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ABSTRACT   

We present a method to tailor not only amplitude and phase of a complex light field, but also the transverse states of 

polarization. Starting from the implementation of spatially inhomogeneous distributions of polarization, so called 

Poincaré beams, we realized a holographic optical technique that allows arbitrarily modulating the states of polarization 

by a single phase-only spatial light modulator (SLM). Moreover, the effective amplitude modulation of higher order 

beams performed by a phase-only SLM is shown. We will demonstrate the capabilities of our method ranging from the 

modulation of higher order Gaussian modes including desired polarization characteristics to the generation of 

polarization singularities at arbitrary points in the transverse plane of Poincaré beams.  
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1. INTRODUCTION  

Complex light fields with a spatially inhomogeneous distribution of polarization are of growing scientific interest [1]. So 

called Poincaré beams [2] especially with polarization singularities as L-Lines, C-Lines, V-Points and C-Points 

appearing in their transverse plane reach the state of a highly investigated topic [3, 4]. Typically, Poincaré beams and 

polarization singularities are generated exploiting birefringence [2, 5], q-plates [6], or by interferometric methods [7]. 

However, these methods do neither allow an arbitrary transverse location of polarization singularities nor a full 

combination of amplitude, phase, and polarization modulation of the complete transverse plane. 

Our holography-based method is not only capable of tailoring complex light fields [8] by amplitude and phase 

modulation but also allows arbitrarily modulating the states of polarization such that Poincaré beams with polarization 

singularities can be created. In order to perform amplitude and phase modulation SLMs are a widely used optical 

component [8]. Our experimental system employs a single reflective phase-only SLM operating in a split-screen-mode 

for the modulation of amplitude, phase and, in addition to that, of polarization. To use the SLM effectively, different 

correction methods are necessary: The active LC-layer (LC: liquid crystal) of the SLM used for modulation exhibits 

considerable differences in thickness – this means by using the SLM as a reflective optical component, undesired 

disturbances in the beams’ spatial phase distribution are caused [10]. Different methods exist, which were used to correct 

undesired effects as e.g. a blurred spot of a focused beam due to the disturbance in phase. An example is the 

determination of an elliptical correction mask based on an assumed astigmatism [11]. The parameters of the correction 

mask are found experimentally by trial and error parameters in this case. Another example is the usage of Zernike 

polynomials in order to correct common aberrations of the beam’s focus and occurring astigmatism [12]. These methods 

were mainly created in order to optimize the application of SLMs in optical micromanipulation by optical tweezers, 

where the trapping stiffness depends on the fidelity of the focused beam (spot sharpness) used for optical trapping of 

microparticles [12]. 

We will combine different modulation methods including corrections to achieve on the one hand the theoretically 

expected amplitude and phase distribution of complex beams, as e.g. higher order Laguerre-Gaussian beams, 

experimentally and on the other hand the effective modulation of arbitrary spatial distributions of polarization in order to 

create Poincaré beams. In section 2 we will discuss the amplitude and phase modulation performed by a reflective phase-

only SLM implementing a proposed correction method based on [13] used to enhance the quality of the spatial accuracy 

of modulation. The utilization of the SLM for the dynamic polarization modulation and the corresponding correction 

method is described in section 3.  
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Moreover, we will demonstrate the capabilities of our methods ranging from the effective modulation of higher order 

Gaussian modes including desired polarization characteristics to the generation of polarization singularities at arbitrary 

points in the transverse plane of Poincaré beams in section 4. The properties of these beams can be applied in optical 

micromanipulation, where polarization properties are used to align anisotropic particles [14]. Additionally, application in 

information technology for advanced information encoding is possible [15, 16]. 

