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Abstract

We experimentally realize higher-order catastrophic structures in light fields presenting solutions of
the paraxial diffraction catastrophe integral. They are determined by potential functions whose
singular mapping manifests as caustic hypersurfaces in control parameter space. By addressing
different cross-sections in the higher-dimensional control parameter space, we embed swallowtail and
butterfly catastrophes with varying caustic structures in the lower-dimensional transverse field
distribution. We systematically analyze these caustics analytically and observe their field distributions
experimentally in real and Fourier space. Their spectra can be described by polynomials or expressions
with rational exponents capable to form a cusp.

1. Introduction

Caustics are ubiquitous in nature and our daily life, motivating scientists to investigate and utilize this general
phenomenon in versatile fields, reaching from astrophysics [ 1-3] to models in social sciences [4—6], and
oceanography [7-9]. Also, they are present in imaging of any kind of imperfect lens as well as in microscopic
imaging [10-14]. For example, caustics play an important role in astrophysics, as the probability density
function of particles (light, matter) distributed in a caustic network bears similarities to mass distribution in
galaxies [1, 3] and may be related to predictions of the millennium simulation. Thus, understanding how these
caustic networks form, their relation to extreme wave effects in the framework of freak and Rogue waves, as they
occur, for instance, in oceans, is of high interest for a broad community of scientists in many fields of
research[15, 16].

In particular, the occurrence of caustics in light structures presents one of the oldest and most fundamental
phenomena in optics [17]. These incoherent ray-optic effects [18, 19] appear as high-intensity lines or surfaces.
They are associated with supernumerary arcs close to rainbows [ 18] or may occur as bright lines of high intensity
at the floor of shallow waters. Similar to their formation behind refractive lenses with imperfections,
corresponding effects have been observed for numerous kinds of lenses with importance in optics, and surface
analytics, in particular gravitational [20, 21] and electro-magnetic [12—14] lenses. Overall, many fields will
benefit from finding approaches to design high-contrast computational caustic mappings [22—24].

Caustics in light are the manifestation of so-called catastrophes: singularities in the gradient map of
nonlinear potential functions that form as geometrically stable structures when perturbing external control
parameters. The most prominent representative of catastrophe [25] that manifests as caustic wave package is the
fold catastrophe that was shown to be a solution of the quantum mechanical Schrdinger equation in form of the
Airy function [19], and has been transferred and established in optics in 2007 as the paraxial Airy beam. One of
the Airy beam’s most exotic properties is the transverse invariant, accelerated movement of its causticon a
parabolic trajectory during propagation, yielding a wealth of applications [26-28]. The Airy beam thereby
represents a spatial light structure besides many new light fields that have been explored as solutions of the
paraxial Helmholtz equation in recent years capable to open new avenues in photonics. Among the most famous
solutions we find generalizations of Gaussian beams [29, 30], as well as nondiffracting beams [31], like for
instance Bessel beams [32, 33], as well as Mathieu and Weber beams [34], that were also designed to be self-
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accelerated [35]. However, the introduction of the fold catastrophe as paraxial Airy beam acts as a prelude for the
renaissance to transfer higher-order catastrophes to optics. Subsequent to the Airy beam, in 2012 the Pearcey
beam [36], which represents the diffraction of a cusp catastrophe, emerges as a paraxial beam with intriguing
features, like its form-invariance and auto-focusing propagation.

