
Tailored intensity landscapes by tight focusing
of singular vector beams

EILEEN OTTE,* KEMAL TEKCE, AND CORNELIA DENZ

Institute of Applied Physics, University of Muenster, Corrensstr. 2/4, 48149 Muenster, Germany
*eileen.otte@uni-muenster.de

Abstract: Vector beams are of major importance to tailor tightly focused fields by creating
an additional z-polarization component. Till now, mainly focusing properties of fundamental
vector beams have been investigated, whereas the knowledge of focused higher-order singular
vector fields is still missing. We fill this gap by numerical analysis of these fields, applying
their attractive characteristics as including a spatially adjustable amount of radial and azimuthal
components. We demonstrate the realization of three-dimensional polarization structures whose
total intensity resembles dark stars and bright flowers. Further, we tailor these focal intensity
landscapes by modulating the order of incident vector fields. This in turn allows shaping the
focus of a light field for specific applications as e.g. advanced microscopy.
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1. Introduction

Tailoring the structure of light has emerged as a powerful tool in fundamental research as
well as in a wide range of applications [1]. Beyond amplitude and phase modulated light, in
particular spatially structured polarization [2] lead to neoteric approaches for shaping light
fields in the paraxial as well as the non-paraxial regime. On the one hand, these structured
fields enables research on e.g. singular optics [3–6], i.e. the investigation of intensity, phase
or polarization singularities. On the other hand, tailored light is of major significance for a
myriad of advanced applications in optical trapping [7–9], material machining [10–12] or high-
resolution microscopy [13, 14]. For the advancement of these applications it is of particular
importance to understand tight focusing (numerical aperture NA ≥ 0.7) properties of tailored
light in all its details.
Tightly focused polarization structures can exhibit longitudinal in addition to well known
transverse electric field components [15, 16]. This property facilitates the creation of three-
dimensional (3d) polarization structures including 3d polarization singularities [17, 18],
topological structures [19–22], or shaping 3d intensity structures [15, 23–26]. For example,
optical Möbius stripes were realized by focusing Poincaré beams embedding C-point
singularities (singular points of circular polarization) [21, 22] or intensity structures as an
optical bubble [24, 25] and needle [27, 28] were created by combining focusing properties of
radially (RP) or azimuthally polarized (AP) beams with diffractive optical elements. RP and AP
beams are widely used since RP parts are responsible for the generation of focal longitudinal
components, whereas AP parts stay purely transverse [15]. The research to date has tended to
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take advantage of this characteristic in mainly basic polarization strucutres as purely RP and
AP vector beams or their superpositions rather than to exploit its full potential by using more
complex beams.
In general, vector beams consist of only linear states of polarization with spatially varying
orientation [2, 29]. Depending on the orientation of polarization, vector fields can embed
V-point singularities, i.e. points of undefined polarization [29]. In named basic polarization
structures, V-points are of lowest order, which means respective Poincaré-Hopf index is given
by η = ±1 or Stokes field index σ12 = 2η = ±2 [29,30]. V-point singularities of index |σ12 | > 2
can be found in higher-order singular vector beams, whose polarization reveals the shape of a
|σ12 − 2|-fold flowers and spider webs [29]. In contrast to previous investigations, these beams
are not generable by superposition of purely RP and AP fields, but, however, include both, RP
and AP components. The ratio of RP to AP parts, responsible for the strength of longitudinal
and transverse focal field components, can be shaped spatially depending on the respective
singularity index σ12. Due to this feature, vectorial flowers and spider webs are very attractive to
tailor focal field distributions. Nonetheless, tight focusing properties of these fields are scarcely
known and its exploration is still in its infancy.
We demonstrate tight focusing characteristics of flower- and web-like, higher-order singular
vector beam and, thereby, realize structured three-dimensional focal field distributions. These
distributions result in sophisticated intensity landscapes resembling dark stars and bright
flowers. Futhermore, we identify a relation between chosen singularity index σ12 of the input
vectorial flower or web and the resulting focal intensity landscapes as well as the strength of
transverse and longitudinal polarization components. Consequently, by modulating the index
σ12 of incident flowers and webs, we are able to specifically shape the focal intensity structure
for desired applications.

