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Perturbing the external control parameters of nonlinear systems leads to dramatic changes in their bifurcations.
A branch of singular theory, the catastrophe theory, analyzes the generating function that depends on state and control
parameters. It predicts the formation of bifurcations as geometrically stable structures and categorizes them hierarchi-
cally. We apply the approach to evaluate the catastrophe diffraction integral with respect to two-dimensional cross
sections through the control parameter space and thus transfer these bifurcations to optics, where they manifest as
caustics in transverse light fields. For all optical catastrophes that depend on a single state parameter (cuspoids), we
analytically derive a universal expression for the propagation of all corresponding cuspoid beams. We show that the
dynamics of the resulting cuspoids can be expressed by higher-order optical catastrophes with dynamically changing
control parameters. We show analytically and experimentally that particular swallowtail beams develop caustics with
geometrical structures corresponding to higher-order butterfly catastrophes during propagation, whereas differently
tailored swallowtail beams decay to lower-order cusp catastrophes. © 2017 Optical Society of America

OCIS codes: (260.6042) Singular optics; (080.7343) Wave dressing of rays; (070.2580) Paraxial wave optics; (070.7345) Wave propagation.
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1. INTRODUCTION

Singularities of the generating function of a nonlinear system
describe how the structures of its bifurcations are related to
external control parameters. Small perturbations of the control
parameters may result in dramatic changes. This is what is called
a catastrophe in the context of the singularity and the catastrophe
theory [1,2]. A classification of the most fundamental potentials
exists, which distinguishes different local effects near catastrophes
and the system’s qualitative behavior [1,2]. Each order of a catas-
trophe forms a specific geometrically stable structure in the
control parameter space. According to the unique geometric
structure, a hierarchical categorization with increasing dimension-
ality of the control parameter space is given by fold, cusp,
swallowtail, hyperbolic umbilic, elliptic umbilic, butterfly, and
parabolic umbilic catastrophes.

In general, any catastrophe has a wide range of different areas
of physics that it explains [3–6], where individual catastrophes are
present for miscellaneous systems. Exemplary, the fold catastro-
phe manifests in rainbows [7], the cusp catastrophe emerges in
models of social sciences [8], and the swallowtail catastrophe
occurs in orbits of hydrogen [9], to name only some exemplary
orders of catastrophes.

Manifestation of catastrophes in light phenomena as they oc-
cur in nature, where high-intensity caustics emerge in defined
geometries according to their respective order, is well understood
[10,11]. Caustics are formed due to reflections on smoothly
curved surfaces and emerge, e.g., as a cusp in a cup, or arise
due to refraction at spatially modulated boundaries, e.g., when

forming ramified networks at the ground of shallow waters.
Beneath their potential to optically visualize the complex dynam-
ics of nonlinear systems, it is their sharp high-intensity boundary
with unique propagation paths on curved trajectories [12–14],
which makes caustics in light highly attractive for a broad range
of applications [14–17]. However, tailored creation of caustics in
light beyond their natural occurrence is necessary to control their
properties and dynamics in all facets.

Over the past years, application of spatial light modulators has
facilitated the artificial creation of catastrophes in light fields;
however, until now only the most fundamental orders were real-
ized as paraxial Airy (fold) and Pearcey (cusp) beams [12,13].
Artificial higher-order optical swallowtail and butterfly catastro-
phes were transferred to caustics in transverse light fields by map-
ping the cross sections of the higher-dimensional control
parameter space to the two-dimensional (2D) transverse plane
[18]. The approach presented allows realizing fundamentally dif-
ferent geometrical caustic structures in the initial transverse plane
without propagating the light fields by choosing corresponding
cross sections in the control parameter space.