 

2. AMPLITUDE- AND PHASE MODULATION 

2.1 Phase-only spatial light modulator for the modulation of complex light fields 

Amplitude and phase modulation for the creation of complex light fields as higher order Gaussian beams is usually 

performed by the use of SLMs [9]. If a phase-only SLM is utilized for the modulation, an advanced technique is 

necessary in order to modulate phase as well as amplitude simultaneously and independently: The ansatz for this method 

was described by Davis et al. in 1999 [17] based on weighting a blazed grating given on the SLM by the desired field 

amplitude. The complex light field E, which is supposed to be modulated, can be written as 

 
           ,      (1) 

 

whereby         describes the normalized amplitude and          the phase. The idea in [17] is to encode the light 

field as a phase function 
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which can be shown in the form of a mixed Fourier-Taylor-function 
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with the coefficients 

                          .    (4) 

 

If we choose to use just the first diffraction order with    , we obtain a modulation with a phase term  

              in addition to the desired phase of (1). Moreover, the amplitude’s information can be found in the sinc-

function of   , but is just approximately reconstructed by               . In order to get the desired field 

distribution (1), the achieved amplitude and phase need to be corrected. The additional phase term in    can be 

eliminated easily by multiplying by its complex conjugate. The generation of the desired amplitude is slightly more 

elaborate: With the help of a look-up table (LUT) the values of the inverse sinc-function can be determined.  

 

To separate the first diffraction order    spatially from the others, a blazed grating is added on the SLM created by the 

modulo 2π of a linear phase ramp. This linear phase in the image plane of the SLM causes a spatial separation of the 

orders in the Fourier plane of the SLM’s surface [18]. In the experimental setup sketched in figure 1 a), a Fourier filter 

(A: aperture) is used to only pass the first diffraction order due to the spatial separation.  

 

We can conclude that for the generation of complex light fields modulated in amplitude and phase by the use of a phase-

only SLM, we need to apply a phase hologram given by 

 

                                   (5) 

 

     describes the amplitude using the look-up table (LUT), which is needed to be applied in order to achieve the 

desired amplitude   instead of the sinc-term in   . Moreover,   is the phase of the desired complex light field and    

depicts the linear phase ramp used to separate the orders of   .  



 

 
 

 

 

 
Figure 1. a) Schematic of the experimental setup for amplitude and phase modulation – M: mirror, HWP: half wave plate, 

SLM: spatial light modulator, BS: beam splitter, A: aperture, CCD/ CMOS: CCD/ CMOS camera, Image: image plane of 

SLM, Fourier: Fourier plane of SLM. b) Comparison of theoretic (upper row) and experimental (lower row) results of higher 

order Laguerre-Gaussian beams modulated in amplitude and phase by the phase-only SLM – LGe/ LGh/ LGo:even/ helical/ 

odd Laguerre-Gaussian beam. 

 

This method and setup facilitates the creation of arbitrary light fields modulated in amplitude and phase. Examples of 

higher order Laguerre-Gaussian beams (LG
e
/ LG

h
/ LG

o
: even/ helical/ odd Laguerre-Gaussian beam) created by our 

setup are shown in figure 1 b), while a comparison between simulations (upper row) and experimentally generated beams 

(lower row) is shown: the intensity distribution of the higher order modes match the theoretical expectations 

(simulations) if the applied phase hologram corresponds to the form of    described in equation (5). 

 

 

2.2 Phase correction of SLM-modulated beams 

As already mentioned in section 1, spatial light modulators may cause discrepancies between theoretical expected and 

the experimentally achieved phase distribution of the desired complex light field due to the imperfect transverse phase 

flatness of the phase-only SLM [10]. In the setup shown in figure 1 a) the reflective phase-only SLM was used to 

modulate amplitude and phase as described in section 2.1.  

