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Abstract. We present an experimental realization of an almost non-invasive stabilization and
manipulation method of coexisting and unstable states of pattern forming systems. In a
photorefractive single feedback system, a control path is used to realize amplitude and
phase-sensitive Fourier-plane filtering, utilizing only a few per cent of the system’s intensity.
By that means, we were able to stabilize desired but not predominantly excited patterns in
parameter space regions where several patterns are present as coexisting or underlying
solutions. Changing the phase of the control signal allows one to switch between different
pattern states.
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1. Introduction

Transverse modulational instabilities of counterpropagating
beams [1] are well known to lead to the spontaneous
formation of a variety of complex spatial structures, among
them conical rings, pairs of spots (rolls), or arrays of
spots arranged in hexagonal or square symmetry. Many
systems have revealed similar phenomena, as e.g. atomic
vapours [2], liquid crystals [3], organic films [4] or, recently,
photorefractives [5].

All systems have a large number of unstable pattern
states in common, even in the presence of a single stable
output. This is related to the breaking of the rotational and
translational symmetry of the system. From an application
point of view of pattern formation in these systems, it is of
interest to access the whole range of solutions, and to control
the structures inherent in the system. Controlling such a
system by suppressing predominantly excited solutions, or by
encouraging underlying solutions to become stable, therefore
offers the opportunity to stabilize, select and manipulate
these patterns in a well-defined way for a wide range
of technological applications, e.g. in optical information
processing.

A photorefractive single mirror feedback system allows
one to realize and observe a rich variety of spontaneously
formed patterns. In contrast to the classical single-
feedback system for thin Kerr-media as introduced by
D’Allesandro and Firth [6], we use a thick photorefractive
medium providing a saturable nonlinearity. A recent

realization of such a system led to the first observation
of square patterns and squeezed hexagons in an optical
pattern formation experiment [7]. Pattern formation in this
system occurs through modulational instabilities that arise
due to the formation of reflection gratings [8]. Above a
certain threshold for the photorefractive coupling strength
γ l, satellite beams are generated with a particular angle
2 relative to the central beam. Because the nonlinearity
of these materials is proportional to the intensity ratio
of the interacting beams, this configuration allows for
pattern formation with moderate laser power. Moreover,
photorefractives are well-suited for experimental pattern
control, since their intrinsically slow dynamics simplifies
time-resolved measurements.

In experimental optical systems, propagational effects
associated with pattern formation are easily observed in the
far field, which is nothing more than the representation of
the power spectrum of the pattern—its Fourier transform.
The big advantage of optics is that the Fourier transform
is easily obtained by use of a simple lens. Manipulation
in the Fourier domain (spatial filtering), is one of the most
important concepts in modern optics. The combination of
feedback control with manipulation of the Fourier space
therefore allows us to control the influence of certain
spectral components on the nonlinear spatio-temporal pattern
formation.

The easiest way to realize the method of Fourier filtering
in a photorefractive feedback experiment is to insert a spatial
filter in the original feedback path. This is in fact a simple, but
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very powerful means to access the whole range of underlying
solutions. The method is strongly invasive and changes the
feedback system as a whole. Therefore, it is desirable to
control the system without changing it, i.e. to present a non-
invasive control method.

A common approach to the non-invasive control of
spatially extended systems is to provide a control signal that is
strong enough to push the system to one member of a possibly
infinite family of solutions that are inherent in the system.
The technological aim is to produce a desirable behaviour by
carefully applying the control signal that directs the system
to the target state and keeps it there, while at the same time
not changing or influencing the system dramatically. The
intervention into the system should be as small as possible.
Moreover, it is desirable to design the control signal in such
a way that its magnitude decreases as the system approaches
the desired state, and—in the absence of noise—vanishes
when the system is locked to a certain solution. It is also
our aim to control a state that is only approximately a true
stable state of the system, e.g. if a real experimental system
under stress produces states that are distorted compared with
the solutions of the infinite, idealized system. In that case,
one might expect the feedback to become small, but not to
vanish completely. These features have led Martinet al
[9] to suggest the possibility of using control techniques
which operate in the spatial Fourier domain of the control
arm to stabilize unstable patterns and to choose between
alternative stable states. This technique has been applied
theoretically to a variety of nonlinear optical systems, e.g. a
feedback system including a liquid crystal light valve as the
nonlinear element. Here, we describe an extension of a first
experimental implementation of this technique [10].