In general, the dimensionality of the investigated catastrophe causes caustics to occur as points, lines,
surfaces or hypersurfaces, whose structure manifests as singular mapping of corresponding nonlinear potentials.
Catastrophe theory predicts and analyses these potential functions and determines caustics as degenerate critical
positions which show abrupt transitions of the observed system [25]. Suggested by Arnol’d, a classification of
seven elementary catastrophes determined by their potential functions has been theoretically established,
corresponding to seven generic structures of bifurcation geometries [37]. These are, increasing in the order of
catastrophe, given by: fold, cusp, swallowtail, butterfly, elliptical umbilic, hyperbolic umbilic, and parabolic
umbilic [38—40]. Although all of these catastrophes have been transferred by theoretical considerations to optical
light structures [40—42], only the lowest-order catastrophes as Airy (fold) and Pearcey (cusp) beams have been
experimentally realized in the paraxial approximation and utilized for applications. Furthermore, increasing the
order of the optical catastrophe lead to caustic beams with new properties that manifest predominantly in the
real and Fourier space field distributions as well as in the dynamics of the beams. Until now, higher-order
caustics have not been artificially created beyond their occurrence in natural light fields. However, controlling
caustics in all their parameters is essential for advanced, e.g. superresolution imaging and precision material
processing technologies. Recently, the curved and auto-focusing trajectories of beams with embedded optical
catastrophes were advantageously exploited for femtosecond laser micromachining [43], and the nonlinear
optical realization of refractive index modulations capable of waveguiding with a rich diversity of paths [44].

With this work we embed caustic structures in transverse light fields by mapping cross-sections of the
higher-dimensional control parameter space of swallowtail and butterfly catastrophes to lower-dimensional
paraxial initial beam profiles. We systematically investigate their characteristics predicted by catastrophe theory
and show that our approach allows controlling the structural appearance of the caustics in transverse light fields.
Therefore, we evaluate theoretically corresponding diffraction integrals and analyze their potential functions in
order to find caustics as critical degenerate positions that strongly influence the beams’ properties. Moreover, we
demonstrate experimentally that their Fourier components are located on distributions that obey polynomial
expressions.

We start with analyzing theoretically the class of caustic beams as well as their Fourier properties.
Specifically, we contribute to analytical, numerical and experimental investigations with respect to the
swallowtail and butterfly catastrophes by creating optical swallowtail and butterfly beams. Thereby, we describe
their caustics with respect to control parameter space that defines the beam’s properties.

2. Embedding optical catastrophes in paraxial beams

We consider one particular solution of the paraxial Helmholtz equation in form of the rich class of caustic beams
C, (a) depending on one state variable s emerging from the canonical diffraction catastrophe integral [40, 45]

Cula) = fR eih @9 ds, %)

whose properties are completely determined by the properties of the canonical potential function P, in the
oscillating integrand

n2a .
B(a,s) =s"+ > —Ls/, 2
=140

where dim (a) = n — 2 = d. The potential function depends on a state variable s and control parameters a;
[40, 41], which are components of the control parameter vector a with corresponding scaling factors ag; € R*
to make the exponent dimensionless. a spans the control parameter space.

Caustics are defined as abrupt transitions of the optical ray system equivalent to bifurcations in nonlinear
science by changing the number of crossing rays in each point in space [40]. Depending on the dimensionality d
of the control parameter space, the caustic arises as a point, line, surface or hypersurface. At these transitions, Pis
stationary in s for fixed a. The caustics exist at points where the gradient mapping becomes singular, i.e. the
solutions of stationary P are degenerate. Therefore, also the Hessian determinant of Pin s has to vanish [40, 41].
That is, we calculate caustic structures corresponding to
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Figure 1. Scheme of experimental setup. BS: beam splitter, FF: Fourier filter, L: lens, M: mirror, MO: microscope objective and SLM:
phase-only spatial light modulator.

Note that the well known Airy (n = 3) and Pearcey (n = 4) beams emerge as special cases of (1) since
Ai(x) = Cs(x)and Pe(x, y) = C4(x, ). In the case of the Pearcey beam, we are able to identify the control
parameters (a;, a,)” with the transverse spatial coordinates (x, y)! to directly obtain the transverse electric field
distribution [36]. Instead, the famous 2D Airy beam is constructed by multiplying separable, orthogonal
coordinates: E = Ai(x) - Ai(y)[46,47] and therefore does not present a generic structure predicted by
catastrophe theory.

