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Abstract:
Using spatial modes for quantum key distribution (QKD) has become highly topical due to
their infinite dimensionality, promising high information capacity per photon. However, spatial
distortions reduce the feasible secret key rates and compromise the security of a quantum channel.
In an extreme form such a distortion might be a physical obstacle, impeding line-of-sight for free-
space channels. Here, by controlling the radial degree of freedom of a photon’s spatial mode, we
are able to demonstrate hybrid high-dimensional QKD through obstacles with self-reconstructing
single photons. We construct high-dimensional mutually unbiased bases using spin-orbit hybrid
states that are radially modulated with a non-diffracting Bessel-Gaussian (BG) profile, and
show secure transmission through partially obstructed quantum links. Using a prepare-measure
protocol we report higher quantum state self-reconstruction and information retention for the
non-diffracting BG modes as compared to Laguerre-Gaussian modes, obtaining a quantum bit
error rate (QBER) that is up to 3× lower. This work highlights the importance of controlling the
radial mode of single photons in quantum information processing and communication as well as
the advantages of QKD with hybrid states.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantum key distribution (QKD) enables two parties to securely exchange information de-
tecting the presence of eavesdropping [1]. Unlike conventional cryptography, with unproven
computational assumptions, the security of QKD relies on the fundamental laws of quantum
mechanics [2], prohibiting the cloning of quantum information encoded in single photons [3].
Although current state of the art implementations have successfully transfered quantum states in
free-space [4], optical fibers [5], and between satellites [6], efficient high capacity key generation
and robust security are still highly sought-after.

Spatial modes of light hold significant promise in addressing these issues. The channel
capacity can be exponentially increased by encoding information in the spatial degree of freedom
(DoF) of photons and has been demonstrated with classical light in free-space and fibres [7].
Implementing QKD with high-dimensional (HD) states (d > 2) has also been demonstrated [8,9],
by exploiting the ability of each photon to carry up to log2(d) bits per photon while simultaneously
increasing the threshold of the quantum bit error rate (QBER). This makes HD QKD protocols
more robust [10–12], even when considering extreme perturbing conditions, i.e., underwater
submarine communication links [13]. While most studies to date have used spatial modes of light
carrying orbital angular momentum (OAM) [14], reaching up to d = 7 [15], higher dimensions
are achievable with coupled spatial and polarization structures, e.g. vector modes. These states
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have received recent attention in classical communication [16–19], in the quantum realm as
a means of implementing QKD without a reference frame [20, 21] and for real-time quantum
error correction [22], but only recently have both DoFs been used to increase dimensionality in
QKD [23–25].

To date, there has been only limited work on the impact of perturbations on HD entanglement
and QKD with spatial modes [25–29]. In turbulence, for example, the key rates are known to
decrease [30], with the latter to be compensated for large OAM states in the superposition. There
has been no study on HD QKD through physical obstacles.

Here, we take advantage of the self-healing properties in non-diffracting vector beams to
show that the bit rate of a QKD channel, affected by partial obstructions, can be ameliorated
by encoding information onto diffraction-free single photons. To this end, we generate a non-
diffracting (self-reconstructing) set of mutually unbiased bases (MUB), formed by hybrid scalar
and vector modes with a Bessel-Gaussian (BG) transverse profile. We herald a single photon with
a BG radial profile by means of spontaneous parametric down-conversion (SPDC), generating
paired photons and coupling OAM and polarization using a q-plate [31]. We characterize the
quantum link by measuring the scattering probabilities, mutual information and secret key rates
in a prepare-measure protocol for BG and Laguerre-Gaussian (LG) photons, comparing the
two for various obstacle sizes. We find that the BG modes outperform LG modes for larger
obstructions by more than 3×, highlighting the importance of radial mode control of single
photons for quantum information processing and communication.