This paper is organized in the following way. In
section 2, we give a description of the experimental set-
up. We give a survey on the stationary patterns appearing
in this photorefractive feedback system and discuss the main
properties of the system. In section 3, an invasive method
for stabilizing patterns using Fourier filtering techniques is
realized. Section 4, in contrast, deals with a non-invasive
control method. For this purpose, the control signal is
supplemented by a Fabry–Perot-type feedback. The control
signal contains only a small percentage of the total energy
of the system. We present evidence that enhancement of a
desired pattern is possible by positive (in-phase) control, and
show that the suppression of a predominant pattern, in order
to allow other patterns to stabilize, is possible by negative
(out-of-phase) control. This is followed by a brief discussion
and conclusions in section 5.

2. Stationary patterns

Our principle experimental set-up is shown in figure 1.
A laser beam with a power of 23 mW, obtained from a
frequency-doubled Nd:YAG laser, is focused onto the exit
face of an iron-doped KNbO3 crystal measuring 5.6 mm
along itsc-axis. The beam diameter was measured to be
350µm. In order to avoid undesired back-reflections from
the surfaces, the crystal was inclined about 6◦ relative to
the direction of propagation. In this geometry, it is well
known that energy coupling takes place. The crystalc-axis

lies in the direction of the input beam, leading to depletion
of the incoming beam. The direction of polarization is
parallel to the crystala-axis, thus allowing us to exploit
the largest electro-optic coefficientr13 of KNbO3. The
counterpropagating, backward pump beam is generated by a
dielectric mirror, variable in reflection by lateral movement.
Thus, reflectivities that guarantee spontaneous roll, hexagon,
or square pattern formation [11, 12] can be adjusted, as
well as regions of instability that allow for observation of
competition between different pattern types. The mirror
is positioned at the end of a confocal (2f–2f) feedback
system with af = 120 mm focal lens in its middle.
This specific configuration allows us to adjust positive as
well as negative propagation lengths. Moreover, it allows
more exact positioning compared with conventional feedback
configurations. Beam splitter 1 enables observation of the
feedback beam, carrying the transverse structures. Beam
splitter 2 separates this beam for observation of the far field
and, by means of a Fourier transforming lens, the near-field
pattern via CCD 1 and CCD 2, respectively.

The predominant pattern the system selects is a
hexagonal one, as depicted in the inset of figure 1.
Second- and third-order sidebands are incorporated in
the structure; the corresponding near field represents a
honeycomb structure. This picture was taken for a maximum
feedback reflectivity ofr = 66% (including losses by Fresnel
reflections at the crystal surfaces).

A linear stability analysis shows that above a certain
threshold, a modulational instability of counterpropagating
waves appears giving rise to spatial sidebands in the far
field. To analyse the threshold condition for the instability
of wavevectors in the transverse plane, we start with the
usual photorefractive two-wave mixing equations, taking into
account the beam profile in the transverse direction. With
the assumption that reflection gratings are dominant in this
configuration, these coupling equations can be written as [8]
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where F and B are the amplitudes of the forward and
backward wave (pump and feedback),z is the direction of
propagation,k0 the wavenumber in vacuum,n0 denotes the
linear refractive index of the nonlinear medium,γ is the
complex photorefractive coupling coefficient and⊥ denotes
the transverse Laplacian. The amplitudes of the forward and
backward wave with weak modulations of the wavevector in
the transverse direction can be written as

F(r) = F0(z)[1 + F+1(z) exp(ik⊥ · r⊥)
+F−1(z) exp(−ik⊥ · r⊥)] (3)

B(r) = B0(z)[1 +B+1(z) exp(ik⊥ · r⊥)
+B−1(z) exp(−ik⊥ · r⊥)], (4)

where F±1 and F±1 are the relative amplitudes of the
spatial sidebands. Assuming a feedback reflectivity of
unity and no absorption in the medium (see [8] for details),
the threshold condition for transverse instability can be
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Figure 1. Experimental set-up. OD= optical diode, L= lenses, M= mirror, BS= beam splitter, MLS= microscope lens system, FF-plane=
planes of Fourier filtering, dotted line: exact 2f–2f-position, L= propagation length. Shaded: Control arm for non-invasive control with a
second linear feedback. Top of insert: typical hexagonal pattern with second- and third-order terms, bottom: corresponding near-field
pattern.

