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As light localization becomes increasingly pronounced in photonic systems with less order, we investigate optically
induced two-dimensional Fibonacci structures that are supposed to be among the most ordered realizations of deter-
ministic aperiodic patterns. For the generation of corresponding refractive index structures, we implement a recently
developed incremental induction method using nondiffracting Bessel beams as waveguide formation entities. Even
though Fibonacci structures present slightly reduced order, we show that transverse light transport here is significantly
hampered in comparison with discrete diffraction in a periodic lattice. Numerical simulations that support our
experimental findings help to identify three cases of input waveguide configurations that significantly determine
the initial propagation in a Fibonacci structure. These crucial starting conditions determine the character of light
transport, yielding either localization or enhanced expansion. A diverse set of light transport scenarios is identified

therein.  © 2016 Optical Society of America
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1. INTRODUCTION

Order is one of the central properties to characterize complexly
structured systems of any dimensionality. There is certainly no
doubt that periodic systems hold highest order and, thus,
periodicity—meaning the invariance in translation for integer
multiples of a set of lattice vectors—has been examined thor-
oughly over the past centuries, so that there is now a deep theo-
retical understanding of waves in periodic media. Consequently,
universal theories such as Floquets theorem were introduced.
Herein, the model of band structures is a prominent achievement
that is frequently recovered in numerous disciplines, for instance,
for light propagation in periodically modulated photonic lattices
[1,2]. The existence of bandgaps where propagation is forbidden
as, per definition, no eigenstates exist within these gaps, is a fun-
damental awareness in all band-structure systems.

Quasi-periodic structures obviously are of less order than peri-
odic structures as they lack in short-range order [3,4]. However,
the spectra of both periodic and quasi-periodic structures present
only discrete contributions and are distinguishable by their rota-
tion symmetry at the utmost, which is limited to 2-, 3-, 4-, or
6-fold for periodic lattices. For quasi-periodic structures, even
higher rotation symmetry can emerge and, more interestingly,
band-structure properties can be assigned to these systems as well,
de facto offering complete bandgaps [5,6].

Numerous experimental techniques to achieve refractive
index modulations, such as direct laser writing [7] and
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photolithography techniques [8] have been suggested in past
decades [2]. In photorefractive media, for instance, the refractive
index is usually modulated by illumination with structured light
[9]. In particular, optical induction of elongated two-dimensional
(2D) photonic structures can be achieved using so-called nondif-
fracting beams [10] in which the intensity is modulated trans-
versely while being constant in the direction of propagation
[11]. This technique is highly dynamic because the refractive in-
dex modulation achieved with low to moderate intensities is
reversible and introduces a nonlinear response, which allows
for the realization of discrete soliton formations in periodic
photonic structures [12,13]. Corresponding to the induction
of periodic photonic lattices, the use of quasi-periodic nondif-
fracting writing beams, such as a fivefold Penrose intensity con-
figuration, allows for the optical generation of according photonic
quasi-crystals [14,15].

In general, nondiffracting beams cover an enormous variety of
intensity modulations, ranging with decreasing order from peri-
odic [16] to quasi-periodic [11] to random structures [17,18].
Yet, discrete structures without rotation symmetry are barely
feasible with a single-beam induction configuration. We thus pre-
sented recently that optical induction techniques can be extended
to resemble any aperiodic structure by sets of zero-order Bessel
beams as waveguide formation entities [19]. By applying this
incremental induction technique [20,21], we realized fully aperi-
odic, so-called Vogel lattices that are prominent examples for
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structures inspired by nature, as similar arrangements can be
found by plant growth following golden-angle phyllotaxis
[22]. Vogel spirals do not show any periodicity in most cases,
though they are created deterministically, as a construction rule
assembles the structure iteratively up to an arbitrary quantity
of elements.

Of course, there are uncountable examples of deterministic
aperiodic structures [23] holding different degrees of order [24].
However, in terms of order, the Lebesgue’s decomposition theorem
was suggested to categorize structures along their spectral appear-
ance [25,26]. Spectra of aperiodic structures with highest order,
including Fibonacci patterns [27,28], show only discrete contribu-
tions, while low-order structures such as Rudin—Shapiro patterns
feature continuous quasi-white-noise spectra [23]. Accordingly,
structures with intermediate order have both singular and continu-
ous spectral properties. The most famous structure among them
certainly arises from the Thue—Morse sequence [24].