In the following, we develop a construction scheme to create higher-order (n > 5) caustic beams by
identifying two control parameters (a,, a‘g)T with spatial transverse coordinates (x, y)', where o, 3 € N* and
1 < a, B < n. The remaining control parameters a’ are chosen as being constant and play an important role in
controlling further properties of the realized beams.

Swallowtail beams result as solutions Sw(x, y) = Cs (x, y, a’), where a’ is one of the control parameters
{ay, ay, a3} that was chosen to be constant. Thus, three different swallowtail beams can be constructed, from
which each exhibits unique features. However, all share characteristic properties of a swallowtail catastrophe.
Furthermore, we create and analyze butterfly beams by calculating Bu(x, y) = Ce (x, y, a’). Here, a’ are two
control parameters that stay constant. Consequently, six different butterfly beams complete this class. All of
them exhibit characteristic properties determined by the butterfly catastrophe.

In order to create artificial and tailored caustic beams experimentally, we use the setup shown in figure 1: an
expanded, collimated frequency-doubled Nd:YVO, laser beam is split up in two parts, which are linearly
polarized. One serves as structure beam, whereas the other represents the reference beam. The structure beam is
modulated bya HOLOEYE HEO 1080P reflective LCOS phase-only SLM with full HD resolution, which we
have applied to simultaneously modulate both amplitude and phase [48]. Therefore, an appropriate Fourier
filter (FF) was used. As the imaging system, we mounted a camera and microscope objective with fixed distances
on a z-shift moving stage that allows us to scan the light field in the longitudinal direction. Measuring the spatial
phase distribution is possible by superimposing a tilted reference beam, which can be enabled on demand. By
temporarily installing lens L, the Fourier spectrum becomes accessible.

3. The fundamental optical swallowtail catastrophes

We start our investigations on the swallowtail beams Sw(a) demonstrating its fundamental transverse field
distributions, and subsequently connect it with the control parameter space.

The three swallowtail beams of this case of artificially created and tailored caustic beams are shown in their
most fundamental appearance in figure 2. In each case we set the constant control parameter to zero. The beams
are constructed by numerically solving equation (1) using adoptions of methods as described in [49]. These
numerical results are shown in figure 2(A), and were as well realized in experiments, shown in figures 2(B) and
(C), where beneath the real space distributions of figure 2(B), Fourier spectra figure 2(C) have additionally been
recorded. Shown are the calculated and measured spatial intensity and phase distributions. The transverse scale
is chosen tobe 200 x 200 pm?, and characteristic scale factors were ag; = ag, = a¢3 = 50 pum.

White lines in A are calculated solutions of equation (3) and therefore represent cross sections through the
caustic surface in parameter space a. We performed a parametrization of the caustic surface in dependence of
one parametrization parameter u and the remaining constant control parameter. The resulting expressions are
given in the SM.

A 2D Fourier transform of equation (1) for the swallowtail (n = 5) and butterflybeams (n = 6) are
performed analytically. For the explicit derivation of the Fourier transforms of these caustic beams we refer to
the SM.
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Figure 2. Three swallowtail beams arise by always setting one other control parameters constant. Numerically calculated light fields
(A) and their respective caustics (white lines) are shown. Experimentally, the lights fields were measured in real (B) and Fourier space

©).

We pronounce the simplicity of the Fourier spectrum of caustic beams, since these are located on
polynomial expressions of degree up to n — 2 or expressions with rational exponents that are capable of
forming cusps. For instance, the Pearcey beam’s Fourier components are located on a parabola with exp [ik, ]
phase distribution [36]. In the SM we show that the Sw(x, y, a3) beam (C3) exhibits a parabolic (k, = k), the
Sw(x, a,, y) beam (C2) a cubic (k, = k2), and the Sw(aj, x, y) beam (C1) even a cuspoid (kf = kJ) spectral
distribution with corresponding phase functions, depending on which cross section in control parameter space
a (i.e. choice of a,, ap) is regarded. Note that by increasing the order # of a caustic beam, new distributions of
spectral components do not always arise. A good example is the swallowtail beam where a; = const. whose
Fourier components were located on a parabola similar to those of a Pearcey beam. Similarly, we show in the SM
that butterfly beams have, beneath parabolic and cubic distributions, additionally quartic and cuspoid (ky3 =k}
Fourier component distributions.