Figure 2. Plot of the threshold coupling strengthγ l for
n0L/l = −0.7.

obtained. In figure 2, an exemplary plot of the threshold
coupling strengthγ l is shown for the normalized propagation
lengthn0L/l = −0.7. For each value of the normalized
propagation lengthn0L/l, the angle of sideband generation
can be calculated, and a good agreement with the theoretical
pattern size can be obtained experimentally (see figure 3). A
maximum pattern size2maxappears in the experiment, which
is due to a photorefractive coupling constant below threshold
for the appearance of transverse structures in this parameter
region [11].

The systematic deviation from the theoretical curve may
be explained by absorption and Fresnel losses changing the
overall reflectivity of the feedback system (r = B/F = 0.66
due to Fresnel losses only), whereas theory uses ar = B/F
ratio of 1. The linear stability analysis gives the explanation
for the appearance of spatial sidebands, i.e. the existence of
a conical ring with a certain transverse wavevector, but is not

Figure 3. Sideband angle2 as a function of the normalized
propagation length; theoretical curve (full curve) and experimental
results (dots).

able to predict the pattern the system selects. A first approach
to a nonlinear stability analysis was published recently [13]
and a set of Ginzburg–Landau equations was derived, but
no regions of stability or instability of certain patterns were
given. Nevertheless, the stability of hexagons was shown
to be a consequence of wave processes between higher-order
sidebands and the primary hexagon. This is in full agreement
with our experimental results, as these second- and third-
order sidebands were clearly visible (see inset of figure 1).

We have previously reported the observation of square
patterns in this system for the same crystal with a coupling
strength ofγ l = 11.5, but for higher reflectivity ofr = 84%
achieved by using index-matching oil, and a virtual mirror
position inside the crystal [7]. It should be noted that the
pattern collapses in this region for smaller values ofγ l. When
the virtual mirror was placed at a position between regions
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Figure 4. Hexagonal and square pattern alternating in time with a timescale of a few seconds. Virtual mirror positionn0L/l = −0.25.

Figure 5. Dependence of pattern type on feedback reflectivity. Region I: no observable patterns, II: coexistence of roll and hexagonal
pattern, transition to rolls, III: hexagonal pattern.

where stable hexagonal or square patterns were observed
(n0L/l = −0.25), hexagonal and square patterns (shown
in figure 4) appeared alternately in time in a non-periodic
manner.

Our analysis is restricted to the case of collinear pump
and feedback beams, whereas a slight asymmetry leads to
various types of dynamics, including competition between
different patterns and periodic pattern movements [11, 12].
However, a spontaneous temporal alternation of patterns
without an induced asymmetry can be observed in this
system. When the reflectivity of the feedback mirror
is lowered, a remarkable pattern transition occurs: for
10%6 r 6 25%, a coexistence of rolls and hexagons was
apparent, and forr 6 10%, no patterns were observed at all
(see figure 5).

3. Invasive method for stabilizing desired patterns

In the previous section we reported that this system contains
a variety of different solutions in certain parameter regions.
Here we present a powerful tool to select and stabilize
an otherwise unstable or underlying stable solution—the
method of direct Fourier filtering, a strongly invasive method.
It was first shown experimentally by Mamaevet al [14] for
a similar system, also using a photorefractive nonlinearity.

Near the position of lens L2 in the feedback path, the
far field of the pattern is clearly visible, thus indicating the
possibility to perform Fourier filtering in this plane (Fourier
plane 1 in figure 1). By inserting specially shaped filters,
stable system solutions (e.g. hexagons) can be suppressed,
thereby selecting a novel and desired solution. When a
variable slit was inserted and the slit size was narrowed, a

remarkable transition from the hexagonal over the squeezed
hexagonal to the final roll solution could be observed, as
depicted in figures 6(a)–(c). A square solution can also
be obtained (figure 6(d)) by use of an appropriate Fourier
filter shown in the inset. The system always adjusts to the
presented symmetry. Rotating the filter enables to select
every desired orientation of a pattern. For the case of roll
and square patterns, it was possible to rotate the patterns
continuously by 360◦ around the central spot by slowly
rotating the Fourier filter.

Roll patterns have an interesting property that the system
control by the filter (the power absorbed) declines to zero in
the equilibrium state. In contrast, in the case of hexagonal or
square patterns, higher-order spots are emitted during readout
of the grating in the photorefractive medium by the forward
beam, and are observable at the filter. These higher-order
spots are blocked by the Fourier filter, leading to small but
non-zero power losses in the system for the latter case, even
in the equilibrium state.

