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Abstract
Weexperimentally realize higher-order catastrophic structures in lightfields presenting solutions of
the paraxial diffraction catastrophe integral. They are determined by potential functions whose
singularmappingmanifests as caustic hypersurfaces in control parameter space. By addressing
different cross-sections in the higher-dimensional control parameter space, we embed swallowtail and
butterfly catastropheswith varying caustic structures in the lower-dimensional transverse field
distribution.We systematically analyze these caustics analytically and observe their field distributions
experimentally in real and Fourier space. Their spectra can be described by polynomials or expressions
with rational exponents capable to form a cusp.

1. Introduction

Caustics are ubiquitous in nature and our daily life,motivating scientists to investigate and utilize this general
phenomenon in versatilefields, reaching from astrophysics [1–3] tomodels in social sciences [4–6], and
oceanography [7–9]. Also, they are present in imaging of any kind of imperfect lens aswell as inmicroscopic
imaging [10–14]. For example, caustics play an important role in astrophysics, as the probability density
function of particles (light,matter) distributed in a caustic network bears similarities tomass distribution in
galaxies [1, 3] andmay be related to predictions of themillennium simulation. Thus, understanding how these
caustic networks form, their relation to extremewave effects in the framework of freak andRoguewaves, as they
occur, for instance, in oceans, is of high interest for a broad community of scientists inmany fields of
research [15, 16].

In particular, the occurrence of caustics in light structures presents one of the oldest andmost fundamental
phenomena in optics [17]. These incoherent ray-optic effects [18, 19] appear as high-intensity lines or surfaces.
They are associatedwith supernumerary arcs close to rainbows [18] ormay occur as bright lines of high intensity
at the floor of shallowwaters. Similar to their formation behind refractive lenses with imperfections,
corresponding effects have been observed for numerous kinds of lenses with importance in optics, and surface
analytics, in particular gravitational [20, 21] and electro-magnetic [12–14] lenses. Overall, manyfields will
benefit from finding approaches to design high-contrast computational causticmappings [22–24].

Caustics in light are themanifestation of so-called catastrophes: singularities in the gradientmap of
nonlinear potential functions that form as geometrically stable structures when perturbing external control
parameters. Themost prominent representative of catastrophe [25] thatmanifests as caustic wave package is the
fold catastrophe that was shown to be a solution of the quantummechanical Schrdinger equation in formof the
Airy function [19], and has been transferred and established in optics in 2007 as the paraxial Airy beam.One of
the Airy beam’smost exotic properties is the transverse invariant, acceleratedmovement of its caustic on a
parabolic trajectory during propagation, yielding awealth of applications [26–28]. TheAiry beam thereby
represents a spatial light structure besidesmany new lightfields that have been explored as solutions of the
paraxial Helmholtz equation in recent years capable to open new avenues in photonics. Among themost famous
solutionswefind generalizations ofGaussian beams [29, 30], as well as nondiffracting beams [31], like for
instance Bessel beams [32, 33], as well asMathieu andWeber beams [34], that were also designed to be self-
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accelerated [35]. However, the introduction of the fold catastrophe as paraxial Airy beam acts as a prelude for the
renaissance to transfer higher-order catastrophes to optics. Subsequent to the Airy beam, in 2012 the Pearcey
beam [36], which represents the diffraction of a cusp catastrophe, emerges as a paraxial beamwith intriguing
features, like its form-invariance and auto-focusing propagation.