Catastrophes form geometrically stable structures where the bifurcation characteristics of the nonlinear
potential function suddenly change. The transfer to optics leads to caustics that mark separated areas of different
numbers of crossing light rays. Here we clearly see that the Sw(x, y, 0) beam in figures 2(A3), (A6) exhibits an
area of two-beam interference with spatially varying k-vectors on the left side of the caustic and performs an
abrupt transition at the caustic interface to zero beams on the right side of low intensity.

Numerically calculated swallowtail beams are in very good agreement with the experimental realizations in
both, spatial intensity and phase distributions. The predicted caustics indicated as white lines have been
parametrized according to equation (3) and fit very well the numerical realizations in scale and form. One of the
most striking characteristics of the beams, strongly determining their properties, is the distribution of Fourier
coefficients, which is perfectly predicted by the theoretical description stated in the SM.

Note that we intentionally omit any discussion of apodizing exponential or Gaussian functions in order to
keep the total intensity of the light fields finite, as was suggested for both, the Airy [46] and Pearcey beams [36].
The fundamental physics of the infinite power beams discussed here resembles that of the apodized ones, and
analytic expressions would become extensively large. Nevertheless, for the experimental realization the finite
transverse dimensions of the light fields are determined by the size of the SLM.

4. Cross sections of the swallowtail caustic

The properties of each caustic beam are connected to the distribution and kind of its correspondent caustic, may
it consist of fold, cusp, or a combination of these catastrophes, which can be found by analyzing the potential
functions. In order to investigate and image the caustic surface of the swallowtail catastrophe of control
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Figure 3. We resemble the swallowtail catastrophe’s most striking characteristic at the corresponding swallowtail beams: fingerprints
of the caustic surface manifested in light. Shown are realizations of Sw(x, y, a3) beams in simulations (A) and experiment (B) for
different parameters of as. For (a5 > 0), the swallowtail catastrophe resembles a fold catastrophe that abruptly changes at the cusp
point (a; = 0) into two cusps (a3 < 0). They encircle a region of 4 beam interference. Images C visualize characteristic cross sections
through the caustic surface of the swallowtail catastrophe which is shown in D.

parameter space in different light structures, we arbitrarily chose a5 to be constant and create Sw(x, y, as) beams
with different values of as. Thus, by varying as a sliced scan of the surface in control parameter space can be
performed whose properties manifest at the light fields.

The resulting swallowtail beams are depicted in figures 3(A) and (B) with varying control parameter as,
which performs a transition from positive (A1, A4) to zero (A2, A5) to negative (A3, A6) values. This allows us to
trace and illustrate fundamental properties of the swallowtail catastrophe that now manifests in the
corresponding light structure: the caustic surface in control parameter space a is defined by abrupt transitions of
the system between areas of different numbers of crossing beams (in the regime of ray optics) [50]. By varying the
control parameter a;, we have demonstrated the transition of the system from a swallowtail beam that consists of
areas with 2 beam interference and areas with 0 beams (a; > 0) over the cuspoid pointat a; = 0 to a swallowtail
beam that clearly shows areas of 2 as well as 4 beams interference and low intensity areas (0 beams) for a; < 0, as
depicted schematically in C. These system transitions of the swallowtail catastrophe are additionally imaged by
the caustic surface in control parameter space in figure 3(D), which is in perfect agreement with previous
discussions [25, 40, 42]. The caustic surface results from the parametrization for constant a5 described in the SM.