2. Higher-order singular vector beams

For the detection and analysis of V-point singularities in vector beams the complex Stokes field
Σ12 = S1 + iS2 = A12 exp(iΦ12) can be used [29, 30]. Here, S1,2 represent normalized Stokes
parameters (normalized Stokes vector �S = (S0 , S1 , S2 , S3), see [30]) of the investigated vector
field, and A12 is the complex amplitude, Φ12 the phase of the Stokes field. If the phase Φ12 of a
vector field reveals a vortex-like distribution, the central phase singularity depicts a V-point [29].
The characterizing index of this singular point is given by the counterclockwise change of phase
around the singularity devided by 2π, i.e. σ12 = ΔΦ12/2π. V-points and respective vector beams
are of higher order if the corresponding singularity index is |σ12 | > 2 [29].

2π(a) Φ12
(b) Φ12

0

Fig. 1. Examples of higher-order singular vector beams with σ12 = ±6: Polarization
distribution with red flow lines (left) and phase Φ12 of complex Stokes field (right)
of a (a) |σ12 − 2| = 4-fold vectorial flower and (b) 8-fold spider web.

Higher-order singular vector beams reveal a specific shape in polarization according to the
sign of included singularity’s index [29, 30]: vector fields embedding a singularity of index
σ12 > 0 or σ12 < 0 show the shape of a |σ12 − 2|-fold flower or spider web, respectively, as
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described previously in [29]. In these cases, the electric field �E i = (E i
x , E

i
y )T is defined by

�E i =

[
cos
(
σ12

2
· φ
)
, sin

(
σ12

2
· φ
)]T

(1)

with |σ12 |/2 ∈ N and the azimuthal angle φ ∈ [0, 2π] in polar coordinates. An example of
a vectorial flower and a web is illustrated in Fig. 1(a) and (b). Here, the left image shows the
respective vector field with red flow lines, the right one depicts the corresponding phase Φ12

revealing a V-point of index σ12 = 6 (σ12 = −6) for the shown 4-fold flower (8-fold web).

3. Tight focusing of flowers and webs

As it is known from previous work [15–28], tight focusing of polarization modulated light
can reveal astonishing properties especially due to the occurence of non-negligible longitudinal
z-polarization components Ez within the focal volume. In this case, RP and AP beams
(σ12 = 2) represent the two extreme cases (see Fig. 2) containing only purely radially oriented
components and no radial components at all, respectively. This means, we achieve the highest
or lowest amount of z-components within the focus [15]. Beams including both, radial and
azimuthal components can be realized easily by superposition of basic RP and AP modes. But
in this case, the amount of both, RP and AP components, is constant within the whole transverse
plane resulting in a spatially homogeneous distribution of focal z-components. In contrast,
less known input light fields including a spatially structured amount of radial and azimuthal
parts, will reveal spatially varying strength of focal z-polarization components, which facilitates
shaping the focal volume. Vectorial flowers and webs represent these input light fields ( �Ei , see
Eq. (1)). After introducing the applied numerical method, we demonstrate the tight focusing
properties of these fields, creating not yet investigated focus structures.

3.1. Numerical method

In order to calculate the focal field distribution �E(x , y, z), we solve Richards and Wolf’s
integrals [15,31] by fast Fourier transform operations (FFT) as demonstrated in [32]. Therefore,
the tailored, inhomogeneously polarized pupil function is separated into two orthogonally
polarized bases, i.e. �l0 =

(
l0,x , l0,y

)
. Thus, the electric field at the exit aperture on a focal

sphere (spherical coordinates (r, θ, ϕ)) is given by [32]