Only recently was a study proposed addressing the propaga-
tion properties of Airy and Pearcey caustics, as well as a specific
swallowtail caustic, giving a first glance into the dynamics of
higher-order optical catastrophes [19]. Their general dynamics,
however, are unknown. Of particular interest is the stability of
higher-order caustic structures during propagation. They are
expected to decay to lower-order caustics, as it is typical for
high-dimensional singularities, since the initial caustic structures
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represent mappings of the related higher-order catastrophes to
the transverse plane. Furthermore, the propagation of higher-
order caustic beams is expected to provide similar breakthrough
potential to their already well-known mates of lower orders.

Thus, with this work we contribute to the analysis of the dy-
namics of optical swallowtail beams, a particular solution of the
paraxial Helmholtz equation. We analytically calculate and prove
experimentally how higher-order swallowtail beams evolve in
space. We show that the dynamics of swallowtail beams can again
be described in terms of swallowtail beams or contain fingerprints
of optical butterfly catastrophes, where the control parameters
depend on z. For a different set of parameters, we demonstrate
how the corresponding initial swallowtail caustic decays into a
lower-order cusp during propagation.

2. CALCULATING THE PROPAGATION OF
OPTICAL CATASTROPHES

Caustics emerging as optical catastrophes that depend on a single
state parameter s are from co-rank 1 and are called cuspoids [20].
We consider the complete class of optical cuspoids representing
a particular solution of the paraxial Helmholtz equation and
emerging as a solution of the diffraction catastrophe integral
Cn�a� [11,20]:

Cn�a��
Z
R
exp�iPn�a;s��ds; Pn�a; s�� sn�

Xn−2
j�1

ajs j: (1)

All resulting light structures Cn�a� exhibit individual caustic
profiles, which are characterized by degenerate critical points of
the potential function Pn�a; s�. Here, the vector a consists of all
dimensionless control parameters aj, with j � 1;…; n − 2, and
spans the control parameter space with co-dimension n − 2. We
identify two of the n − 2 control parameters with dimensionless
transverse spatial coordinates X , Y [11] and keep the remaining
n − 4 control parameters constant. Thereby, the real space
transverse coordinates X � x∕x0; Y � y∕y0 are normalized by
introducing characteristic structure sizes x0; y0. We restrict the
following discussion to optical cuspoids with n ≥ 4.

We emphasize that the Airy beam Ai�X � � C3�a� results as a
one-dimensional (1D) structure identified with the spatial coor-
dinate a � a1 � X . Thus, our approach is also valid for n � 3 by
reducing all transverse 2D considerations to 1D. However, the
Pearcey beam Pe�X ; Y � � C4�a� leads per se to a 2D distribu-
tion, by identifying a � �a1; a2�T � �X ; Y �T . Consequently,
for higher-order optical cuspoids, such as, e.g., the swallowtail
beams Sw�a� � C5�a�, we have to choose a single control param-
eter from three existing ones a � �a1; a2; a3�T to be constant in
order to map the characteristics of the corresponding catastrophe
to the 2D transverse light field by identifying the two remaining
control parameters with spatial coordinates �X ; Y �T . Thus, for
the optical swallowtail catastrophe, three generic swallowtail
beams arise as orthogonal cross sections through the control
parameter space, and, correspondingly, more for the butterfly
beam Bu�a� � C6�a�, which maps the characteristics of the but-
terfly catastrophe. This approach is thoroughly presented in [18].

Since caustics represent geometrically stable structures deter-
mined by the singular mapping of the potential function Pn
on the n − 2 dimensional plane a, we calculate degenerate fixed
points si as where the first and second derivatives vanish. The

submanifold si then subsequently determines the geometric
structure of the catastrophe:

∂Pn

∂s

����
s�si

� 0 and
∂2Pn

∂s2

����
s�si

� 0: (2)

By transferring these potentials to optics via Eq. (1), their sin-
gularities correspond to geometrically stable catastrophes and
manifest as caustics in paraxial wave structures.