2. Self-healing Bessel modes

Since Bessel modes cannot be realized experimentally, a valid approximation, the Bessel-
Gaussian (BG) mode, is commonly used [32]. This approximation inherits from the Bessel
modes the ability to self-reconstruct in amplitude, phase [33, 34], and polarization [35–37],
even when considering entangled photon pairs [29] or non-separable vector modes [38–40].
Mathematically, they are described by

J̀ ,kr (r, ϕ, z) =
√

2
π

J`

(
zRkrr
zR − iz

)
exp (i`ϕ − ikz z)

· exp
(

ik2
r zw0 − 2kr2

4(zR − iz)

)
, (1)

where (r, ϕ, z) represents the position vector in the cylindrical coordinates, ` is the azimuthal
index (topological charge). Furthermore, J`(·) defines a Bessel function of the first kind , kr and

kz are the radial and longitudinal components of the wave number k =
√

k2
r + k2

z = 2π/λ. The
last factor describes the Gaussian envelope with beam waist w0 and Rayleigh range zR = πw2

0/λ
for a certain wavelength λ.

The propagation distance over which the BG modes approximate a non-diffracting mode
is given by zmax = 2πw0/λkr . In the presence of an obstruction of radius R inserted within
the non-diffracting distance, a shadow region of length zmin ≈ 2πR/krλ is formed [41]. The
distance zmin determines the minimum distance required for the beam to recover its original
form, whereby full reconstruction is achieved at 2zmin [33, 34].

We exploit this property with single photons that have non-separable polarization and OAM
DoFs. By carefully selecting a kr value, we show that the information of hybrid entangled single
photon encoded with a Bessel radial profile can be recovered after the shadow region of an
obstruction. Traditionally hybrid modes, while still new in the communication context, have
not been controlled in radial profile. Indeed, the traditional generation approaches often result
in very complex radial structures [42]. To control and exploit all spatial and the polarization

                                                                                                  Vol. 26, No. 21 | 15 Oct 2018 | OPTICS EXPRESS 26947  



(c) (d)

|Φ〉00

(a) (b)

0

2π
0

1

|Φ〉01

|Φ〉10

|Φ〉11

|Ψ〉00

|Ψ〉01

|Ψ〉10

|Ψ〉11

Fig. 1. Intensity and polarization mappings of vector (first row) and scalar (second row)
MUB modes with (a) BG and (b) LG radial profiles for ` = ±1. The polarization projec-
tions on the (c) vector |Ψ〉 and (d) scalar |Φ〉 basis BG modes. The vector modes have
spatially varying polarizations which consequently render the polarization and spatial DoF
as non-separable. This is easily seen in the variation of the transverse spatial profile when
polarization projections are performed (orientation indicated by white arrow) on the |Ψ〉
modes. In contrast, the scalar modes have separable polarization and spatial DoF hence
polarization projections only cause fluctuations in the intensity of the transverse profile for
the |Φ〉 modes.

DoFs for QKD we introduce a high-dimensional self-healing information basis constructed from
non-orthogonal vector and scalar OAM BG spatial modes.

2.1. Self-healing information basis

In order to demonstrate the concept we will use the well-known BB84 protocol, but stress that
this may be replaced with more modern and advantageous protocols with little change to the core
idea as outlined here. In the standard BB84 protocol, Alice and Bob unanimously agree on two
information basis. The first basis can be arbitrarily chosen in d dimensions as {|Ψi〉 , i = 1..d}.
However, the second basis must fulfill the condition

| 〈Ψi |Φj〉 |2 =
1
d
, (2)

making |Ψ〉 and |Φ〉 mutually unbiased. Various QKD protocols were first implemented using
polarization states, spanned by the canonical right |R〉 and left |L〉 circular polarization states
constituting a two-dimensional Hilbert space, i.e., Hσ = span{|L〉 , |R〉}. More dimensions
where later realized with the spatial DoF of photons [9, 15], using the OAM DoF spanning
the infinite dimensional space, i.e. H∞ =

⊕
H` , such that H` = {|`〉 , |−`〉} is qubit space

characterized by a topological charge ` ∈ Z.
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Here we exploit an even larger encoding state space by combining polarization and OAM,
H∞ =

⊕
Hσ ⊗ H` where H4 = Hσ ⊗ H` , is a qu-quart space spanned by the states

{|L〉 |`〉 , |R〉 |`〉 , |L〉 |−`〉 , |R〉 |−`〉}, described by the so-called higher-order Poincaré spheres
(HOPSs) [43, 44]. These modes feature a coupling between the polarization and OAM DoFs,
shown in Fig. 1. The HOPS concept neglects the radial structure of the modes, considering only
the angular momentum content, spin and orbital. Yet all modes have radial structure, shown in
Fig. 1(a) for Bessel-Gaussian and Fig. 1(b) for Laguerre-Gaussian profiles. We wish to create a
basis of orthogonal non-separable vector BG modes together with their MUBs for our single
photon states.