�E t (θ, ϕ) =
√

cos θ

⎡⎢⎢⎢⎢⎢⎢⎢⎣l0,x
⎛⎜⎜⎜⎜⎜⎜⎜⎝

cos θ cos2 ϕ + sin2 ϕ
(cos θ − 1) cos ϕ sin ϕ
− sin θ cos ϕ

⎞⎟⎟⎟⎟⎟⎟⎟⎠ + l0,y

⎛⎜⎜⎜⎜⎜⎜⎜⎝
(cos θ − 1) cos ϕ sin ϕ
cos θ sin2 ϕ + cos2 ϕ
− sin θ sin ϕ

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (2)

Hence, focus calculations are performed for the x-polarized part of the entrance pupil (1st
summand), and, independently, for the y-polarized part (2nd summand). The overall focal field
is determined by the sum of the results of both calculations.
Since we apply 2D Fourier transform F to compute the focal distribution, which is supposed
to be in real space (x , y, z), we transform the coordinates of �E t into k-space (kx , ky , kz ).
Therefore, θ and ϕ are substituted according to cos θ = kz/k0, sin θ = kr/k0, cos ϕ = kx/kr ,
sin ϕ = ky/kr with k2

z = k2
0 − k2

r , k2
r = k2

x + k2
y and k0 sin α = 1 (α: semi aperture angle of

focusing lens). Considering this, the overall focal field �E = [Ex , Ey , Ez ]T at the point (x , y, z)
can be written as

�E(x , y, z) = F
[
�E t (kx , ky )eikz z kz/k0

]

= F
[
l0,x (kx , ky ) �GX (kx , ky )

]
+ F

[
l0,y (kx , ky ) �GY (kx , ky )

]
.

(3)
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Detailed derivation can be found in [32]. As visualized in Fig. 2(a), �GX and �GY include the
properties of the focusing high-NA lens applied on the input light field encoded in �l0. In the
following we use the described approach to determine the focal field distribution �E(x , y, 0) for
focused vectorial flowers and spider webs �Ei , thus, the pupil function �l0 is defined according to
Eq. (1).

kx

ky

z

y

kx

ky

z

y

(b) (c)(a)

kz x kz x

�l0
�GX , �GY

kx

kz

ky

x

z

y

Fig. 2. Sketch of non-paraxial beam propagation of tightly focused, polarization structured light:
(a) Concept image of numerical method, (b) occurence of longitudinal polarization components
by focusing RP light fields, (c) focusing of AP field.

3.2. Dark star and bright flower

To demonstrate focal landscapes, facilitated by higher-order singular vector fields (Section 2),
we exemplarily simulate the focal field distribution �E(x , y, 0) of an incident light field with
σ12 = ±8 resembling a 6-petal flower and a 10-fold spider web (NA = 0.9 in air, refractive
index 1.0), respectively. Results are shown in Fig. 3, where (a) and (c) illustrate the incident
polarization distribution by small black lines with corresponding flow lines in red and respective
phase Φ12 of the complex Stokes field. In Φ12 central higher-order V-points (σ12 = ±8) are
detectable. Figure 3(b) and (d) present the resulting focal intensity landscapes corresponding
to (a) and (c), respectively. We show the intensity of the transverse (|Ex ,y |2 ∈ [0, 1]) as well
as the longitudinal (|Ez |2 ∈ [0, 1]) components next to their respective phase distributions
(ϕx ,y ,z ∈ [0, 2π]). Additionally, the overall, transverse intensity distribution | �E |2 ∈ [0, 1]
at the position of the waist of the non-paraxial beam is presented. In (b) and (d) all intensity
structures are normalized individually to their maximum value, and the ratio of this maximum
to the peak value of | �E |2 (peak ratio) is given within each image (white).