The question of how an altering degree of order influences
wave (or light) propagation remains untouched within this
categorization scheme. As localization in the sense of reduced light
transport becomes more significant in disordered photonic sys-
tems [29-31], the occurrence of localized modes due to a deter-
ministic aperiodicity is ascribed to flat bands along with bandgaps
that unclose with decreased order [5]. In consequence, finding
signatures of localization already in singular-spectral structures
would directly refer to an expected reduced degree of order in
comparison to periodic lattices with likewise singular spectra.

In this contribution, we examine waveguide patterns of pure-
point spectra by exploring light localization effects [32,33] in op-
tically induced refractive index Fibonacci structures [28]. In
contrast to transmission measurements in one-dimensional (1D)
Fibonacci multilayer experiments [34], we examine transport
characteristics in 2D Fibonacci systems per broad spectral
excitation. Compared to similar experiments in 1D waveguide
Fibonacci structures [33], we expect a higher diversity of transport
characteristics due to the extended dimensionality and additional
degree of freedom. We adapt the nomenclature localization to
explain suppressed transport in quasi-periodic [14] and aperiodic
structures, not to be confused with Anderson localization [35]
appearing in disordered lattices.

Experimentally, we benefit from a highly dynamic and revers-
ible induction scheme at realizing largely elongated 2D photonic
structures that offer excellent interaction distances. In Fibonacci
arrangements, diverse local configurations of lattice sites exist.
Hence, we consider an output average for waveguide excitation
at different input positions. By comparing our results with a peri-
odic photonic lattice configuration where discrete diffraction with
a high rate of transport is expected to be found [7], we underline
that order is significantly diminished already in aperiodic struc-
tures with pure-point spectra, hampering light transport and
causing localization [34].

Besides examining average outputs, we also put a focus on
single light-transport scenarios and identify both localized and ex-
tended states depending on the initial condition of the input-
waveguide surrounding. It has been shown before that in
quasi-periodic structures the degree of (light) transport and locali-
zation strongly depends on the input position, e.g., in a Penrose
pattern [14,15], though in these publications, not much attention
has been paid to analyze this influence in very detail. The
Fibonacci pattern is particularly appropriate, as there are only
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few scenarios of input conditions, but aperiodicity plays a leading
role for longer propagation distances.

The manuscript is structured as follows. First, we present our
approach of applying 1D Fibonacci words to create 2D lattices
with Fibonacci tiling. After we have described the applied exper-
imental techniques and specific parameters that we used for the
optical induction, we present our results of single-waveguide
excitation and compare these experimental data with numerical
simulations. Finally, we cross check our results against light
propagation events in a regular lattice before a conclusion is drawn
in the last section.

2. DESIGN AND INDUCTION OF 2D FIBONACCI
LATTICES

Our approach to designing an aperiodic Fibonacci pattern is to
vary the distances of adjacent waveguides encoded as Fibonacci
words [28]. These sequences are binary, and according to the
Fibonacci series, the nth word is generated by combining the
(n-1)st and the (z-2)nd word, such as S, ={S,.1S,,}.
Giving the first two words determines the complete set of all
words. We define two different distances A and B = A/ ¢, where
@ = (1++/5)/2 is the golden ratio, and set Sy = A and
S, = AB such that the first five Fibonacci words read as

80 = A, 81 = AB, 82 = ABA;
Sy = ABAAB, S, = ABAABABA.

By picking two sub-words of length /V from a very long Fibonacci
word S, with 7> IV starting at arbitrary but different elements
for two transverse directions, we receive a deterministic aperiodic,
nonsymmetric structure with /N x N sites, as depicted in
Fig. 1(a). Here, the typical character of a Fibonacci word is
present in both orthogonal directions. That is, distance A occurs
with a probability of ¢ - 1 = 0.62, thus more frequently than 3,
which yields typical structure groups: quad, double, and single
waveguide elements [28].