Starting with this formalism to create the class of paraxial cus-
poid beams including the well-known Airy and Pearcey beams, as
well as the less known swallowtail and butterfly beams, we derive
analytical expressions for the propagation of these intriguing light
structures and, furthermore, analyze the z-dependent evolution of
their caustics in the regime of paraxial light by referring to Eq. (2).

In order to analytically calculate the propagation of a scalar
transverse light field, we use the Huygens–Fresnel integral [21]
and derive z-dependent expressions for cuspoid beams [Eq. (1)]
in the paraxial regime. Especially since the Schrödinger equation
describing the dynamics of quantum particles shows formal simi-
larities to the paraxial Helmholtz equation providing an expression
for the propagation of electromagnetic waves, the equivalence of
time t and longitudinal propagation distance z in suited systems
is present [22], which justifies discussing the propagation of beams
in terms of their dynamics where applicable.

Our approach links two control parameters aα; aβ with the trans-
verse coordinates X , Y , where α; β ∈ j � 1;…; n − 2, and treats
the remaining control parameters a 0 as constant. Consequently,
the z dependence of the cuspoid beams is derived to be

Cn�a; z� �
k

2πiz

Z
R2

Cn

�
x 0

x0
;
y 0

y0
; a 0

�

× exp
�
ik
2z

��aα − x 0�2 � �aβ − y 0�2�
�
dx 0dy 0

�
Z
R
exp

�
i
�
Pn�a; s� −

z
zex

s2α −
z
zey

s2β
��

ds: (3)

Here, k � 2π∕λ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x � k2y � k2z

q
is the wave number and

λ is the wavelength. Similarly to the Rayleigh length of
Gaussian beams, we can define characteristic Rayleigh lengths
as zex � 2kx20 and zey � 2ky20. They play an important role in
the dynamics of the beams and depend on the wavelength
λ � 2π∕k and the corresponding structure sizes x0; y0.

Using Eq. (3) with proper choice of parameters, one can easily
derive the well-known propagation expressions for the Airy [23]
and the Pearcey beam [13].

Equation (3) reveals fundamentally new insights in the dy-
namics of caustics in light: in the case of Airy and Pearcey beams,
their propagation is again expressed by Airy and Pearcey functions
(displacement and form-invariant scaling, respectively) [12,13].
Starting with the order n ≥ 5 with co-dimension n − 2, the propa-
gation of the corresponding cuspoid beam can be described in
terms of cuspoid beams up to order 2�n − 2�, if identifying ap-
propriate control parameters with transverse spatial coordinates.
This relation is manifested in the propagator T α;β�s; z� �
exp

�
−i z

zex
s2α

	
exp

�
−i z

zey
s2β

	
of Eq. (3), where one of the expo-

nents 2α or 2β can always be chosen to be larger than the leading
exponent n of the potential function Pn, and contributes only if
z ≠ 0. Thus, by choosing α or β to be the coefficient, which
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corresponds to the state variable of the highest degree (i.e., n − 2),
the propagation of this nth-order cuspoid beam is given by a static
cuspoid beam with a 2�n − 2�-dimensional control parameter
space and z-dependent control parameters.

In the following, we exemplary demonstrate our concept by
applying Eq. (3) for two initial transverse swallowtail beams to
show their fundamentally different dynamics. First, we calculate
and experimentally obtain the dynamics of a Sw�X ; Y ; a3� beam.
We show that its propagation can be described by an optical catas-
trophe of the same order with varying control parameters. Second,
analytical and experimental investigation of a Sw�X ; a2; Y � beam
reveals that its dynamics are represented by a higher-order optical
butterfly catastrophe whose control parameters are functions
of X ; Y ; z; a2.