For both cases, the focused flower and web, the transverse components reveal a structure
of eight intensity petals, each petal showing a discrete phase value with a shift of π to its
neighboring petals. Further, |Ex |2 and |Ey |2 are of almost equal strength. The longitudinal part
|Ez |2 also shows a petal structure, but consists of six (b) or ten (d) spots: The incident light
fields in (a) and (c) include six and ten lines, respectively, along which the states of polarization
are oriented purely radially (ζ-lines), resulting in areas of maximum value of |Ez |2. Again,
each intensity petal has a discrete phase value with a shift of π to adjacent petals, but shows
an overall phase shift of π/2 with respect to the transverse components ϕx ,y . This is due to
differences in Gouy phase shift for x-/ y- and z-components [33]. We want to stress that, even
if the peak ratio seems to be equal (b) or small (d) for the z-components in comparison to
the transverse components, the spatial mean of the intensity distribution of each component
shows that the z-components are about half as strong as the x-/ y-components (more details
in next section). Resulting from the petal structures of individual components |Ex ,y ,z |2, | �E |2
represents a spatial distribution, which includes a dark star without intensity in its center (c)
for the incident flower (a), or resembles a bright flower (d) for the focused spider web (b).
Note that a relation between intensity landscapes and singularity index σ12 of the V-point of
focused light field �E i can be observed, which is analysed in more detail in the following section.
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0 2π
max

min|Ex |2 |Ey |2 |Ez |2

|Ex |2 |Ey |2 |Ez |2

ϕx ϕy ϕz

ϕx ϕy ϕz

| �E |2

| �E |2

(a)

(c)

(b)

(d)

Φ12

Φ12

×0.61 ×0.59 ×0.51

×0.70 ×0.66 ×0.33

3.
5λ

Fig. 3. Dark star and bright flower: Tight focusing (NA = 0.9) of examplary vectorial flower (a)
and spider web (c) with σ12 = ±8 resulting in focal field distributions of intensity (|Ex ,y ,z |2 ,
| �E |2 ∈ [0, 1], peak ratio within images) and phase (ϕx ,y ,z ∈ [0, 2π]) as shown in (b) and (d),

respectively. The size of focal distributions is indicated by the scale bar in (d). Total intensity | �E |2
resembles a dark star (bright flower) if a vectorial flower (web) is focused.

4. Tailor focal landscapes by index-to-intensity relation

Depending on the singularity index σ12 of higher-order V-points we are able to tailor the
structure of the incident light field �E i , i.e. the shape of vectorial flowers and spider webs
(see Section 2). Following this, we expect a dependency between chosen singularity index of
the incident field and resulting intensity structure within the focal volume. To investigate this
dependency, we analyze the focal field distribution of vectorial flowers and webs of different
indices, as visualized in Table 1 (z = 0, NA = 0.9). Table 1 shows the focal intensity landscapes
for tightly focused higher-order (a) flowers, and (b) spider webs with |σ12 | ≤ 12. The resulting
normalized intensity distributions per component |Ex ,y ,z |2 and overall intensity | �E |2 are illus-
trated with respective peak ratio ("peak": ratio of corresponding maximum to the maximum
value of | �E |2) and mean ratio ("mean": ratio of spatial mean of |Ex ,y ,z |2 to mean of | �E |2).
In analogy to the examples shown in Section 3.2, the transverse components of the focal field
|Ex ,y |2 for each singularity index σ12 reveal a petal structure, whereby the number of intensity
petals is given by |σ12 |. Furthermore, the longitudinal parts |Ez |2 resemble this distribution, but
with |σ12−2| spots, since vectorial flowers (a) and spider webs (b) include |σ12−2| ζ-lines (see
also Fig. 3 with σ12 = ±8). Thus, in this case we identify an equivalent index-to-petals relation
as observed for the transverse polarization structure of vectorial flowers and webs [29], as
described in Section 2. Note that the overall intensity | �E |2 depicts a similar relation: Confirming
the observations of Section 3.2, we observe |σ12 − 2|-point dark stars (a) (for σ12 > 4) and
|σ12 − 2|-fold bright flowers (b).
Moreover, if the index is increased, the beam diameter increases in size, but includes a
simultaneously expanding central dark area. If we take a closer look at |Ex ,y |2, this expansion in
diameter and the splitting of intensity into a rising number of petals results in a general decrease
of respective peak ratio. Futhermore, as indicated in Section 3.2, the mean ratio shows that
|Ez |2 includes about 22 % to 23 % of the total intensity | �E |2, whereas transverse components
|Ex ,y |2 represent about 38 % to 40 %. Since longitudinal polarization components are generated
due to radially oriented parts within the incident light field, the mean ratio of |Ez |2 slightly
increases with the index σ12, as σ12 defines the number of incident ζ-lines (|σ12 − 2|). As the
consequence of increasing mean ratio of |Ez |2, the according ratio of transverse components
|Ex ,y |2 decreases. Thus, by the choice of σ12 one can tailor the amount of longitudinal and
transverse components as well as the spatial structure of focal |Ex ,y ,z |2-distributions and,
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therefore, the number of points or petals of dark stars or bright flowers.