Different methods exist to correct this phase inhomogeneity, for example the determination of an elliptical correction 

mask based on an assumed astigmatism [11] or the use of Zernike polynomials [12]. In contrast, we developed and 

implemented a correction method which is based on an in situ spot correction in the Fourier plane (correction plane, see 

fig. 1 a)) of the light field [12]. In this case, the modulator’s surface, including the linear phase ramp    (see sec. 2.1), 

and thus the modulated light field is divided into quadratic modes (e.g. 60x60 pixels). Optimal focusing and thus a sharp 

spot in the Fourier plane is achieved if all the modes meet at a selected point in space with the same phase; maximum 

intensity in this point is reached for constructive interference of all modes. For the correction of phase deviations caused 

by optical components as the SLM and resulting in a blurred spot in the Fourier plane, one mode is chosen to be the 

reference mode, which is supposed to interfere with a single mode of the other signal modes in the respective plane. The 

modes can be turned on and off independently. By measuring the intensity at the focal point while shifting the signal 

mode under consideration in phase, the optimal phase shift is determined for which the intensity signal is maximal. In 

this case, reference and tested signal mode have the same phase. This process is repeated for each signal mode, whereby 

the optimal phase shift is supposed to be used as corrective phase value per mode, respectively.  

As a result, a phase correction pattern is created, and subsequently used on the SLM’s surface to result in an ideal focal 

spot in the Fourier plane. The complete correction process is sketched in figure 2: subfigure a) shows the blazed grating 

used to separate the orders spatially for the case of amplitude and phase modulation by a phase-only SLM, b) depicts the 

resulting blurred spot in the Fourier plane; c) illustrates the method of interfering modes resulting in an interference 



 

 
 

 

 

pattern in the correction plane (d)); e) depicts the phase correction pattern plus blazed grating utilized as the hologram on 

the SLM and f) the achieved focal spot in the Fourier plane, while g) illustrates the determined phase correction pattern 

with 16 times 18 modes (each mode 60x60 pixels/ 480x480 µm on SLM).  

 

 

Figure 2. Method of phase correction: a) An uncorrected blazed grating causes a blurred spot in the Fourier plane shown in 

b) due to spatial inhomogeneities of the SLM. c) By the interference of two spatial modes (reference and signal mode) in the 

Fourier plane an interference pattern depicted in d) is created. The maximum intensity in the focal point is adjusted by 

shifting the regarded signal mode in phase – the corresponding phase shift of all signal modes is used as phase correction 

pattern. e) A superposition of the blazed grating with the determined phase correction pattern results in a sharp spot (f)) in 

the Fourier plane, thus, the beam’s phase front is corrected. The determined phase correction pattern for the used SLM is 

shown in g). 

 

The measured phase correction pattern has a rough pixel structure – this structure causes a homogeneous phase 

distribution but disturbances in the intensity structure in the image plane of the SLM. For the purpose of minimizing 

undesired effects, it is possible to reduce the modes’ size considering that the intensity of the interference pattern meets 

the requirement of the phase correction method.  Another possibility in order to minimize the disturbances in the image 

plane is to find a continuous fit for the measured phase correction. Figure 3 shows a comparison with respect to the 

measurable intensity distribution in the image and Fourier plane for the case without phase correction (fig. 3a)), of the 

determined 16x18-modes phase correction pattern (fig. 3b)) and, finally, of a continuous, elliptical fit of the measured 

correction (fig. 3c)) for the used SLM. Obviously, the pixel structure results in the expected Gaussian distribution in the 

Fourier plane, whereas the image plane reveals clear disturbances if we use neither an amplitude nor a phase modulation. 

In contrast, the continuous, elliptical structure results in a minimally worse profile in the Fourier plane, while the image 

plane shows a distinctly better intensity distribution. Moreover, figure 3 also includes a comparison of both correction 

methods for the case of modulating a self-similar [19], higher order Laguerre-Gaussian beam (LG
e
7,9) by applying the 

modulation method described in section 2.1. Although both correction methods reveal a clear optimization with respect 

to the case without correction, minor differences can be observed. We use the continuous, elliptical phase correction in 

order to achieve good results in the image and also comparatively good results in the Fourier plane.  