3. EXPERIMENTAL DETAILS

In order to obtain the spatial intensity distribution experimen-
tally, we have used the setup shown in Fig. 1. As the light source
serves a frequency-doubled Nd:YVO4 laser with a wavelength of
λ � 532 nm. The linearly polarized beam is expanded and colli-
mated. As a plane wave, it illuminates a HOLOEYE HEO 1080P
reflective LCOS phase-only spatial light modulator with full-HD
resolution. We modulate both the amplitude and phase of the
beam by encoding both information in a phase-only pattern
and applying an appropriate Fourier filter [24]. The beam is then
imaged by a camera after passing through a microscope objective.
Both the camera and the microscope objective are mounted on a
z-direction movable stage capable of scanning the propagation of
the light fields by obtaining transverse intensity patterns.

4. DYNAMICS OF THE Sw�X ,Y ,a3� BEAM
As pointed out in our analytic description, particular emphasis
will be on the comparison between the dynamics of a
Sw�X ; Y ; a3� beam with those of the Sw�X ; a2; Y � or
Sw�a1; X ; Y � beams, since the propagation of the Sw�X ; Y ; a3�
beam is a mapping from the three-dimensional (3D) control
parameter space onto itself, whereas the evolution of the two other
beams is described in the higher four-dimensional (4D) control
parameter space. In order to investigate these dynamics, this sec-
tion substantiates our analytical investigations with experimental
realizations of the Sw�X ; Y ; a3� beam and the arbitrarily chosen
Sw�X ; a2; Y � beam. The dynamics of the Sw�a1; X ; Y � beam are
similar to that of the Sw�X ; a2; Y � beam, as stated in Eq. (3), and
are not shown here explicitly. Its dynamics can be deduced easily
by considering Eq. (3).

For the Sw�X ; Y ; a3� beam with n � 5, we chose α � 1 and
β � 2. Equation (3) then leads to a noncanonical fifth-order
potential function in the exponential, which can be brought into
canonical form by substituting s → u� z∕5zey to suppress the

next-to-leading order term. The dynamics of the Sw�X ; Y ; a3; Z �
beam, where Z � z∕zex is the normalized longitudinal
coordinate, can then be described in terms of again an optical
swallowtail catastrophe Sw�C1; C2; C3�, whose control parame-
ters are functions of X ; Y ; a3; Z in the form of

Sw�X ; Y ; a3; Z � � exp�iψ � · Sw�C1; C2; C3�; (4)

where
C1 � X � 2pY Z � p�3a3p − 2�Z 2 − 15p4Z 4;

C2 � Y � �3a3p − 1�Z − 20p3Z 3;

C3 � a3 − 10p2Z 2;

ψ � pXZ � p2Y Z 2 � p2�a3p − 1�Z 3 − 4p5Z 5;

and X � x∕x0, Y � y∕y0, Z � z∕zex , and p � zex∕�5zey�.
Plotting Eq. (4) for different z positions allows visualizing the

dynamics of a Sw�X ; Y ; a3� beam.We set a3 � 0. The analytically
calculated propagation is depicted at the top in Fig. 2.
Furthermore, we experimentally obtain the volume intensity dis-
tribution of the beam for different z positions and have
shown them at the bottom in Fig. 2. We chose transverse feature
sizes of x0 � y0 � 8 μm and a propagation distance of 20 mm,
which covers the most interesting effects in the sketched intensity
volume.

Analysis of Eq. (3) reveals that at z � 0 mm the Sw�X ; Y ; a3�
beam shows mirror symmetry with respect to Y :

Sw�X ; Y ; a3; Z � � Sw��X ; −Y ; a3; −Z �; (5)
where the asterisk denotes a complex conjugation. Due to the sym-
metry, the beam’s propagation for negative z values is not shown,
but has also been observed numerically and experimentally.

A unique feature of the Sw�X ; Y ; a3� beam becomes apparent:
during propagation, the transverse field at the origin (z � 0 mm)
turns out to consist of a fast diffracting contribution, which
quickly vanishes due to its transverse momentum (e.g., visible
at z ≈ 10 mm), subsequently revealing a field contribution
(remaining field at z ≈ 20 mm) that resembles a Pearcey beam
in the field distribution as well as in the propagation.

