When the desired
state is reached, the control signal declines to a
very small level as in conventional electronic con-
trol schemes and otherwise unstable states of the
underlying system are stabilized. Here, we present
results for minimally-invasive control of a photore-
fractive feedback system by using a Michelson-
interferometer feedback scheme.

As shown in fig. 1, we investigate a pattern
forming system with a two-arm interferometric
feedback. The pattern arm of the interferometer
provides the majority of the energy in the feed-
back loop and serves as the unperturbed pattern
forming system. The other arm, which we call
the control arm, filters a small portion of energy
in order to control and select the patterns in the
pattern arm. This Michelson-like control method
represents an extension and an improvement of our
previously published ring control [9] or linear con-
trol scheme [10], since the pattern forming and the
control arm are completely separated from each
other. We distinguish between the terms positive
control, where the control signal is fed back con-
structively (and thereby enhancing a desired pat-
tern) and negative control. In the latter case, un-
wanted components are suppressed by destructive
feedback of the control signal which nearly vanishes
when achieving the desired state. In the case of
the positive control, the control signal (i.e. the en-
ergy that is fed back into the system) tends to a
certain steady-state level, whereas negative control
implies that the control signal declines to a very
small level in the desired pattern state. In this
context, the term "minimally" means for the pos-
itive control that the control signal should be as
small as possible at the very first stage of control
and in the asymptotic steady state. By applying
this positive control technique, we are able to ex-
cite rolls and squares in a parameter region where
only a hexagonal pattern is experimentally avail-
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Fig. 1: Experimental setup. M=mirror, v.m.=virtual mirror, PD=piezo driver, FF=Fourier filter, L=propagation
length, BS=beam splitter. Grey-shaded inset: Theoretical model with nonlinear slice and forward (F') and backward

beam (B)

able without any control. For the negative control
method, the minimally-invasive property also im-
plies the minimization for the initial stage of the
control process as well as the fact that the con-
trol signal declines to a very small but non-zero
level. This negative control method is sufficient to
rotate the spatial orientation of the hexagonal pat-
tern. It is worth mentioning here that we do not
restrict ourselves to a "noninvasive" stabilization
of otherwise unstable states as proposed in [6, 7].
We perform a minimally-invasive manipulation and
control of patterns, and demonstrate the selection
of different pattern states. Our aim is to manipu-
late the system in a way that other patterns become
stable in parameter space regions, where, without
any control, the hexagonal pattern is the only ex-
perimentally obtainable solution.

The experimental setup is depicted in fig. 1.
The beam derived from a frequency-doubled
Nd:YAG-laser operating at a wavelength of A = 532
nm was focused onto the exit face of a photorefrac-
tive KNbOj3:Fe-crystal measuring [ = 5.2 mm along
the c-axis. Polarization was chosen to be along the
crystal’s a-axis to exploit the large ri3-component
of the electrooptic tensor. The propagation direc-
tion of the light was nearly parallel to the c-axis of
the crystal which was oriented such that the incom-
ing beam was depleted when passing the crystal.
The power incident on the crystal was P = 10 mW
and the Gaussian diameter of the beam was mea-
sured to be d = 320um. Feedback is provided by an
interferometric setup of Michelson-type, separating
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the pattern from the control arm. Both feedback
arms are basically identical 4f-4f imaging systems,
containing lenses of focal lengths f = 100 mm and
mirrors M1 and M2, respectively. A beam splitter
right after the first lens in the feedback arm pro-
vides access to the control arm, where manipulation
in Fourier space is performed. Amplitude masks of
different shapes can be inserted in the Fourier plane
that is created between the two lenses.

Let us now assume that only the pattern arm
operates, i.e. the control arm is closed. The 4f-4f
imaging system with a diffraction length L creates
a virtual mirror at a distance L behind the crys-
tal [12], incorporting the fundamental advantage
that negative propagation lengths can be achieved
and that the Fourier spectrum of the pattern is au-
tomatically created between the two lenses of the
feedback arm. The lenses were adjusted to give a
virtual mirror (v.m.) position of L = 1 mm behind
the crystal in order to create a hexagonal pattern
with a large aspect ratio.

Transverse instability in this geometry is known
to be due to reflection gratings [2, 13] with a wave
number of k, = 2kong, where kg is the wave num-
ber of the incoming beam, and ng the linear re-
fractive index of the crystal. KNbOj3 is known
to be a purely diffusion-dominated material ex-
hibiting pure energy-coupling between the counter-
propagating beams. It is noteworthy that in cer-
tain parameter space regions, especially for situ-
ations when the virtual mirror is inside the crys-
tal, a number of different pattern states exist, as
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square, squeezed hexagonal [3] or even rectangular
or parallelogram-like patterns [14]. Nevertheless,
the structure the system selects for the given vir-
tual mirror position of L= 1 mm is purely hexago-
nal, as depicted in fig. 2, top left picture.

Fig. 2: Experimental (left) and theoretical results de-
rived from a numerical simulation (right) for in-phase
control. Top row: Hexagonal pattern appearing without
control in the far and near field, middle and lower row:
Results for the preparation of a roll and a square pattern
with filters as indicated in the insets, grey-shaded in the
simulations.