 

If the modulation is performed as explained in section 2.1 and the correction of phase is considered, good results for 

complex light fields modulated in amplitude and phase by a single phase-only SLM will be obtained, which match the 

corresponding theory. 

 



 

 
 

 

 

 

Figure 3. Comparison of the intensity distribution in the image and Fourier plane for a non-modulated beam and a 

modulated even Laguerre-Gaussian beam (LGe
7,9) for different phase correction patterns, respectively: a) shows the results 

achieved by the utilization of no phase correction, b) of the experimentally determined phase correction pattern (rough pixel 

structure) and c) of the continuous elliptical fit of the measured correction pattern. Without any correction, not only the 

intensity distribution in the image plane, but also in the Fourier plane is disturbed. b) shows the enhancement achieved by 

the usage of a phase correction pattern especially in the Fourier plane, while the intensity in the image plane includes 

undesired disturbances. In contrast to this c) reveals very good results in the image plane, while the intensity distribution in 

Fourier plane is slightly disturbed. Regarding the further purpose of the investigated setup the correction pattern of c) gives 

the best results.    

 

3. DYNAMIC POLARIZATION MODULATION 

Besides the generation of complex light fields modulated in amplitude and phase, the phase-only SLM (parallel aligned 

nematic-liquid crystals) can be a key component for the dynamic polarization modulation of light fields in order to create 

a spatially inhomogeneous distribution of transverse states of polarization [21]. For this purpose, the spatial polarization 

modulator (SPM) is utilized, which will be described in the following section 3.1.   

 

 

3.1 Spatial polarization modulator 

For the generation of an arbitrary spatial distribution of states of polarization the phase-only SLM is used in a 

configuration in between two quarter wave plates (QWP). These three optical components represent the spatial 

polarization modulator (SPM) as sketched in figure 4 a) [20, 21]. 



 

 
 

 

 

 
Figure 4. Spatial modulation of polarization. a) shows the outline of the experimental setup for the polarization modulation – 

I: spatial polarization modulator  (SPM) consisting of two quarter wave plates (QWP) enclosing a spatial light modulator 

(SLM), II: polarization measurement setup composed of a rotatable quarter wave plate and a polarizer (Pol) in front of a 

CCD camera (CCD). The input polarization supposed to be modulated by the SPM is horizontally linear and created by a 

half wave plate (HWP).  The angles of the SPM’s QWPs are chosen to be          and          regarding the input 

polarization (see b)), while the phase shift       introduced by the SLM is variable. Subfigure c) illustrates the parameters 

of the polarization ellipses and d) demonstrate the Poincaré sphere spanned by the Stokes parameters S1, S2 and S3 and used 

to visualize states of polarization, e.g.    . Right/ left elliptical states of polarization are indicated as red/ blue ellipses, while 

linearly polarized states are colored green. 

 

Corresponding to Jones calculus, transverse polarization is defined as            . Polarization components oriented in 

the      -direction and, thus, parallel to the horizontally aligned liquid crystals of the phase-only SLM, can be shifted in 

phase, while components orthogonal to the crystals (     -direction) cannot be altered by the SLM [22]. Thus, the SLM 

can introduce a phase shift       between horizontally (  ) and vertically (  ) polarized components. In the case under 

consideration, the first quarter wave plate (QWP1) in front of the SLM is used to determine the amplitude ratio between 

horizontally and vertically polarized light reaching the SLM: After expanding the laser beam by two lenses, the beam is 

horizontally, linearly polarized by a half wave plate (HWP). Depending on the angle     between the fast axis of QWP1 

and the linear input polarization (see fig. 4 b)), the input polarization is transformed into elliptic polarization with   -

dependent ellipticity. We choose         , so that circular polarized light is generated behind QWP1. By the 

additional use of the second quarter wave plate (QWP2) the orthogonal polarization components with the introduced 

phase shift are recombined depending on the angle    enclosed by the fast axis of QWP2 and the incoming state of 

polarization in front of the SPM. For the second quarter wave plate         is chosen. 