Without loss of generality, we choose a mode basis on theH4 subspace with ` = ±1 as our
example. Our encoding basis is constructed as follows: we define the radial profile J̀ ,kr (r)
representing the radial component of the BG mode in Eq. (1). Our first mode set is comprised of
a self-healing vector BG mode basis, mapped as

|Ψ〉00 =
1
√

2
J̀ ,kr (r)

(
|R〉 |`〉 + |L〉 |−`〉

)
, (3)

|Ψ〉01 =
1
√

2
J̀ ,kr (r)

(
|R〉 |`〉 − |L〉 |−`〉

)
, (4)

|Ψ〉10 =
1
√

2
J̀ ,kr (r)

(
|L〉 |`〉 + |R〉 |−`〉

)
, (5)

|Ψ〉11 =
1
√

2
J̀ ,kr (r)

(
|L〉 |`〉 − |R〉 |−`〉

)
, (6)

with some example polarization projections shown in Fig. 1(c). The set of MUB modes is given
by

|Φ〉00 = J̀ ,kr (r) |D〉 |−`〉 , (7)
|Φ〉01 = J̀ ,kr (r) |D〉 |`〉 , (8)
|Φ〉10 = J̀ ,kr (r) |A〉 |−`〉 , (9)
|Φ〉11 = J̀ ,kr (r) |A〉 |`〉 , (10)

where D and A are the diagonal and anti-diagonal polarization states (see Fig. 1(d) for polarization
projections). The set |Ψ〉i j and |Φ〉i j are mutually unbiased and, therefore, form a reputable
information basis for QKD in high dimensions.

As a point of comparison to the self-healing properties of the non-diffracting modes, we
make use also of a similar alphabet but projecting the heralding photon onto a Gaussian mode,
obtaining a helical mode in the other photon after traversing a spin-to-orbital angular momentum
converter [31]. We will refer to this as a Laguerre-Gaussian (LG) mode in the remainder of the
manuscript.

3. Methods

3.1. Single photon heralding

Heralded photon sources have been used as a means of producing single photons in QKD [45].
In this process, the heralded photon conditions the existence of its correlated twin. Moreover,
the statistics of the heralded photon have low multi-photon probabilities which can be further
remedied by using decoy states [46].

Here, we herald a single photon via SPDC where a high frequency photon (λ = 405 nm)
is absorbed with low probability in a nonlinear crystal, generating a signal (s) and idler (i)
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2
(β2)

Ve
ct

or

Sc
al

ar

Vector
Scalar

Pr
ep

ar
e

Measure

0

1

Vector Scalar

Pr
ob

al
ili

ty

(a) (b)

(c)

L

Fig. 2. (a) Conceptual drawing of the QKD with self-healing BG modes. The SLMs post-
select the self-healing BG radial profile from the SPDC source. The prepare (P) and measure
(M) optics modulate and demodulate the OAM and polarization DoF of the heralded photon.
The physical obstruction (O) is placed at a distance L from the rightmost SLM, which
decodes the radial information of Bob’s photon. The optics are within zmax = 54 cm distance
of the BG modes depicted as the rhombus shape. The propagation of the post-selected BG
mode can be determined via back-projection. (b) Numerical scattering probability matrix for
the vector and scalar modes sets in free-space. The channels correspond to the probabilities
|Ci j |2 calculated from Eq. (22). (c) Optical elements required by Alice and Bob to prepare
and measure the spin-coupled states of the heralded photons (cf. Table 1).