In general, the dimensionality of the investigated catastrophe causes caustics to occur as points, lines,
surfaces or hypersurfaces, whose structuremanifests as singularmapping of corresponding nonlinear potentials.
Catastrophe theory predicts and analyses these potential functions and determines caustics as degenerate critical
positionswhich show abrupt transitions of the observed system [25]. Suggested byArnol’d, a classification of
seven elementary catastrophes determined by their potential functions has been theoretically established,
corresponding to seven generic structures of bifurcation geometries [37]. These are, increasing in the order of
catastrophe, given by: fold, cusp, swallowtail, butterfly, elliptical umbilic, hyperbolic umbilic, and parabolic
umbilic [38–40]. Although all of these catastrophes have been transferred by theoretical considerations to optical
light structures [40–42], only the lowest-order catastrophes as Airy (fold) andPearcey (cusp) beams have been
experimentally realized in the paraxial approximation and utilized for applications. Furthermore, increasing the
order of the optical catastrophe lead to caustic beamswith new properties thatmanifest predominantly in the
real and Fourier spacefield distributions aswell as in the dynamics of the beams. Until now, higher-order
caustics have not been artificially created beyond their occurrence in natural lightfields. However, controlling
caustics in all their parameters is essential for advanced, e.g. superresolution imaging and precisionmaterial
processing technologies. Recently, the curved and auto-focusing trajectories of beamswith embedded optical
catastrophes were advantageously exploited for femtosecond lasermicromachining [43], and the nonlinear
optical realization of refractive indexmodulations capable of waveguidingwith a rich diversity of paths [44].

With this workwe embed caustic structures in transverse lightfields bymapping cross-sections of the
higher-dimensional control parameter space of swallowtail and butterfly catastrophes to lower-dimensional
paraxial initial beamprofiles.We systematically investigate their characteristics predicted by catastrophe theory
and show that our approach allows controlling the structural appearance of the caustics in transverse light fields.
Therefore, we evaluate theoretically corresponding diffraction integrals and analyze their potential functions in
order tofind caustics as critical degenerate positions that strongly influence the beams’ properties.Moreover, we
demonstrate experimentally that their Fourier components are located on distributions that obey polynomial
expressions.

We start with analyzing theoretically the class of caustic beams aswell as their Fourier properties.
Specifically, we contribute to analytical, numerical and experimental investigations with respect to the
swallowtail and butterfly catastrophes by creating optical swallowtail and butterfly beams. Thereby, we describe
their caustics with respect to control parameter space that defines the beam’s properties.

2. Embedding optical catastrophes in paraxial beams

Weconsider one particular solution of the paraxial Helmholtz equation in formof the rich class of caustic beams
( )C an depending on one state variable s emerging from the canonical diffraction catastrophe integral [40, 45]

ò=( ) ( )( )C sa e d , 1n
P sai ,n

whose properties are completely determined by the properties of the canonical potential function Pn in the
oscillating integrand
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where = - =( ) n dadim 2 . The potential function depends on a state variable s and control parameters aj
[40, 41], which are components of the control parameter vector a with corresponding scaling factors Î +a j0

tomake the exponent dimensionless. a spans the control parameter space.
Caustics are defined as abrupt transitions of the optical ray system equivalent to bifurcations in nonlinear

science by changing the number of crossing rays in each point in space [40]. Depending on the dimensionality d
of the control parameter space, the caustic arises as a point, line, surface or hypersurface. At these transitions, P is
stationary in s forfixed a . The caustics exist at points where the gradientmapping becomes singular, i.e. the
solutions of stationaryP are degenerate. Therefore, also theHessian determinant ofP in s has to vanish [40, 41].
That is, we calculate caustic structures corresponding to
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Note that thewell knownAiry =( )n 3 and Pearcey =( )n 4 beams emerge as special cases of (1) since
=( ) ( )x C xAi 3 and =( ) ( )x y C x yPe , ,4 . In the case of the Pearcey beam,we are able to identify the control

parameters ( )a a, T
1 2 with the transverse spatial coordinates ( )x y, T to directly obtain the transverse electric field

distribution [36]. Instead, the famous 2DAiry beam is constructed bymultiplying separable, orthogonal
coordinates: = ( ) · ( )E x yAi Ai [46, 47] and therefore does not present a generic structure predicted by
catastrophe theory.