The Fourier transform of the Fibonacci structure shown in
Fig. 1(a) gives the spatial spectrum whose absolute value distri-
bution S(k,, k) is presented in Fig. 1(b). The singular character
becomes apparent here, but especially in Fig. 1(e), where the
orange plot represents the cross-section distribution S(4,) along
the arrow in Fig. 1(b). For comparison, the corresponding plot for
a largely extended Fibonacci grating and, thus, with extensive res-
olution, is given by the black curve. Notice that particular fre-
quency peaks have mutual distance relations equal to the golden
ratio ¢. Frequencies with distinct amplitude peaks can be found at
k. = "'k, where k is the frequency of the prominent peak settled
between 7/ A and z/B, and m is a natural number. Thus, in
addition to the nomenclature aperiodic, a classification of the
presented spectrum as singular or pure-point is appropriate, as
well [26].

After we have determined the waveguide positioning scheme
resembling a 2D Fibonacci arrangement, we apply the incoher-
ent-Bessel beam induction method to preserve the nondiffracting
character of the effective intensity during the writing process. This
method implies that every single waveguide is written with an
appropriate nondiffracting Bessel beam of zeroth order and struc-
tural size. Determining the structural size of the Bessel beam
intensity settles the waveguide diameter. In our considerations,
the full width at half-maximum of a Bessel beam intensity is
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Fig. 1. (a) Fibonacci lattice with Gaussian beam sites (underlying
Fibonacci words indicated alongside). (b) Spatial spectrum S(%,, £,) ac-
cording to lattice shown in (a). (c) Measured effective intensity with
Bessel beam lattice sites taken by multiple-shot illumination at the back
face of the crystal. Bottom right quadrant shows according numerical
simulation. (d) Experimental output for plane-wave probing (contours
indicate waveguide positions). (e) Plot of (orange) spectrum S(k,) along
the direction denoted in (b) and of (black) the ideal spectrum for an
extended aperiodic Fibonacci lattice with §-function lattice sites.

determined to 9.3 pm and the effective waveguide distance to be
der = 32 pm. This yields A = 37.5 pm and B = 23.2 pm. A
simulation of the resulting transverse effective intensity distribu-
tion is given in the lower right quadrant of Fig. 1(c).

In general, our experimental setup that incorporates a set of
spatial light modulators (SLMs) is appropriate to generate any
kind of (nondiffracting) beam [11]. The respective setup scheme
is presented in Fig. 2, and the induction process corresponds to
descriptions given in Ref. [19]. We use the SLMs to experimen-
tally realize numerically calculated light fields in a particular image
plane defined by an optical imaging system with a demagnifica-
tion factor of roughly 1/6. Particularly, the phase-only SLM
(PSLM; Holoeye Pluto) is positioned in real space (related to
the image plane) in order to modulate incoming plane waves.
The entire field information of the desired beam is encoded
in elaborate diffraction gratings displayed by the PSLM. An
amplitude-only SLM (ASLM; Holoeye LC-R 2500) is placed in
Fourier space for spectral low-pass filtering reasons. For all experi-
ments, we use a frequency-doubled Nd:YAG continuous-wave
laser source at 532 nm wavelength.
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Fig. 2. Experimental setup for induction of Fibonacci lattices with in-
coherent Bessel beams. (A/P)SLM, (amplitude/phase) spatial light modu-
lator; Cam, CCD camera; 4/2, half-wave plate; LED, background
illumination; (R)P, (rotatable) polarizer; SBN, strontium barium niobate
crystal; lenses and pin hole not labeled.

To resemble the desired 9 x 9 Fibonacci structure as presented
in Fig. 1(a), we basically change the position of each Bessel writing
beam and put its central maximum to the defined position result-
ing from the given structure design. A full set of diffraction gra-
tings containing the necessary writing light fields is generated by
convolution of a sparse matrix (with the entire position informa-
tion) and a basic Bessel beam field distribution.