correlated paired photons at λ = 810 nm. In the case of a collinear emission of s and i, the
probability amplitude of detecting mode functions |m〉s and |m〉i , respectively, is given by [47]

cs,i =
∫ ∫

m∗s(x)m∗i (x)mp(x)d2x, (11)

where mp(x) is the field profile of the pump (p) beam which best approximates the phase-
matching condition in the thin crystal limit; the Rayleigh range of the pump beam is much larger
than the crystal length. The probabilities amplitudes cs,i can be calculated using the Bessel basis,

ms,i(r, ϕ) = J̀ s, i,kr (r) exp(i`s,iϕ), (12)

where exp(i`ϕ) corresponds to the characteristic azimuthal phase mapping onto the state vector
|`〉. Taking into account a SPDC type-I process and a Gaussian pump beam, the quantum state
used to encode and decode the shared key can be written in the Bessel basis as

|Ψ〉AB =
∑

c`,kr,1,kr,2 |`, kr,1〉s |−`, kr,2〉i |H〉s |H〉i , (13)

being |`, kr 〉s ∼ J`,kr (r) |`〉 and H the horizontal polarization state. The probability amplitudes
c`,kr,1,kr,2 can be calculated using the overlap integral in Eq. (11). Experimentally |c`,kr,1,kr,2 |2 is
proportional to the probability of detecting a coincidence when the state |`, kr,1〉s |−`, kr,2〉i is
selected. Coincidences are optimal when |kr,1 | and |kr,2 | are equivalent.

In this experiment, the idler photon (i) is projected into the state |0, kr 〉i , heralding only the
signal photons (s) with the same spatial state |0, kr 〉s, as can be seen in the sketch of Fig. 2(a).
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Therefore, a prepare-measure protocol can be carried out by using the same s photon. In other-
words, Alice remotely prepares her single photon with a desired radial profile from the SPDC
before encoding the polarization and OAM information.

3.2. Spatial profile post-selection

Spatial light modulators (SLMs) are a ubiquitous tool for generating and detecting spatial
modes [48, 49]. We exploit their on-demand dynamic modulation via computer generated
holograms to post-select the spatial profiles of our desired modes (see hologram inset in Fig. 2(a)).
For the detection of BG modes, we choose a binary Bessel function as phase-only hologram,
defined by the transmission function

T(r, ϕ) = sign{J`(krr)} exp(i`ϕ), (14)

with the sign function sign{·} [50,51]. Classically, this approach has the advantage of generating
a BG beam immediately after the SLM and, reciprocally, detects the mode efficiently [29].
Importantly, a blazed grating is used to encode the hologram, with the desired mode being
detected in the first diffraction order [52] and spatial filtered with a single mode fiber (SMF).

Here, we set kr = 18 rad/mm and ` = 0 for the fundamental Bessel mode and, conversely,
kr = 0 to eliminate the multi-ringed Bessel structure.

3.3. Mode generation and detection

Liquid crystals q-plates represent a convenient and versatile way to engineer several types of
vector beams [53]. In our setup, vector and scalar modes, described in Fig. 1, are either generated
or detected, at Alice and Bob’s prepare (P) and measure (M) stations in Fig. 2(a), by letting signal
photons pass through a combination of these devices and standard wave plates (see Fig. 2(c)).
A q-plate consists of a thin layer of liquid crystals (sandwiched between glass plates) whose
optic axes are arranged so that they form a singular pattern with topological charge q [31]. By
adjusting the voltage applied to the plate it is possible to tune its retardation to the optimal value
δ = π [54]. In such a configuration indeed the plate behaves like a standard half-wave plate (with
an inhomogeneous orientation of its fast axis) and can be used to change the OAM of circularly
polarized light by ±2q, depending on the associated handedness being left or right, respectively.
In the Jones matrix formalism, the q-plate is represented by the operator

Q̂ = ©­«
cos(2qϕ) sin(2qϕ)

sin(2qϕ) −cos(2qϕ),
ª®¬ (15)

where ϕ is the azimuthal coordinate. The matrix is then written in the following linear basis

{|H〉 = ©­«
1

0
ª®¬ , |V〉 = ©­«

0

1
ª®¬}. In our experiment we use q-plates with q = 1/2, and half-wave (λ2 ) as

well as quarter-wave (λ4 ) plates for polarization control, represented by the Jones matrices

Ĵ λ
2
(θ) = ©­«

cos(2θ) sin(2θ)

sin(2θ) −cos(2θ)
ª®¬ , (16)

and

Ĵ λ
4
(θ) = ©­«

cos2(θ) + isin2(θ) (1 − i) sin(θ)cos(θ)

(1 − i) sin(θ)cos(θ) sin2(θ) + icos2(θ)
ª®¬ . (17)
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Here, θ represents the rotation angle of the wave plates fast axis with respect to the horizontal
polarization. The operator associated with the generation of the vector mode is