In the following, we develop a construction scheme to create higher-order ( n 5) caustic beams by
identifying two control parameters a b( )a a, T with spatial transverse coordinates ( )x y, T , where a b Î +, and
 a b n1 , . The remaining control parameters ¢a are chosen as being constant and play an important role in

controlling further properties of the realized beams.
Swallowtail beams result as solutions = ¢( ) ( )x y C x y aSw , , ,5 , where ¢a is one of the control parameters

{ }a a a, ,1 2 3 that was chosen to be constant. Thus, three different swallowtail beams can be constructed, from
which each exhibits unique features. However, all share characteristic properties of a swallowtail catastrophe.
Furthermore, we create and analyze butterfly beams by calculating = ¢( ) ( )x y C x y aBu , , ,6 . Here, ¢a are two
control parameters that stay constant. Consequently, six different butterfly beams complete this class. All of
them exhibit characteristic properties determined by the butterfly catastrophe.

In order to create artificial and tailored caustic beams experimentally, we use the setup shown infigure 1: an
expanded, collimated frequency-doubledNd:YVO4 laser beam is split up in two parts, which are linearly
polarized.One serves as structure beam,whereas the other represents the reference beam. The structure beam is
modulated by aHOLOEYEHEO1080P reflective LCOSphase-only SLMwith full HD resolution, whichwe
have applied to simultaneouslymodulate both amplitude and phase [48]. Therefore, an appropriate Fourier
filter (FF)was used. As the imaging system,wemounted a camera andmicroscope objective withfixed distances
on a z-shiftmoving stage that allows us to scan the lightfield in the longitudinal direction.Measuring the spatial
phase distribution is possible by superimposing a tilted reference beam,which can be enabled on demand. By
temporarily installing lens L3, the Fourier spectrumbecomes accessible.

3. The fundamental optical swallowtail catastrophes

We start our investigations on the swallowtail beams ( )aSw demonstrating its fundamental transverse field
distributions, and subsequently connect it with the control parameter space.

The three swallowtail beams of this case of artificially created and tailored caustic beams are shown in their
most fundamental appearance infigure 2. In each case we set the constant control parameter to zero. The beams
are constructed by numerically solving equation (1) using adoptions ofmethods as described in [49]. These
numerical results are shown infigure 2(A), andwere as well realized in experiments, shown infigures 2(B)and
(C), where beneath the real space distributions offigure 2(B), Fourier spectrafigure 2(C) have additionally been
recorded. Shown are the calculated andmeasured spatial intensity and phase distributions. The transverse scale
is chosen to be m´200 200 m2, and characteristic scale factors were m= = =a a a 50 m01 02 03 .

White lines in A are calculated solutions of equation (3) and therefore represent cross sections through the
caustic surface in parameter space a .We performed a parametrization of the caustic surface in dependence of
one parametrization parameteru and the remaining constant control parameter. The resulting expressions are
given in the SM.

A 2DFourier transformof equation (1) for the swallowtail(n = 5) and butterfly beams(n = 6) are
performed analytically. For the explicit derivation of the Fourier transforms of these caustic beamswe refer to
the SM.

Figure 1. Scheme of experimental setup. BS: beam splitter, FF: Fourierfilter, L: lens,M:mirror,MO:microscope objective and SLM:
phase-only spatial lightmodulator.
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Wepronounce the simplicity of the Fourier spectrumof caustic beams, since these are located on
polynomial expressions of degree up to -n 2 or expressions with rational exponents that are capable of
forming cusps. For instance, the Pearcey beam’s Fourier components are located on a parabola with [ ]kexp i x

4

phase distribution [36]. In the SMwe show that the ( )x y aSw , , 3 beam (C3) exhibits a parabolic =( )k ky x
2 , the

( )x a ySw , ,2 beam (C2) a cubic =( )k ky x
3 , and the ( )a x ySw , ,1 beam (C1) even a cuspoid =( )k ky x

2 3 spectral
distributionwith corresponding phase functions, depending onwhich cross section in control parameter space
a (i.e. choice of a ba a, ) is regarded. Note that by increasing the order n of a caustic beam, newdistributions of
spectral components do not always arise. A good example is the swallowtail beamwhere a3= const. whose
Fourier components were located on a parabola similar to those of a Pearcey beam. Similarly, we show in the SM
that butterfly beams have, beneath parabolic and cubic distributions, additionally quartic and cuspoid =( )k ky x