The phase shift       introduced by the phase-only SLM represents a degree of freedom which can vary between zero 

and   , while each value leads to a different state of polarization if          and        . The opportunity to 

spatially (pixelwise) vary the phase shift            of the SLM provides the feature of spatially varying the states of 

polarization with the help of the SPM [21].  

 

Usually, states of polarization are represented by the Poincaré sphere, which is spanned by the Stokes parameters S1, S2 

and S3. Completely polarized states can be found on the unit sphere’s surface, right elliptical states of polarization (REP) 

are positioned on the upper hemisphere, left elliptical states (LEP) on the lower hemisphere. Consequently, the equator 

includes all linearly polarized states, north and south pole contain right and left circular polarized states (RCP, LCP), 

respectively. Each point on the Poincaré sphere can be defined by the angles   and  , which are linked to the 

polarization ellipse corresponding to this point on the sphere (see fig. 4 c), d)):   defines the orientation,   the opening 

angle and thus the ellipticity of the polarization ellipse. 

If we choose to have a fixed set of angles         and        for QWP1 and QWP2, and a variable phase shift 

          , polarization states, which are accessible simultaneously in the transverse plane of a beam modulated by the 

SPM, lay on a circular ring on the Poincaré sphere [21]: all accessible states are located on the circle in the S2-S3-plane, 

while             . Consequently, by choosing a suitable phase hologram            for the SLM, beams with 

spatially varying states of polarization can be formed, i.e. Poincaré beams [2] can be created. Experimental results with 

regard to the generation of different kinds of Poincaré beams will be shown in section 4.  

 



 

 
 

 

 

3.2 Polarization correction method 

In section 2.2 we discussed how to handle an imperfect phase homogeneity in the transverse plane of beams introduced 

by the phase-only SLM. This prevents disturbances in the case of modulating amplitude and phase for the creation of 

complex light fields as higher order Laguerre-Gaussian beams. Because disturbances in the phase distribution caused by 

the SLM will also be transferred into disturbances in the desired spatial modulation of polarization realized by the SPM, 

an appropriate correction method needs to be adapted for this case. 

Figure 5 a) visualizes the measured polarization distribution in the transverse plane of a Gaussian beam, while    
    ,          and the SLM carry a value of         for the whole surface. As already mentioned, the accessible 

states of polarization lay on the ring in the S2-S3-plane of the Poincaré sphere as shown in figure 5 a). The measurement 

of Stokes parameters is performed as described in [23] with the help of a rotatable QWP and a fixed polarizer in front of 

a CCD-camera in the image plane of the SLM while the intensity is determined in each pixel (see fig. 4a), part II). 

Obviously, even if the phase shift            introduced by the SLM was chosen to be zero for all x and y, the states of 

polarization vary over the transverse plane. According to theoretical calculations performed via Jones calculus, the 

transverse plane should just include     -linearly polarized states, i.e. a Stokes vector                   
          , orientation angle         and opening angle of polarization ellipses           for every spatial 

position (see bottom left corners in a)). Nevertheless, the measurement offers states with REP (S3   ) varying spatially 

in ellipticity (especially visible in        ) and even varying in orientation (especially obvious in  ). 

For the correction of the inhomogeneous distribution of polarization, we calculated the position-dependent phase shift 

        between horizontally and vertically polarized components with regard to our measurement results, which is 

given by 

               
       

       
                    (6) 

This calculation results in the first step of our correction for the polarization modulation: by the use of 

                as a phase correction hologram on the SLM shown in figure 5 b), the transverse distribution of 

polarization becomes more homogeneous as being especially visible in S2,         and  , respectively. The horizontal 

components reflected from the SLM are shifted in phase according to the correction pattern, which is supposed to 

eliminate the undesired phase shift between horizontal and vertical polarization components. Now, the orientation   of 

polarization ellipses is correct, moreover, the ellipticity    is considerably smaller than before.  