V̂(α1, α2) = Ĵ λ
2
(α2)Q̂Ĵ λ

2
(α1)P̂H, (18)

where α1 and α2 are the rotation angles for the half-wave plates and P̂H =
©­«
1 0

0 0
ª®¬ represents the

operator for a horizontal linear polarizer. Similarly, the operator for the scalar modes is

Ŝ(β1, β2) = Ĵ λ
4
(β2)Q̂Ĵ λ

4
(β1)P̂H, (19)

where β1 and β2 are the rotation angles for the quarter-wave plates.
Let the setM1 = {V̂i | V̂i → |Ψi〉 , i = 1..4} be associated with the generation of vector modes

from V̂(α1, α2), andM2 = {Ŝj | Ŝj → |Φj〉 , j = 1..4} for the scalar modes from Ŝ(β1, β2). The
orientation of the angles required to obtain them is given in Table 1 for the vector and scalar
modes (see also schematics of wave plates arrangement in Fig. 2(c)).

Table 1. Generation of vector and scalar modes from a horizontally polarized BG mode
(` = 0) at the input. The angles α1,2 and β1,2 are defined with respect to the horizontal
polarization. For each V̂i and Ŝi we present the angles needed to perform the mapping of
M1 → {|Ψi〉} andM2 → {|Φi〉} with a one-to-one correspondence.

Vector, V̂(α1, α2) Scalar, Ŝ(β1, β2)

Operator Ĵ λ
2
(α1) Ĵ λ

2
(α2) Operator Ĵ λ

4
(β1) Ĵ λ

4
(β2)

V̂1 0 – Ŝ1 −π/4 0

V̂2 π/4 – Ŝ2 π/4 π/2

V̂3 0 0 Ŝ3 −π/4 π/2

V̂4 π/4 0 Ŝ4 π/4 0

3.4. Scattering probability

Let Âi, B̂j ∈ M1 ∪M2 represent operators selected by Alice and Bob, respectively. Alice first
obtains a heralded photon from the SPDC with the input state |ψin〉 = J0,kr |H〉. Then, Alice
prepares the photon in a desired state from the MUB with

|ai〉 = ÂiJ0,kr (r) |H〉 , (20)

and Bob similarly measures the state

|bj〉 = B̂jJ0,kr (r) |H〉 . (21)

The probability amplitude of Bob’s detection is

Ci j = 〈bj |ai〉 =
∫ 2π

0

∫ ∞

0
〈H | J∗0,kr (r)B̂

†
j ÂiJ0,kr (r) |H〉 rdrdφ, (22)

while the corresponding detection probabilities, |Ci j |2, are presented in Fig. 2(b).
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Fig. 3. Experimental setup for the self-healing QKD. Pump: λ = 405 nm (Cobalt, MLD
laser diode); f: Fourier lenses of focal length f1,2,3&4 = 100 mm, 750 mm, 500 mm, 2 mm,
respectively; PPKTP: periodically poled potassium titanyl phosphate (nonlinear crystal);
BS: 50:50 beam splitter; s and i: signal and idler photon paths; P: preparation of the state
(Alice); O: variable sized obstacle; M: measurement of the state (Bob); SLM: spatial light
modulator (Pluto, Holoeye); BPF: band-pass filter; SMF: single mode fiber; D1&2: single
photon detectors (Perkin Elmer); C.C.: coincidence electronics.

4. Experimental set-up

Figure 3 is a schematic representation of our experimental setup. The continuous-wave pump
laser (Cobalt MLD diode laser, λ = 405 nm) was spatially filtered to deliver 40 mW of average
power in a Gaussian beam of w0 ≈ 170 µm at the crystal (2-mm-long PPKTP nonlinear crystal),
generating two lower-frequency photons by means of a type-I spontaneous parametric down-
conversion (SPDC) process. By virtue of this, the signal and idler photons had the same
wavelength (λ = 810 nm) and polarization (horizontal).