For the actual experimental induction, it is sufficient to send
every Bessel beam diffraction grating sequentially to the SLM,
each generating a corresponding light intensity in the volume
of interest where a photorefractive strontium barium niobate
(SBN:60) crystal is placed; the crystal is doped with cerium
[36]. During the illumination, an external field of 2 kV cm™
is applied to the crystal [9]. This sequential induction scheme
implies an effectively incoherent superposition of all writing light
fields of one set. The obvious motivation is that a coherent over-
lap of contributing Bessel beams would cause undesired intensity
modulations since off-diagonal terms of the resulting field would
be nonzero. However, by introducing an effective intensity /g,
we aim to implement the sum of all intensities /¢ = X/ =
Y| Ex|? rather than the absolute square of all fields | £y |°.

Simulated and experimental effective intensities are given in
Fig. 1(c). The intensity distributions of writing and probing light
fields are recorded by a CCD camera imaging system. To receive
the experimental picture, the output intensity of each writing
beam is taken individually and added up afterward. This overall
intensity pattern displays the effective intensity that optically
induces the 2D photonic structure. A LED is placed above the
crystal to actively erase inscribed structures for further light
potential inductions.

Figure 1(d) shows the output intensity when probing the in-
duced structure with a plane wave. Note that waveguide positions
of quad and double elements cannot be resolved properly here, as
one intensity envelope covers clusters of adjacent waveguides for
predominantly perpendicular probe beam incidence. However,
we will see later on that single waveguide excitation indicates ac-
curate induction of waveguide groups according to the effective
intensity distribution.

3. TRANSPORT CHARACTERISTICS IN A
FIBONACCI LATTICE

After induction, we experimentally investigate the influence of the
Fibonacci lattice with its diverse local conditions on the beam
propagation in the linear regime of low probing beam power
of several pW, and compare our experimental results with
numerical simulations. To numerically model light propagation
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along the z direction of any photonic lattice, we consider the para-
xial wave equation

{21/€az + AJ_ - kngr%(axq)sc)}A(;) =0 (1)

for a slowly varying electric field amplitude A(7") with wave num-
ber k. In this equation, 9, is the spatial derivation in the x; di-
rection, A the transverse Laplacian perpendicular to z, 7, the
unmodulated refractive index for extraordinary polarization,
733 the corresponding electro-optical coefficient, and @, denotes
a light potential caused by the optically induced internal electric
field that in our case holds the Fibonacci structure. To simulate
light propagation, we choose parameters that match experimental
conditions and use a split-step method to evaluate the wave equa-
tion. Typical refractive index contrasts in the vicinity of a lattice
site extracted from numerical calculations are 3 x 107>, consistent
with experimental conditions. We do not achieve maximally fea-
sible modulations of 10~* due to the background intensity modu-
lation between lattice sites as given in Fig. 1(c).

For light-transport studies, a Gaussian probe beam of w, =
14 pm beam waist is launched at different input positions of a
Fibonacci photonic lattice. Figure 3 shows five particular output
results of light propagation through a lattice of 20 mm propaga-
tion length. The specific input positions on and between lattice
sites are labeled from 1 to 5 in Fig. 3(k) and are related to output
distributions shown in the first to fifth columns in Fig. 3 as in-
dicated. Top-row images Figs. 3(a)-3(e) present typical output
distributions experimentally observed at the exit face of the
crystal, while the bottom row [Figs. 3(f)-3(j)] represents the
corresponding distributions obtained numerically.

We notice very good agreement between experimentally
obtained and numerically simulated results. Naturally, the sepa-
ration between incident and neighboring lattice sites has a very
strong influence on the propagation process as the coupling
coefficients vary inversely to their spacing [7]. Thereby, light is
subject to be guided along waveguide lattice sites accompanied
by coupling between adjacent waveguides, as well as to ballistic
propagation for predominantly high spatial frequencies encoun-
tering low spectral amplitudes [cf. Fig. 1(b)].