Table 1. Focal field distribution of tightly focused vectorial flowers (a) and spider webs (b)
depending on index σ12 of singularity embedded in incident light field. Peak and mean ratio of
each component |Ex ,y ,z |2 is shown below respective images. Overall focal intensity distribution

| �E |2 resembles |σ12 − 2|-fold stars/ flowers.

(a) Incident vectorial flower to focal dark star

σ12 |Ex |2 |Ey |2 |Ez |2 | �E |2

4

peak
mean

×0.76
×0.400

×0.61
×0.378

×0.63
×0.222

6

peak
mean

×0.62
×0.389

×0.62
×0.389

×0.55
×0.222

8

peak
mean

×0.61
×0.386

×0.59
×0.387

×0.51
×0.226

10

peak
mean

×0.56
×0.385

×0.56
×0.385

×0.50
×0.230

12

peak
mean

×0.56
×0.383

×0.54
×0.384

×0.49
×0.233

(b) Incident vectorial spider web to focal bright flower

σ12 |Ex |2 |Ey |2 |Ez |2 | �E |2

−4

peak
mean

×0.75
×0.388

×0.67
×0.390

×0.30
×0.222

−6

peak
mean

×0.72
×0.388

×0.72
×0.388

×0.32
×0.223

−8

peak
mean

×0.70
×0.387

×0.66
×0.388

×0.33
×0.225

−10 3.
5
λ

peak
mean

×0.68
×0.386

×0.68
×0.386

×0.34
×0.229

−12
1

0

peak
mean

×0.67
×0.384

×0.65
×0.384

×0.34
×0.232

5. Conclusion

We demonstrated the customization of structured, focal intensity landscapes by modulating
the singularity index σ12 of incident vectorial flowers and spider webs. By tight focusing of
these higher-order singular vector beams we are able to realize three-dimensional polarization
structures �E(x , y, z) = [Ex , Ey , Ez ]T whose total intensity | �E |2 resembles |σ12 − 2|-point dark
stars or |σ12 − 2|-fold bright flowers for z = 0. This index-to-intensity relation is comparable
to the index-to-petals or -sectors rule of incident vectorial flowers or spider webs. Moreover,
each component of the focal electric field reveals a petal intensity structure, whose number of
petals is given by |σ12 | for |Ex ,y |2 or |σ12 − 2| for |Ez |2. Beyond defining the shape of resulting
focal field distributions, the singularity index σ12 also determines the strength of longitudinal
polarization components in comparison to transverse ones. If the index is increased, the amount
of incident RP components is enlarged, whereby the number ζ-lines is given by |σ12 − 2| as
reflected by |Ez |2-petals. Due to this increase, the mean ratio of |Ez |2 raises slightly and ratio
of transverse components |Ex ,y |2 decreases, without changing the NA of focusing lens. The
specific shapes of realized potential landscapes as well as the ability to tailor different degrees
of freedom within the focal volume by the singularity index σ12 will be of significant interest
for a multitude of advanced applications in optical micromanipulation, material machining or
high-resolution microscopy.
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