The two correlated photons, signal and idler, were spatially separated by a 50:50 beam splitter
(BS), with the idler photon projected into a Bessel state of 0 OAM, thus heralding a zero-order
Bessel photon in the signal arm for the prepare-measure BB84 protocol. The signal photon
traversed the preparation stage (P) where Alice could prepare a vector or scalar state from the
MUB alphabet using elements detailed in Fig. 2(c). The signal photon was then propagated
in free-space with an obstacle of variable size placed within the non-diffracting distance. This
mimics a line-of-sight quantum channel. In our experiment we used the spatial light modulators
(SLMs) to post-select a wave number of kr = 18 rad/mm, thus realising a non-diffracting
distance of zmax = 54 cm. These values where verified by classical back-projection through
the system [55]. The state measurement (M) was implemented after the obstacle by Bob. The
SLM acted both as a horizontal polarization filter and as a post-selecting filter for the radial
wave number. To conclude the heralding experiment, both photons were spectrally filtered by
band-pass filters (10 nm bandwidth at full-width at half-maximum) and coupled with single mode
fibers to single photon detectors (D1&2; Perkin-Elmer), with the output pulses synchronized with
a coincidence counter (C.C.), discarding also the cases where the two photons exit the same
output port from the BS.

4.1. Procedure and analysis

We measured the scattering matrix for the BG and, for comparison reasons, the LG profiles under
three conditions: (FS) in free-space; (R1) with a 600 µm radius obstruction placed strategically
such that the complete decoding is performed after L > zmin (L: distance between obstruction
and decoding SLM); and (R2) with a 800 µm radius obstruction, placed at the same position.
In the (R2) the shadow region overlaps the detection system (L < zmin) so that the mode is not
able to self-reconstruct completely before being detected. We measure the quantum bit error rate
(QBER) in each of these cases and computed the mutual information between Alice and Bob in
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Fig. 4. (a) Measured photon count rates and (b) average photon number (µ) per-gating
window of 25 ns in free-space (FS) and the two obstructions (R1 = 600 µm and R2 = 800
µm) for the radially polarized mode |ψ〉00. (c) and (d) show coincidence rates with the same
obstructions for the BG and LG radial profiles, respectively. The BG count rate is lower for
smaller obstructions due to the high kr hologram on the SLM [55].

d = 4 dimensions by [11]

IAB = log2(d) + (1 − e) log2(1 − e) + (e) log2

( e
d − 1

)
. (23)

Here, e denotes the QBER. Lastly, we measured the practical secure key rate per signal state
emitted by Alice, using the Gottesman-Lo-Lütkenhaus-Preskill (GLLP) method [56, 57] for
practical implementations with BB84 states, given by

R∆ = Qµ

(
(1 − ∆)

(
1 − Hd

( e
1 − ∆

))
− fECHd(e)

)
, (24)

where Hd(·) is the high-dimensional Shannon entropy and fEC is a factor that accounts for error
correction and is nominally fEC = 1.2 for error correction systems that are currently in practice.

The photon gain is defined as Qµ =
∑

n YnPn(µ) (in the orders of 10−4 for our experiment),
where Yn is the nth photon yield while Pn is the probability distribution over n with respect to the
average photon number µ, following sub-Poisson statistics for heralded photons produced from
a SPDC source [57]. Yn can be calculated from the background rate, pD = 2.5 × 10−6 photons
per gating window (25 ns), and n-signal detection efficiency ηn:

Yn = ηn + pD(1 − ηn), (25)

where the n-signal detection efficiency ηn is given by

ηn = 1 − (1 − η)n. (26)

Here η = ηdtB is the transmission probability of each photon state with η = 0.45 × 0.8 for
Bob’s detection (when accounting for the SLM grating). Furthermore, ∆ is the multi-photon
rate computed as (1 − P0 − P1)/Qµ [57] where P0,1 are the vacuum and single photon emission
probabilities, respectively. The term (1 − ∆) accounts for photon splitting attacks [57]. In our
experiment, we measured the photon intensities for every obstruction from the photon detection
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Fig. 5. Crosstalk (scattering) matrix for vector and scalar modes in (a) (I) free-space having
post-selected in a BG radial profile. The vector and scalar measured probabilities with the
first obstruction (II) having a radius R1 = 600µm (L > zmin) when taking into account
(b) BG and (c) LG radial profiles. Measured probabilities with (III) an obstruction of
R2 = 800µm (L < zmin) when taking into account (d) BG and (e) LG radially profiled
single photons.

rates of the obstructed photon and deduced P1 and P0 assuming a thermal statistics of the
heralded photon. We point out that it may be necessary to implement decoy states with a heralded
source to ensure security against multi photon states owing to the thermal nature of the reduced
photon state of SPDC correlated pairs [45, 57].