Moreover, a pronounced heterogeneity of output profiles for
different initial positions can be found in Figs. 3(a)-3(e), indicat-
ing that the appearance of excited modes is highly diverse. We
distinguish three cases originating from the initial conditions

Position 2 Position 3

Position 1

Experiment

Numerics

of the specific input-waveguide environment as summarized in
Fig. 4. The underlying numerical calculations consider a 30 x
30 lattice site arrangement in order to avoid surface influences.
A particular Fibonacci structure is determined by choosing ran-
domly the two orthogonal Fibonacci words, allowing us to
statistically analyze individual input configurations. One configu-
ration is characterized by an isolated waveguide with next sites
separated by A, as sketched in Fig. 4(a) for z = 20 mm, similar
to Figs. 3(c) and 3(h). For even longer propagation distances, two
diagonal lines of low intensity are characteristic, as documented in
Figs. 4(b) and 4(c) for two different realizations of this scenario.

The second input configuration consisting of a double-
waveguide input area is given in Fig. 4(d) [cf. Figs. 3(b) and 3(g)].
After sufficiently long propagation, one diagonal low-intensity
line establishes for this input constellation as observed for the
two realizations presented in Figs. 4(c) and 4(f).

Corresponding to Figs. 3(a) and 3(f), the third case we want to
distinguish is given by a quad group of waveguides with one site
acting as the input waveguide. This arrangement is indicated in
Fig. 4(g) together with the intensity distribution for 20 mm
propagation. In Figs. 4(h) and 4(i), we identify that, after 60 mm,
a considerable amount of light is confined around the quad-
waveguide input group.

For a more quantitative analysis, we introduce with the effec-
tive beam width w g (2) = P(z)"!/?
ize the degree of light confinement, where

J 1E G 3, 2] dedy
(J1EG 2 2)Pdrdy)”

is the inverse participation ratio [29].

By studying how the effective beam width develops with in-
creasing propagation distance, we directly identify the hetero-
geneity of propagation states. To extract an averaged effective
beam width w,,,,, we take the arithmetic mean of effective beam
widths for 50 different on-site input positions, each correspond-
ing to one potential realization. Accordingly, in Fig. 5(a) absolute
effective beam widths of 50 simulated propagation scenarios are
plotted against the distance z < 80 mm.

While all effective beam widths are almost equal for the first
10 mm, separation starts for longer propagation distances, since
coupling arises to next-nearest waveguides referring to the input.

a usual measure to character-

P(z) = (2

Position 4 Position 5

Fig. 3. Light propagation in aperiodic Fibonacci photonic lattices. Intensity distributions at the exit face of the crystal experimentally observed
(first row) and numerically calculated (second row) for input probe beam size wy = 14 pm. Columns correspond to input beam positions 1 to 5,

as shown in (k).
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At this point, the aperiodic character of the Fibonacci structure
comes into play at the earliest.

For the experimentally feasible propagation distance of
20 mm, we observe an increase of w ¢ (z) by a factor within the
range of 7 to 8. Here, we find a significant split-up of the beam
widths in conformity with distributions documented in Figs. 3
and 4. Plotting the relative beam widths @g(2)/®pean> as pre-
sented in Fig. 5(b), gives more insight into diverse transport
characteristics for individual input arrangement scenarios.

The corresponding single-waveguide branch in Fig. 5(b) is in
red and represents the broadest beam widths along the considered
distance [cf. Fig. 4(a)]. Among the 50 randomly chosen Fibonacci
potentials, this case occurred four times, yielding rather compa-
rable beam widths. The statistical probability of finding an
isolated-waveguide input is PAAAA R 6%. In this notation,
the indices indicate the distances around the central waveguide
in both orthogonal directions, separated by the vertical bar.

The green branch in Fig. 5(b) gives the beam widths for a
double-waveguide input as indicated in Fig. 4(d). This is one
of four possible double-waveguide configurations that emerge
from 90° rotations of the underlying structure around the input
waveguide. Generally, these initial conditions yield beam widths
above average and contribute to the maximum beam width at
z = 80 mm. This case is found among 23 of the 50 Fibonacci
structures. However, the corresponding probability is p 4544 ~
36%. Here, permuting indices within one dimension covers the
same case.

Though the fastest initial beam broadening is found for
z < 15 mm among the quad-waveguide input configuration, this
arrangement mainly yields beam widths below average. The cor-
responding branch is in purple in Fig. 5(b), and the configuration
has a probability of p 45 45 = 58%. Here as well, we associate all

80'mm

100 pne

20 mm
o <
o O
o

(o]
Q O
Q.