Note that the complete Fourier filter is not necessary to
achieve a desired pattern. For the case of the square pattern,
the symmetry of the system requires only one fourth of the
full filter. No other patterns than the one inherent to the
system could be achieved, though a variety of differently
shaped filters were used. Furthermore, it was not possible
to achieve any pattern in parameter regions where, without a
Fourier filter, no pattern was observed.

4. Non-invasive control of pattern formation

The method of direct Fourier filtering, as described above, is
an easy and extremely flexible tool to stabilize and select
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Figure 6. Invasive method to manipulate patterns. Preparation of (a) roll pattern, (b) squeezed hexagonal pattern, (c) square pattern in a
parameter region where hexagonal patterns are predominantly excited. The inset shows the corresponding Fourier filter.

Figure 7. Examples for non-invasive pattern manipulation. Top: far-field pattern, bottom: near-field pattern. (a)–(d) Roll patterns in
different directions with non-invasive control using the filters shown in the insets.

certain stable or unstable patterns, but has the obvious
disadvantage that the removal of certain spectral components
from the feedback constitutes a strong invasion into the
system. However, in order to access the whole range of
solutions without changing the system dramatically, we are
looking for a realization of a minimum invasive method
to control pattern formation. There are several possible
experimental realizations for pattern control with minimal
invasion, as e.g. a ring feedback [10]. Here, we focus on a
second, linear feedback behind the original feedback system
which is depicted in the shaded region of figure 1. From an
experimental point of view, this system offers an easier access
to pattern manipulation and control avoiding the problem
of bidirectional oscillations for the ring feedback geometry
in [10]. This new system offers improved results compared
with the previous one, but the qualitative results are basically
identical.

The small transmission signal of mirror M1 is fed back by
another 2f–2f-system which consists of lens L3 with a focal
length off = 120 mm (the same focal length as lens L2) and
a piezo-driven mirror M2 as the feedback mirror for accurate
phase-adjustment. The plane of Fourier filtering is again
near the lens (Fourier plane 2), where the far field of the
pattern is clearly observable. In order to avoid Fabry–Perot
resonances, the central spot is again blocked throughout all
measurements. The intensity that is fed back into the system
was always in the range of 1–2% of the original intensity
in the feedback path corresponding to 10–14% of the field

amplitude.
We applied the Fourier filtering technique in different

parameter regions of the feedback reflectivityr, which
represents an important control parameter of the system. We
distinguish between a region of pure and stable hexagonal
patterns (r large) and an intermediate region where roll and
hexagonal patterns are coexisting (see again figure 5).

The stationary pattern that is obtained for the
intermediate reflectivity region (aroundr = 25%) represents
a mixed hexagonal-roll state (figure 5 or figure 2 in [10]).
Using a slit filter in the Fourier plane, it was possible to
stabilize the nearest solution of the system, which is a roll
pattern in the filter direction, as shown in figures 7(a)–(d). By
changing the orientation of the filter, rolls can be excited in
any desired orientation by rotating the slit Fourier filter in the
control arm. If only a single spot is allowed to pass the Fourier
filter and is reinjected into the system, the corresponding roll
solution in the appropriate direction is again excited. Note
that all these results were obtained using in-phase feedback.
This feedback method suppresses undesired directions and
offers the system a preferred direction, by feeding back only
the ‘correct’ Fourier components.

It was not possible to stabilize squares by this non-
invasive control method in any region of reflectivity. For
the intermediate reflectivity region where rolls and hexagons
are coexisting, a square filter was used to switch between two
orthogonal roll directions. A roll solution in one of the two
directions could easily be achieved. A subsequentπ -phase
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Figure 8. Switch between two orthogonal roll orientations. (a) Roll pattern in the direction of one slit (Fourier filter depicted in the inset),
(b) roll pattern excited by aπ phase shift with orthogonal orientation, (c) snapshot of an unstable square pattern for an intermediate phase.

Figure 9. Positive and negative filtering in the case of a hexagonal pattern. The control signal is a roll pattern oriented in the horizontal
plane. (a) Positive control emphasizing the pattern by constructive interference, (b) negative control suppressing the horizontal direction by
destructive interference, thus favouring the orthogonal direction.

shift then enabled us to switch to the orthogonal roll direction.
For an intermediate phase, a square appeared as a transition
pattern, but could actually not be stabilized in this parameter
region (see figure 8).