5. Results and discussion

We performed the aforementioned experiment in four dimensions using heralded single photons
with either a heralded LG mode or BG mode for the radial spatial profile, and compare their
performance under the influence of varying sized obstructions.

5.1. Experimental results

The photon count-rates and mean-photon counts (per gating window) are presented in Figs. 4(a)
and 4(b), for the |Ψ〉00 input state. As shown, the photon count rates decay for both the BG and
LG radial profiles, however, more so for LG profile under the R2 obstruction. The coincidences
rates are recovered for the BG mode (Fig. 4(c)) under the R1 obstruction since L> zmin
(detection is performed outside the shadow region of the obstruction). Further, the BG mode
still demonstrates less decay for R2 obstructed even when the mode has not reconstructed (since
L < zmin), as compared to LG (Fig. 4(d)), where the coincidence rate is seen to completely
decay.

Next, we present the measured detection probability matrices for three tested cases in Fig. 5
using our high-dimensional information basis. In the free-space case, we measure QBERs of
e = 0.04 ± 0.004 for the BG and LG spatial profiles (see Fig. 5(a) and Table 2). We compute a
mutual information of IAB = 1.69 bits/photon and a secure key rate of R∆/Qµ = 1.32 bits/s per
photon for both radial profiles.

Under the perturbation of the R1 = 600 µ m obstruction (0.53× the beam waist of the down
converted photon), we measure a QBER of e = 0.05 for both spatial profiles, indicative of
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Fig. 6. (a) Experimental normalized coincidence (NC) count-rate for the BG and LG MUB
for free-space (FS) and the two obstructions (R1 = 600 µm and R2 = 800 µm) on the radially
polarized mode |ψ〉00. (b) The QBER, mutual information (IAB) and key rate (R∆/Qµ) for
the BG and LG modes with no perturbation and under the two tested obstructions are shown.

information retention, i.e. high fidelity. The intensity fields from the back-projected classical
beam (see insets of Figs. 5(b) and 5(c)), show self-healing of the BG mode at the SLM plane
(see Fig. 5(b)), although the LG is not completely reconstructed (see Fig. 5(c)). The photons
encoded with the LG profile may have a large component of the input mode which is undisturbed
in polarization and phase. Furthermore, the coincidence counts decreases to 49% for the LG
profile relative to the counts in free-space, as highlighted in Fig. 6(a). In comparison, the BG
modes show resilience thanks to the multiple concentric rings [58].

Lastly, we investigate the security when the R2 = 800 µm (0.71× the beam waist of the
down converted photon) obstruction is used. Remarkably, as illustrated in Fig. 6(a), the signal
decreased by almost four orders of magnitude, remaining only the 0.07% of the signal for the LG
set, but up to 71% for the BG self-healing mode set, owing to an earlier reconstruction of the BG
radial profile in comparison to the LG radial profile. Based on the measurement results shown in
Figs. 5(d) and 5(e), we determine a QBER of e = 0.15 ± 0.01 and e = 0.51 ± 0.00 for the BG
and LG modes, respectively. The mutual information (IAB) and secure key rates are higher for
the BG basis than the LG, even though the BG MUB has not fully reconstructed (see Fig. 6(b)).
Table 2 shows a summary of the measured security parameters for the BG and LG mode sets.

Table 2. Measured security parameters for the self-healing BG (LG) modes. NC represents
the normalized coincidence counts. The normalization was performed with respect to the
counts obtained from the free-space measurements.