S0 pm |

Fig. 4. Three cases of input waveguide configuration. Computed
images show intensity distributions of (top row) single-, (middle row)
double-, and (bottom row) quad-waveguide input for particular propa-
gation distances as indicated in the upper right corner and marked in
Fig. 5(b). Filled circles mark the position of the input waveguide.
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Fig. 5. Development of beam widths with propagation distance.
(a) Absolute beam widths @.¢ of individual on-site probing scenarios
and mean of beam width @,,,,. (b) Relative beam widths @.g/®can-

Labels in (b) identify images in Fig. 4.

four cases arising from multiple 90° rotations of such structures,
as indicated in Fig. 4(g). The beam width deviation, however, is
remarkably large among all observed 23 quad-group cases.
Equivalently, we find in Fig. 5(b) one trend that is comparable
with the maximum case at z = 80 mm. Yet, the smallest
beam width arises from this quad-group starting condition,
as well.

In consequence, for a short propagation distance, we can iden-
tify the input condition out of the three cases directly by the shape
of the intensity distribution. For z > 50 mm, the effective beam-
width lines of all three input cases interlace and merge increas-
ingly, yielding a heterogeneous set of light transport scenarios.
Here, individual light potential configurations facilitate extreme
cases of maximum or minimum beam widths. It is, however, the
initial waveguide configuration that mainly affects the width of
the intensity distribution.

Moreover, in Fig. 5(b), we also find lines that overlap for long
distances, even along the full considered distance of 80 mm, be-
fore splitting up. The split-up of the red branch (isolated wave-
guide input) at #38 mm is representative, although, particularly
here, four lines divide into two double lines. It can be understood
by the Fibonacci word characteristics that these lines overlie for
such a long distance. Along with an isolated input site occurs a
definite surrounding of diameter of seven waveguides around this
site. The fixed sequence in both directions inside this area is
ABAABA. Beyond this sequence, the distances can either be
A or B, again.

Generally, we can specify that, for two overlapping @.g(2)
lines, the underlying potentials are indistinguishable within a
transverse area around the input position. Beyond this area, a dif-
ference between both considered potentials appears and propaga-
tion conditions vary. In this context, two Fibonacci potentials
differ locally in at least one of the two orthogonal directions
by means of permuting the combination AB to BA or vice versa.
Consequently, a spatially resolved comparison of two unknown,
but deterministic aperiodic, Fibonacci potentials would be very
simple in this scheme and applicable to according deterministic
aperiodic structures.
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4. COMPARISON WITH BEAM PROPAGATION IN
PERIODIC LATTICES

To evaluate the strength of light localization in a Fibonacci struc-
ture, we experimentally compare this kind of deterministic aperi-
odic lattice with the periodic case, both of 20 mm length. Last
named lattices are arranged periodically with as many lattice sites
as for the aperiodic case, using again the sequential Bessel beam
writing technique to preserve comparability. For this geometry,
the lattice period corresponds to the effective distance of the
Fibonacci lattice, 4 = 32 pm. The experimental effective inten-
sity, the plane-wave probing output, and the waveguide-excitation
output are shown in Figs. 6(a)—6(c), respectively. Again, probing
the structure with a plane wave does not resolve the light potential
in much detail, as can be found in Fig. 6(b), although the image
indicates qualitatively the area of modulated refractive index. A
Gaussian beam of w, = 14 pm exciting the central lattice point
reveals the typical discrete diffraction at the output face, as given
in Fig. 7(c), and is expected for regular lattices [7].

We further numerically study the beam propagation in
Fibonacci and regular photonic lattices along z < 80 mm with
respect to the development of the probe beam width, including
the experimental case of z = 20 mm.