In a region where the reflectivity is chosen to be high
enough to guarantee a stable hexagonal solution (r > 40%),
our control method enables us to choose between different
hexagon orientations by in-phase and out-of-phase feedback.
Using positive feedback, the direction of the hexagon adjusts
to the position of the filter with the hexagon containing these
two spots (figure 9(a)). Negative feedback leads to a different
hexagon position, avoiding the two spots that are fed back as
a control signal (figure 9(b)). Switching between positive and
negative feedback, therefore, allows one to choose between
the two spatially orthogonal hexagon orientations. For the
case of the negative feedback, the feedback signal vanishes
when the desired state is achieved.

By rotating the slit filter, a continous rotation of the
hexagon was possible. After switching off the control
signal, the hexagon remained unchanged in its position.
This indicates clearly that the orientation of a hexagonal
pattern (without any Fourier control) depends only on small
variations in the starting conditions or on a slight symmetry
breaking of the system in the early phase of its development.

For higher reflectivities,r > 40%, the hexagonal
solution was dominant and no other patterns could be excited
in these parameter regions using both non-invasive control
methods, though the invasive control method indicated that
other solutions were underlying and could be excited. Here,
the control signal was obviously too weak (<0.5%) to induce
any changes to the hexagonal pattern dominating in the
system.

5. Discussion, conclusion and outlook

A photorefractive single feedback system offers a great
variety of different solutions. Although the predominantly
excited pattern is a hexagonal one, rolls and squeezed
hexagonal or square patterns can also be observed. The
method of Fourier plane filtering allowed us to stabilize,
select and manipulate different patterns that can be formed
in such a feedback system, realized with a photorefractive
nonlinearity. An invasive feedback control with a spatial filter
shows that the system adapts to the geometry of the filter, but
only solutions inherent to the system are selected. We could
achieve squeezed hexagonal, roll, and square patterns, and
were able to choose the position of these patterns in space.

We have adapted this method to a non-invasive control
system, where only a small amount of the system energy is
coupled out, Fourier-filtered, and reinjected into the system.
With only a small percentage of the system energy, we
could achieve a selection of patterns in regions where two
solutions were coexisting or where other stable solutions were
underlying. Accurate wavefront alignment was not necessary
in all our experiments.

However, not all patterns could be excited. Even if
we were able to stabilize a certain pattern with the invasive
manipulation method, the non-invasive control method did
not necessarily work for this special pattern. This may be
due to a too weak control signal fed back into the system.
In a reflectivity region where hexagonal and roll patterns are
coexisting, we were able to select a certain pattern by using
only 1–2% of the system energy as the feedback signal. For
example, inserting a slit filter into the control path induced
a cleary visible roll solution. Additionally, we were able to
choose the position of the pattern by rotating the filter. Using
a square filter, we could switch between two orthogonal roll
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solutions, but no square pattern could be achieved, though
the invasive manipulation indicated that this solution was
underlying. The square pattern was visible for a short
period of time as a transition state, but could not actually
be stabilized.

For reflectivities in the region of stable hexagons
(r = 35%), we could adjust different hexagon orientations
by positive and negative feedback with only 1% of the system
energy as a feedback signal. In the latter case, the system
control by the filter (the pattern reinjected into the system)
declines to zero when the desired pattern state is reached. In
addition, the hexagon could be tracked to one position even if
the control was turned off. Although usually negative control
is defined only for the stabilization and tracking of unstable
states [9], this manipulation of an obviously stable hexagonal
pattern proves the usefulness of negative feedback, in full
agreement with the theoretical predictions. For a feedback
signal< 0.5% of the system energy, pattern control was not
possible in a region where the hexagonal pattern appeared to
be the predominant solution of the system.

Since a complete nonlinear stability analysis is still miss-
ing for this photorefractive feedback system, we do not know
anything about the regions of stability for the different pattern
types. Our aim is to explore these regions experimentally by
use of the Fourier filtering control technique.

In all our experiments, the filters were inserted and
removed manually. Automatizing this procedure, e.g. by
using an amplitude modulator, would result in a more detailed
analysis concerning the reaction of the system to a new
presented Fourier filter. Without disturbances, it may be
possible to lock the system to a solution after ‘switching off’
the filter in the case of the invasive control method. This in
turn proves the stability or instability of a certain solution.

In conclusion, the Fourier filtering control technique is a
powerful and flexible method to control pattern formation
without influencing the system dramatically. Otherwise,
underlying stable or unstable patterns can be excited and
explored by use of this method. In the case of the negative
control, the control intensity vanishes when the desired state

is reached, which has a remarkable similarity to conservative
electric control units. We state that this stabilization method
is not restricted to photorefractive media and is applicable to
a variety of pattern forming nonlinear optical systems.
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