BG (LG) modes

Free-space R1 = 600 µm R2 = 800 µm

QBER 0.04 ± 0.01 (0.04 ± 0.01) 0.05 ± 0.02 (0.05 ± 0.03) 0.15 ± 0.01 (0.51 ± 0.00)

IAB 1.69 ± 0.06 (1.69 ± 0.03) 1.63 ± 0.1 (1.63 ± 0.02) 1.15 ± 04 (0.19 ± .004)

∆ 1.60 10−3 (1.80 10−3) 1.10 10−3 (1.30 10−3) 0.73 10−3 (0.04 10−3)
R∆
Qµ

1.32 ± 0.06 (1.32 ± 0.03) 1.19 ± 0.1 (1.19 ± 0.02) 0.13 ± 04 (0.01 ± 0.00)
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5.2. Discussion

We have presented a proof-of-concept experiment highlighting the importance of structuring
photons in the complete spatial mode state. Here we have demonstrated the advantage when
doing so with BG spatial modes for obstacle-tolerant QKD. Further, we have employed hybrid
spin-orbital states to access high dimensions, with the spin-orbit states used to encode the
information and the radial mode used to ameliorate perturbations in the form of obstructions. Our
scheme shows that with high-dimensional encoding and self-reconstruction, high information
transmission rates are still achievable even in the presence of absorbing obstructions that perturb
the traverse extent of the quantum channel. Our scheme exploits the radial DoF which has
previously not been explored in HD QKD implementations with spatial modes. In our experiment
the propagation length was tailored for laboratory implementation, but could be extended for
practical long distance links as has been done at the classical level with scalar Bessel beams [59].
Doing so would likely increase the beam size as well as reduce the cone angle. In a realistic
channel the obstruction could range in scale from the very small, e.g., dust particles in dry
environments, to the very large, perhaps birds, and may even be in the transmitter or receiver
itself, e.g., conventional mirror telescope designs that block part of the incoming light. To mimic
this range in scale we have used obstructions that range in relative size to the mode from 0
(free-space) to 0.7× (very large). We have also used a very difficult high kr value of 18 rad/mm,
returning meter scale distances (54 cm in our case) for a beam radius in the order of 100s of
µm. Thus links in the kilometer range could be produced with modest cm scale beams, or the
heralding efficiency could be dramatically increased by lowering kr [55] and instead increasing
the beam size. These design trade-offs are afforded to the user by the use of BG modes over LG
modes.

In free-space a common problem is phase distortions, such as turbulence. Here BG modes
do not show complete reconstruction [60], nor does the hybrid combination add value [61], but
classical studies have suggested that perhaps such modes may be resilient to beam wander due
to turbulence [62]. This is yet to be tested in the quantum regime. We predict that the ability
to tailor both the size and kr to achieve a desired distance may assist in keeping the beam size
below the Fried scale.

In cases where the BG adds no advantage the radial mode should still be tailored correctly to a
more appropriate choice. In this sense this study highlights the general case for complete control
of the DoFs of the state for QKD, using BG modes as an example.

We also stress that although there are reported benefits with HD encoding, not all commonly
used protocols have been generalized to high dimensions, for example, the SARG04 protocol [63]
which is designed for robustness against the photon number splitting attacks or the B92 protocol
which is a simpler version of the BB84 protocol [64], hence newer protocols such as the Round-
Robin Differential-Phase-Shift are the subject of ongoing development in the context of spatial
modes [65]. Importantly, there may be further improvements of our work by implementing our
selection of modes with decoy states which has proven invaluable for HD QKD in both free-
space and fiber [66, 67] and could be of higher value if implemented with heralded sources [57].
Although the scheme we present is filter based, i.e. filtering states one at a time, the experiment
can be performed robustly and more efficiently using a deterministic detector for spin-orbit
coupled states, sorting the modes in position [23]. This ensures high detection rates. Obtaining
high switching between modes during generation would require fast modulators which is a
serious experimental challenge when implementing HD QKD [68].

6. Conclusion

The self-healing property of the Bessel-Gaussian modes opens an important research field, being
able to securely share the cryptographic key despite any possible obstruction partially blocking
the quantum channel. We have shown in this manuscript the experimental results of the scattering
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probabilities, mutual information and secret key rates in a prepare-measure protocol, comparing
two different modes forming the QKD quantum state alphabet: Bessel-Gaussian (BG) and
Laguerre-Gaussian (LG). Our results clearly show lower quantum bit error rate (QBER) by
using BG modes when transmitting the shared key through a mostly blocked quantum channel.
Concretely, we measured a QBER of 0.15 ± 0.01 and 0.51 ± 0.00 for the BG and LG modes,
respectively. Furthermore, when almost completely blocking the channel, the mutual information
for the BG modes only drops due to the increase of the noise with respect of the signal. The
quantum state information can be reconstructed even when having barely any photons after the
obstacle.
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