Figure 7 allows comparison of our numerical results of beam
propagation in aperiodic Fibonacci photonic lattices against the
periodic lattice case and a homogeneous medium without refrac-
tive index modulation. In Fig. 7(a), the averaged effective beam
width @, (z) and w.g(z) for Fibonacci, periodic lattice, and a
homogeneous medium are presented. The initial Gaussian beam
waist wy = 14 pm corresponds to @.g(z = 0) ~ 25 pm. Both
photonic structures show transport that is below beam broaden-
ing in a homogeneous medium. Moreover, results in Fig. 7(a)
indicate that the Gaussian input expands significantly more
slowly during propagation in Fibonacci lattices than under peri-
odic conditions. We additionally plotted two extreme transport
scenarios to show the variance of beam expansion in contrast
to the discrete diffraction case. Remarkably, light transport can
temporally be faster than discrete diffraction, as observed for
z &~ 30 mm. This enhanced transport originates from the single-
waveguide input configuration [cf. Fig. 4(a)].

The averaged output intensity distribution after 70 mm of
propagation in Fibonacci lattices is given in Fig. 7(b). Figures 7(c)
and 7(d) present the output in a periodic lattice and in a homo-
geneous medium, respectively. A typical signature of discrete dif-
fraction is prominent for the square lattice. Interestingly, the
median intensity distribution in the Fibonacci structure features
an underlying modulation similar to the discrete diffraction
signature.

Nevertheless, diffraction is essentially suppressed in compari-
son with periodic lattices, and localization in Fibonacci lattices is

Fig. 6. Experimental images for a periodic photonic square lattice.
(a) Effective intensity, (b) plane-wave, and (c) single-site probing output.
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Fig. 7. Comparison of effective beam width development in a
Fibonacci lattice against periodic and homogeneous medium cases.
(a) Beam widths @.g versus propagation distance z: (orange) mean beam
width @,,¢.> and (gray) individual beam width; beam width in (dashed
black) a periodic lattice and (dotted black) a homogeneous medium.
Dashed vertical line at z = 20 mm indicates experimental propagation
distance. Intensity distributions at z = 70 mm in (b) averaged Fibonacci
intensity, (c) periodic square lattice, and (d) homogeneous medium, each
for wy = 14 pm.

present, as the highest intensity is predominantly located around
the input center. Consequently, transverse light transport is
slowed down on average due to aperiodic conditions accounting
for localized modes whose appearance indirectly indicate the pres-
ence of bandgaps [23]. Periodic structures, in contrast, bring for-
ward extended propagation modes, as more light is carried away
from the input position due to discrete diffraction.

5. DISCUSSION AND CONCLUSIONS

To conclude, we have observed light localization in optically in-
duced 2D Fibonacci photonic lattices that arises from the aperi-
odic waveguide arrangement. By experimentally and numerically
analyzing linear propagation characteristics for various incident
positions, we observed enhanced localization in Fibonacci pho-
tonic lattices compared with discrete diffraction-driven light
transport in equivalent periodic realizations. We identify this
localization with the occurrence of localized modes due to aperi-
odic structural conditions with diminished order, indirectly indi-
cating the existence of bandgaps.

A very good agreement between experimental and numerical
results allowed us to additionally analyze the development during
propagation of a wave packet sent to corresponding lattices. The
individual configuration of waveguides around the input site gives
diversified starting conditions and crucially determines further
transport properties of the photonic structure. By means of an
effective beam width, we identified a very heterogeneous set of
propagation states that inherently stems from the aperiodic char-
acter of the Fibonacci structure. Besides conditions that reduce
light transport, we also identified single scenarios of enhanced ex-
citation that temporarily can be above discrete-diffraction trans-
port. Evidently, the shape of excited localized modes and, thus,
the strength of localization, are local rather than global properties
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in the kinds of structures that have been the subject of our
investigations.

Moreover, the numerical results consolidated our experimental
observations and gave deeper insights into propagation dynamics.
Additional investigations on this exciting aperiodic structure that
would go beyond the scope of this manuscript might be the in-
fluence of additional disorder or nonlinear light—matter interac-
tion. Analyzing beam excitation scenarios and light transport in
other aperiodic structures of less order would directly identify the
influence of the degree of order of a photonic structure. Topology
would be another interesting issue to be investigated when bring-
ing together different kinds of quasi- or aperiodic structures [37].
A 2D implementation of proper structural boundaries is directly
feasible with our experimental technique.

In general, we are convinced that our results can be transferred
to other kinds of aperiodic refractive index lattices, using the
presented ideas and methods.
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