Fig. 1. Scheme of the experimental setup. BS, beam splitter; FF,
Fourier filter; L, lens; MO, microscope objective; SLM, phase-only
spatial light modulator.

Fig. 2. Propagation of the Sw�X ; Y ; 0� beam. Top: intensity volume
evaluated according to Eq. (4). Bottom: experimentally obtained
intensity volume with the same parameters.
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This similarity is additionally manifested in the distribution
of Fourier components since they are located on a parabola
for both the Pearcey and Sw�X ; Y ; a3� beams in the form of
P̃e�kx; ky� � δ��x0kx�2 − y0ky� exp�i�x0kx�4� and S̃w�kx; ky; 0� �
δ��x0kx�2 − y0ky� exp�i�x0kx�5�, respectively [13,18]:

S̃w�kx; ky; 0� � P̃e�kx; ky� · exp�i��x0kx�5 − �x0kx�4��: (6)

Due to this spectral similarity, we express the Sw�X ; Y ; a3 �
0� beam as a convolution of a Pearcey beam with a dimensionally
reduced swallowtail beam:

Sw

�
x
x0

;
y
y0
; 0
�

� Pe

�
x
x0

;
y
y0

�
� δ�y�

x0
exp

�
i
�

x
5x0

−
4

3125

��

× Sw
�
x
x0

−
3

125
; −

4

25
; −

2

5

�
: (7)

Here, δ�…� is the delta function. Note that the initial beam
profile of the artificially designed Sw�X ; Y ; a3� beam shows a
swallowtail caustic as the mapping of a cross section through the
higher-dimensional 3D control parameter space to the lower-
dimensional 2D transverse plane.Due to this, the swallowtail struc-
ture in Fig. 2 becomes unstable during propagation with respect to
the otherwise geometrically stable swallowtail catastrophe in
nonlinear systems, and decays to a lower-dimensional optical cusp
catastrophe. We will discuss the dynamics of the caustic in more
detail in Section 6.

5. DYNAMICS OF THE Sw�X ;a2;Y � BEAM
EXPRESSED IN TERMS OF A STATIC
BUTTERFLY BEAM

The dynamics of diverse optical swallowtail beams and their
caustics are fundamentally different if compared with each other.
In order to demonstrate that caustic beams of a certain order n
may show structural similarities with higher-order caustics
during propagation, we exemplary investigate a Sw�X ; a2; Y �
beam, and, thus, set a2 � const: and choose α � 1, β � 3.
Applying Eq. (3) with these parameters leads to a butterfly
integral. Its reduction to the canonical butterfly form requires
appropriate substitutions for two distinct cases z < 0 or
z > 0.

Starting with z <0, we substitute s→u ·�−z∕zey��−1∕6��
zey∕6z and express the propagation of the Sw�X ; a2; Y ; Z � beam
in terms of the higher-order static butterfly beam Bu�B1; B2;
B3; B4� with an overall phase factor ψ in dependence of new con-
trol parameters B � fB1; B2; B3; B4g as functions of X ; Y ; Z ; a2:

Sw�X ;a2;Y ;Z ��
1

γ
exp�iψ � ·Bu�B1;B2;B3;B4�; (8)

where

B1 �
1

γ

�
X � 2�Z − a2�

q
Z
� 3Y


q
Z

�
2 � 4


q
Z

�
4
�
;

B2 �
1

γ2

�
a2 − Z � 3Y

q
Z
� 15

2


q
Z

�
3
�
;

B3 �
1

γ3

�
Y � 20

3


q
Z

�
2
�
;

B4 � −
1

γ4
5

2

q
Z
; and

ψ � −X
q
Z
� �Z − a2�


q
Z

�
2 � Y


q
Z

�
3 � 5

6


q
Z

�
5

with X � x∕x0, Y � y∕y0, Z � z∕zex , q � −zey∕�6zex�,
and γ � �Z∕�6q���1∕6�. The butterfly beam is defined as
Bu�a1; a2; a3; a4� � C6�a1; a2; a3; a4�.