5. The butterfly caustic

Each beam of the class of caustic beams that depends on one state variable s, e.g. Airy, Pearcey or the three
swallowtail beams, is striking due to its unique properties. Their static intensity and phase distributions in real
and Fourier space are closely connected to catastrophe theory. Similarities in the properties of these different
beams manifest predominantly in their Fourier spectra. Discussions in the SM show that by increasing the order
n of the caustic beam, new properties emerge, since completely new distributions of Fourier components, like
for instance higher-order polynomials, arise. Therefore, we introduce the six butterfly beams that complete the
transfer from catastrophe theory to optics for all catastrophes that belong to the elementary catastrophes and are
determined by one state variable s. Those butterfly beams, whose Fourier spectra cannot be expressed in terms of
lower-order caustic beams, are worth investigating thoroughly, since these promising light fields will show new
individual propagation characteristics.

Figure 4 shows the transverse light field distributions for each of the six butterfly beams in both, real (A, B)
and Fourier space (C). Numerical calculations of equation (1) are in very good agreement with the experimental
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Figure 4. Butterfly beams produced by setting various control parameters constant, imaged in intensity and phase. Real-space
numerical simulations (A) are supported by experimental realizations (B). Additionally, experimentally obtained Fourier spectra are
shown (C).

realizations. Beneath the transverse intensity distributions in figure 4 (1-6), the corresponding calculated or
measured spatial phases are shown in figure 4 (7-12). Again, the experimentally obtained Fourier spectra are
represented by polynomials and expressions with rational exponents, as predicted in the SM.

Similar to the treatment of the swallowtail catastrophes, we state a parametrization for the butterfly
catastrophe in the SM. The parametrization was performed for one parameter # and the respective two constant
control parameters. For this higher-order catastrophe, control parameter space is four-dimensional. We
restricted ourselves to image caustic lines (indicated in figure 4(A) as white lines) by choosing corresponding
cross sections in parameter space. Areas with different numbers of crossing rays are clearly observable.

For constant a; the intensity of the spectra always diverges at the origin of Fourier space, which was also
observed experimentally shown in figures 4(C1, C2, C3) where the intensity increases extremely (but finitely).
Again, the transverse picture section is chosen to be 200 x 200 pm?, and characteristic scale factors were
ag) = agy = ags = dgg = 50 pum. All constant control parameters are zero.

6. Conclusion

To conclude, we extended the diversity of caustic structures in paraxial light by numerically and experimentally
embedding swallowtail and butterfly caustics in artificially tailored transverse light structures. In the framework
of catastrophe theory we proved that the key properties of the related catastrophes are preserved in the paraxial
regime. Thus, we demonstrated that emerging characteristics of higher-order swallowtail and butterfly
catastrophes manifest at these optical paraxial beams in terms of abrupt transitions of the number of crossing
beams. Dynamics of the potential function of the diffraction integral, which highly influences the beams’
properties, were investigated with respect to control parameter space. Thereby, we showed cross sections
through three- and four-dimensional control parameter space and shaped the beams according to
corresponding parametrized caustic (hyper-) surfaces.
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Fourier spectra of these intriguing beams were calculated analytically and observed experimentally. We
demonstrated, that spectral components of these caustics beams are distributed on polynomial expressions of
increasing degree or are located on expressions with rational exponents. Some spectra are calculated to exhibit
diverging energies at the origin, resulting in highly increasing but finite energies in experimental realizations.

By accessing higher-order catastrophic light structures, our findings allow investigating fundamental
characteristics and properties of catastrophes in optics and in particular to utilize the caustics’ high intensities
and propagation properties beyond the established caustic Airy and Pearcey beams. The trajectories and
focusing effects of caustic light are promising to be discussed for designing tailored waveguides, particle
manipulation, material processing, or improved super imaging in microscopic and sub-diffractive applications.
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