3 4

Fourier component distributions.
Catastrophes form geometrically stable structures where the bifurcation characteristics of the nonlinear

potential function suddenly change. The transfer to optics leads to caustics thatmark separated areas of different
numbers of crossing light rays. Herewe clearly see that the ( )x ySw , , 0 beam infigures 2(A3), (A6)exhibits an
area of two-beam interference with spatially varying k-vectors on the left side of the caustic and performs an
abrupt transition at the caustic interface to zero beams on the right side of low intensity.

Numerically calculated swallowtail beams are in very good agreement with the experimental realizations in
both, spatial intensity and phase distributions. The predicted caustics indicated aswhite lines have been
parametrized according to equation (3) andfit verywell the numerical realizations in scale and form.One of the
most striking characteristics of the beams, strongly determining their properties, is the distribution of Fourier
coefficients, which is perfectly predicted by the theoretical description stated in the SM.

Note that we intentionally omit any discussion of apodizing exponential orGaussian functions in order to
keep the total intensity of the lightfieldsfinite, as was suggested for both, the Airy [46] and Pearcey beams [36].
The fundamental physics of the infinite power beams discussed here resembles that of the apodized ones, and
analytic expressions would become extensively large. Nevertheless, for the experimental realization the finite
transverse dimensions of the lightfields are determined by the size of the SLM.

4. Cross sections of the swallowtail caustic

The properties of each caustic beam are connected to the distribution and kind of its correspondent caustic,may
it consist of fold, cusp, or a combination of these catastrophes, which can be found by analyzing the potential
functions. In order to investigate and image the caustic surface of the swallowtail catastrophe of control

Figure 2.Three swallowtail beams arise by always setting one other control parameters constant. Numerically calculated lightfields
(A) and their respective caustics (white lines) are shown. Experimentally, the lightsfields weremeasured in real (B) and Fourier space
(C).
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parameter space in different light structures, we arbitrarily chose a3 to be constant and create ( )x y aSw , , 3 beams
with different values of a3. Thus, by varying a3 a sliced scan of the surface in control parameter space can be
performedwhose propertiesmanifest at the lightfields.

The resulting swallowtail beams are depicted infigures 3(A) and (B)with varying control parameter a3,
which performs a transition frompositive (A1, A4) to zero (A2, A5) to negative (A3, A6) values. This allows us to
trace and illustrate fundamental properties of the swallowtail catastrophe that nowmanifests in the
corresponding light structure: the caustic surface in control parameter space a is defined by abrupt transitions of
the systembetween areas of different numbers of crossing beams (in the regime of ray optics) [50]. By varying the
control parameter a3, we have demonstrated the transition of the system from a swallowtail beam that consists of
areaswith 2 beam interference and areas with 0 beams ( >a 03 ) over the cuspoid point at =a 03 to a swallowtail
beam that clearly shows areas of 2 as well as 4 beams interference and low intensity areas (0 beams) for <a 03 , as
depicted schematically inC. These system transitions of the swallowtail catastrophe are additionally imaged by
the caustic surface in control parameter space infigure 3(D), which is in perfect agreementwith previous
discussions [25, 40, 42]. The caustic surface results from the parametrization for constant a3 described in the SM.

5. The butterfly caustic

Each beamof the class of caustic beams that depends on one state variable s, e.g. Airy, Pearcey or the three
swallowtail beams, is striking due to its unique properties. Their static intensity and phase distributions in real
and Fourier space are closely connected to catastrophe theory. Similarities in the properties of these different
beamsmanifest predominantly in their Fourier spectra. Discussions in the SM show that by increasing the order
n of the caustic beam, new properties emerge, since completely newdistributions of Fourier components, like
for instance higher-order polynomials, arise. Therefore, we introduce the six butterfly beams that complete the
transfer from catastrophe theory to optics for all catastrophes that belong to the elementary catastrophes and are
determined by one state variable s. Those butterfly beams, whose Fourier spectra cannot be expressed in terms of
lower-order caustic beams, are worth investigating thoroughly, since these promising lightfields will shownew
individual propagation characteristics.