For z > 0, an overall conjugation procedure is required,
subsequently followed by the substitution s → u · �z∕zey��−1∕6��
zey∕6z. Defining q � zey∕�6zex� and γ � �Z∕�6q���1∕6� for this
case, one can obtain

Sw�X ;a2;Y ;Z ��
1

γ
exp�iψ � ·Bu��B1;B2;B3;B4�; (9)

where

B1 � −
1

γ

�
X − 2�Z − a2�

q
Z
� 3Y


q
Z

�
2 � 4


q
Z

�
4
�
;

B2 � −
1

γ2

�
a2 − Z � 3Y

q
Z
� 15

2


q
Z

�
3
�
;

B3 � −
1

γ3

�
Y � 20

3


q
Z

�
2
�
;

B4 � −
1

γ4
5

2

q
Z
; and

ψ � X
q
Z
− �Z − a2�


q
Z

�
2 � Y


q
Z

�
3 � 5

6


q
Z

�
5
.

The asterisk denotes a complex conjugation. We note that the
propagation of a Sw�a1; X ; Y � beam can be expressed in a similar
way in terms of static butterfly beams by following Eq. (3).

Equation (9) is plotted for different z values and illustrated at
the top in Fig. 3. We obtained the dynamics as well in the experi-
ment, which is shown below. The transverse dimensions are x0 �
y0 � 8 μm and the propagation distance is 20 mm. Due to the
point symmetry of the Sw�X ; a2; Y � beam [cf. Eq. (3)],

Sw�X ; a2; Y ; Z � � Sw��X ; −a2; Y ; −Z �; (10)

and for illustrative reasons, we restrict the evaluation to z ≥ 0.

Fig. 3. Propagation of the Sw�X ; 0; Y � beam. Top: intensity volume
evaluated according to Eq. (8). Bottom: experimentally obtained inten-
sity volume with the same parameters.
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The plotted analytical description of the propagation of a
Sw�X ; a2; Y � beam is in high agreement with the corresponding
experimental realization. The transverse plane at z � 0 mm
shows no mirror or point symmetry, as shown in Fig. 3, and
can be proved by considering Eq. (1). However, during propaga-
tion the structure separates into two individual structures, show-
ing point symmetry. This suggests that we can assume the
Sw�X ; a2; Y � beam at the origin to consist of two major contri-
butions: one fast diffracting part, which breaks the symmetry in
the initial plane, and a second one, which remains during propa-
gation and exhibits point symmetry. After a certain propagation
distance (z ≈ 10 mm), the emerging point symmetric structure
can easily be considered as a doubled Pearcey-beam-like structure.
Nevertheless, the contribution rather occurs due to the similarity
of the Sw�X ; a2; Y � beam to a Bu�X ; a2; Y ; a4� beam, whose
z � 0 mm real space appearance [18] resembles the field dis-
tribution of the Sw�X ; a2; Y � beam after a certain propagation
distance. Their spectra both correspond to cubic functions,
y0ky � �x0kx�3, and, thus,

S̃w�kx; a2; ky� � B̃u�kx; a2; ky; a4�
· exp�−i��x0kx�6 − �x0kx�5 � a4�x0kx�4��:

(11)
This leads to the real space expression

Bu

�
x
x0

; 0;
y
y0
; 0
�

� Sw

�
x
x0

; 0;
y
y0

�
� δ�y�

x0
exp

�
i
�

x
6x0

−
5

66

��

× Bu
�
x
x0

−
1

324
; −

5

144
; −

5

27
; −

5

12

�
; (12)

which indicates an inverse convolution. Properties of the static
Sw�X ; a2; Y � beam at the origin are mainly determined by the
characteristics of the Bu�X ; a2; Y ; a4� beam, thereby revealing
similar field distributions to the Bu�X ; a2; Y ; a4� beam during
propagation (cf. [18]).