The propagation lengths of both arms of the
Michelson interferometer can be adjusted indepen-
dently and the relative phase of the two arms can
be monitored easily at the appropriate exit of the
beam splitter. A piezo-driven mirror is used for
controlled adjustment of the relative phase of both
arms, i.e. for achieving negative (relative phase
¢ = 7) or positive (relative phase ¢ = 0) control.
This scheme allows us (by means of an attenuator
in the control arm) to adjust continuously the con-
trol strength in order to minimize it. The reflectiv-
ity ratio of both feedback arms was Ry /Ry = 1.5
with R1 = 158% and R2 = 105% R1 and RQ
are defined as the intensity reflectivities (including
both passes through the beam splitter, lens system
and mirror reflectivities) of the pattern arm and the
control arm, respectively. The propagation lengths
of both arms were adjusted to be L = 1 mm lead-
ing to identical transverse scales of the hexagonal
patterns created by both arms individually. Con-
trol is performed in the Fourier plane of the control
arm, where Fourier filters of appropriate shapes can
be inserted. The Fourier filters we use are binary
amplitude masks with different shapes: A slit filter
for positive control of rolls, a cross filter for pos-
itive control of squares and a three-fold slit filter
for negative control of hexagons. Examples for the
experimental positive control of a roll and a square
pattern are depicted on the left of fig. 2. The cen-
tral spot was always blocked in our experiments in
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order to avoid undesired effects from two-beam in-
terference which may lead to different complicated
pattern formation effects [15]. The system adjusts
to the presented symmetry of the Fourier filter (as
shown in the insets) and selects the corresponding
solution. Clear and rapid switching behaviour on
time scales comparable to the time constant of the
crystal of less than 1 s were observed. When the
control path was closed, the predominant hexago-
nal structure always reappeared. Note that in the
case of positive control, the control signal does not
vanish. Therefore, it is not a stabilization of unsta-
ble states, but an improvement compared to previ-
ous approaches that used a single feedback arm [8§].
The control signal (defined as the control intensity
with respect to the intensity in the original pattern
forming arm without control) was just 4.7 %, but it
was sufficient to control the behaviour of the whole
system. This value was the best obtainable in our
experiment, a further minimization may be possi-
ble by optimizing the experimental setup (wave-
front alignment, relative phase of both arms etc.).
The control strength in the notation given in [6, 7]
can be calculated to be s = 0.3 for roll and square
pattern control. In both cases, the power absorbed
by the filter declines to a small level.

As an example of negative control, we manip-
ulated the orientation of the hexagonal pattern by
using a three-fold slit mask, where the slits were
tilted by 60° relative to each other (see. fig. 3).
Here, the control signal (the power reinjected into
the system) tends to a very small level as suggested
and calculated in [6] with the difference that, in this
case, our aim is not to stabilize unstable states as
the "negative control" defined in [6] requires. Here,
we manipulate a given stable pattern regarding its
orientation. Note that the system remained in the
chosen position when the control arm was closed.
For comparison with theory, we performed a nu-
merical simulation using the same two-dimensional
feedback (see inset of fig. 1). A numerical analysis
of the photorefractive two-beam coupling equations
in the presence of reflection gratings and diffrac-
tion is computationally expensive. Therefore we
use a simplified generic model based on a transmis-
sion grating mediated interaction in a thin slice of
a sluggish medium with cubic nonlinearity (see [16]
for details). The numerical simulation was per-
formed using the same values as given in the ex-
periment (L=1 mm, A=532 nm, and R;/R>=1.5).
The simulation started from an initial hexagonal
pattern (as depicted on the top right of fig. 2),
which is the solution for this system without using
a Fourier mask. When a spatial filter was inserted
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Fig. 3: Rotation of the hexagon position by out-of-phase
control. Experimentally obtained pattern (left, with fil-
ter in the inset) and result from a numerical simulation,
filter grey-shaded, on the right.

(grey-shaded region) with a certain geometry, the
system adjusted to the situation given, and a roll
or a square pattern could be excited. Comparing
the experimental on the left and the numerical re-
sults on the right side of fig. 2 yields a complete
qualitative agreement, despite the differences in the
nonlinearities used for experiment and numerical
simulation. We were also able to show pattern ma-
nipulation using negative control.

For manipulation of a hexagonal pattern, we
used the same three-fold slit mask as in experiment
(fig. 3). Starting with a hexagonal pattern with
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Fig. 4: Control signal fed back into the system as per-
centage of the energy with respect to the total energy
in the pattern arm. Results of the numerical simulation
leading to Figure 3 right.

two spots arranged on the vertical axis, we were
able to turn the hexagon position by feeding back
destructively unwanted components. As a result,
a rotated hexagonal pattern with two spots on the
horizontal axis can be obtained. Here, as an im-
portant property of this control method, the con-
trol signal nearly vanishes when the desired state is
selected. The control signal, i.e. the fraction of en-
ergy re-injected into the system relative to the total
power in the pattern arm, is depicted in fig. 4. The
signal declines from the initial to a very small value
of 1.35 x 10 at t/7 ~ 9 and then approaches an
asymptotic value of about 0.4 %.

IAP/LTO-Annual report 1998/1999, ISSN 0930-7168

In conclusion, we showed the efficiency of this
method to control, manipulate and select sponta-
neously formed patterns. Only a small control sig-
nal was applied to the system proving the effec-
tiveness and minimally-invasive character of this
method.
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