Figure 4 shows the transverse lightfield distributions for each of the six butterfly beams in both, real(A, B)
and Fourier space(C). Numerical calculations of equation (1) are in very good agreement with the experimental

Figure 3.We resemble the swallowtail catastrophe’smost striking characteristic at the corresponding swallowtail beams: fingerprints
of the caustic surfacemanifested in light. Shown are realizations of ( )x y aSw , , 3 beams in simulations (A) and experiment (B) for
different parameters of a3. For >( )a 03 , the swallowtail catastrophe resembles a fold catastrophe that abruptly changes at the cusp
point =( )a 03 into two cusps <( )a 03 . They encircle a region of 4 beam interference. Images C visualize characteristic cross sections
through the caustic surface of the swallowtail catastrophewhich is shown inD.
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realizations. Beneath the transverse intensity distributions infigure 4(1–6), the corresponding calculated or
measured spatial phases are shown infigure 4(7–12). Again, the experimentally obtained Fourier spectra are
represented by polynomials and expressions with rational exponents, as predicted in the SM.

Similar to the treatment of the swallowtail catastrophes, we state a parametrization for the butterfly
catastrophe in the SM. The parametrizationwas performed for one parameter u and the respective two constant
control parameters. For this higher-order catastrophe, control parameter space is four-dimensional.We
restricted ourselves to image caustic lines (indicated infigure 4(A) as white lines) by choosing corresponding
cross sections in parameter space. Areas with different numbers of crossing rays are clearly observable.

For constant a1 the intensity of the spectra always diverges at the origin of Fourier space, whichwas also
observed experimentally shown infigures 4(C1,C2, C3)where the intensity increases extremely (butfinitely).
Again, the transverse picture section is chosen to be m´200 200 m2, and characteristic scale factors were

m= = = =a a a a 50 m01 02 03 04 . All constant control parameters are zero.

6. Conclusion

To conclude, we extended the diversity of caustic structures in paraxial light by numerically and experimentally
embedding swallowtail and butterfly caustics in artificially tailored transverse light structures. In the framework
of catastrophe theorywe proved that the key properties of the related catastrophes are preserved in the paraxial
regime. Thus, we demonstrated that emerging characteristics of higher-order swallowtail and butterfly
catastrophesmanifest at these optical paraxial beams in terms of abrupt transitions of the number of crossing
beams. Dynamics of the potential function of the diffraction integral, which highly influences the beams’
properties, were investigatedwith respect to control parameter space. Thereby, we showed cross sections
through three- and four-dimensional control parameter space and shaped the beams according to
corresponding parametrized caustic (hyper-) surfaces.

Figure 4.Butterfly beams produced by setting various control parameters constant, imaged in intensity and phase. Real-space
numerical simulations (A) are supported by experimental realizations (B). Additionally, experimentally obtained Fourier spectra are
shown (C).

6

New J. Phys. 19 (2017) 053004 AZannotti et al



Fourier spectra of these intriguing beamswere calculated analytically and observed experimentally.We
demonstrated, that spectral components of these caustics beams are distributed on polynomial expressions of
increasing degree or are located on expressionswith rational exponents. Some spectra are calculated to exhibit
diverging energies at the origin, resulting in highly increasing butfinite energies in experimental realizations.

By accessing higher-order catastrophic light structures, ourfindings allow investigating fundamental
characteristics and properties of catastrophes in optics and in particular to utilize the caustics’ high intensities
and propagation properties beyond the established caustic Airy and Pearcey beams. The trajectories and
focusing effects of caustic light are promising to be discussed for designing tailoredwaveguides, particle
manipulation,material processing, or improved super imaging inmicroscopic and sub-diffractive applications.
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