6. DYNAMICS OF THE SWALLOWTAIL CAUSTIC:
DECAY TO LOWER-ORDER CUSP

The propagation of the Sw�X ; Y ; a3� beam shown in Fig. 2 gives
rise to further study of the dynamics of the corresponding caustic.
By parameterizing Eq. (4) and analyzing the structure of the
caustics according to Eq. (2), we find the z-dependent dynamics
of the caustic in the transverse plane.

Figure 4 illustrates the parameterized surface of the caustic in
real space (x, y, z). The plane at z � 0, where the green line high-
lights the form of the caustic, equals the front plane in Fig. 2.

The surface appears to consist of two intertwined slices, merg-
ing point symmetrically at the origin. Each of them has a cuspoid
form, which changes with z position, becomes flattened, and is
strongly bent. This can be recognized as the fast diffracting
contribution described above. The remaining part is the cusp
of the other slice. According to Eq. (5), we find that the previously
discussed properties of the beam resemble the dynamics of the
caustic. Since the lower-dimensional initial light field contains
the fingerprint of the optical swallowtail caustic due to the map-
ping of a cross section from the higher-dimensional control
parameter space, the expected decay of the swallowtail catastrophe
to a lower-order cusp is apparent. Although the structural stability
of the swallowtail catastrophe with a 3D control parameter

space is lost in 2D, the demonstrated swallowtail light fields show
caustic structures, which exhibit novel and unique propagation
properties like, e.g., high intensities on curved paths.

7. CONCLUSION

Perturbing the external control parameters of a nonlinear system
described by a potential function leads to so-called catastrophes at
locations where bifurcations suddenly shift [1,2,25]. These singu-
larities of the gradient maps of potential functions manifest as
caustics in light, and were studied extensively as natural phenom-
ena in the late seventies and eighties [3,10,11,26,27]. Mapping
catastrophes to light fields via the paraxial catastrophe integral of
Eq. (1) is a well-known approach. However, it took until 2007
to use spatial light modulators for creating Airy beams [12]. This
allows for the first time controlled mapping of caustics to
paraxial light, and starts the renaissance of designing artificial
caustic beams.

In our contribution, we considered the complete class of
cuspoid beams, and, thus, optical catastrophes depending on a
single state parameter s, by mapping higher-order catastrophes
to the lower-dimensional initial transverse plane of paraxial beams
and analytically derived a general equation for their propagation.
Our approach connects two of the control parameters, a with the
transverse spatial coordinates �x; y�T , and, thus, the cuspoid
beams are realized as cross sections through the higher-
dimensional control parameter space. We showed that, depending
on the control parameters identified with the spatial coordinates,
the propagation of cuspoid beams of order n can be calculated in
terms of higher-order static cuspoid beams of order 2�n − 2�.

We demonstrated this by analytically calculating and experi-
mentally obtaining the dynamics of the Sw�X ; Y ; a3� and
Sw�X ; a2; Y � beams. We proved that the evolution of the latter
beam is linked to a static butterfly beam. Furthermore, we ana-
lyzed the dynamics of the swallowtail caustic and showed how its
surface evolves in the 3D real space. We thereby demonstrated
that the swallowtail catastrophe at an initial plane continuously
decays to a lower-order cusp catastrophe during propagation.

The demonstrated optical catastrophes are highly attractive for
microscopy and super-resolution applications. The propagation of
the high-intensity rims near caustics capable of forming tailored
structures is unique for each order of catastrophe and parameter
set, and pave the way to advanced micromachining on tailored
curves [28] and the realization of waveguides with a rich diversity
of light-guiding paths [14].

Fig. 4. Dynamics of the swallowtail caustic. Two different perspectives
to the 3D caustic surface during propagation. The initial swallowtail
caustic (z � 0) decays to cusps �z ≠ 0�. Representative z positions
are highlighted with different colors and mapped as contours to the
x-y plane.
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