Despite the achieved enhancement, disturbances can still be found in the spatial polarization distribution. In order to 

enhance the distribution further, the described process is repeated so that an additional correction pattern         is 

calculated from the measurement performed utilizing the correction         (for the SLM we use                ). 
This results in the overall correction pattern  

                                     .        (7) 

By the use of this correction pattern, the spatial distribution of states of polarization becomes nearly homogeneous and 

mostly     -linearly polarized (see fig. 6 c)) as theoretically expected. If further correction is desired or needed, the 

procedure can be repeated again. 

 



 

 
 

 

 

 

Figure 5. Determination of the correction pattern for the polarization modulation by the SPM: The QWPs’ angles are fixed 

at         and       , so that all polarization states located on the ring in the S2-S3-plane of the Poincaré sphere are 

reachable by changing       (see a), left). a) shows the measured Stokes parameters S1, S2 and S3 and ellipses properties 

     (opening angle) and   (orientation) whose spatial distribution is inhomogeneous if              is chosen for all x 

and y, thus, no correction pattern is used. In the bottom left corner the theoretically expected value is shown color-coded for 

each measured parameter. b) visualizes the same measured parameters if a first correction pattern                 for the 

SLM is utilized. It is determined by the Stokes parameters of a). The Stokes parameters of b) are used further for the 

determination of the final polarization modulation correction pattern           . If this pattern is applied, the parameters are 

nearly spatially homogeneous compared to the parameters measured without any correction in a) and carry the correct values 

compared to the theoretically expected ones (see bottom left corners in a)). 

 

4. REALIZATIONS OF POINCARÉ BEAMS WITH SIMULTANEOUS AMPLITUDE, PHASE 

AND POLARIZATION MODULATION 

4.1 Generation method of simultaneous amplitude, phase and polarization modulation 

The spatial polarization modulator (SPM) described in section 3 enables the creation of complex light fields with a 

spatially varying distribution of polarization [21], such that Poincaré beams [2] can be created. In addition, we extend our 

technique to additional amplitude and phase modulation implemented by a single reflective phase-only SLM. For this 

purpose, a full HD SLM is used in a split-screen-mode: The first half of the SLM modulates amplitude and phase, as 

explained in section 2, the second half enclosed by two quarter wave plates creates the desired spatial distribution of 

polarization states by acting as a SPM, as described in section 3.  

Figure 6 shows an outline of the combined experimental setup (a)) and the modulation method (b) - e)). Subfigure c) 

indicates the light field generated behind the first half of the SLM if the hologram in b) (left) is used: the beam is 

modulated in amplitude and phase (LG
e
5,3; grayscale image of the simulated intensity distribution is shown in the 

background), but still carrys a spatially homogeneous distribution of polarization visualized by horizontal, green arrows 

symbolizing horizontally linear polarized states. By a 4-f-setup the first half of the SLM and thus the light field 

modulated in amplitude and phase is imaged on the second half of the SLM in order to modulate the light field’s 

polarization. By the choice of the phase hologram for the second half (see fig. 6 b), right), which is equal to the 

polarization modulation hologram, the desired spatial distribution of polarization can be achieved as indicated in figure 6 

d) showing the complex light field after passing the SPM: each wing of the Laguerre-Gaussian beam modulated by the 

first half of the SLM (LG
e
5,3; grayscale image of the simulated intensity distribution is shown in the background) got its 

own state of polarization by the use of the SPM (red/ blue ellipses: right/ left elliptical polarization states). Figure 6 e) 



 

 
 

 

 

shows the chosen states for the modulation of polarization, which are located on the ring in the S2-S3-plane. Each point 

belongs to a certain phase shift       and, thus, to one of the wings of the complex beam, while the angles of the QWPs 

are given by         and       .  
In order to investigate the generated complex beams, another 4-f-setup is used to image the second half of the SLM on 

the camera located in the conjugated plane of the SLM (image plane); moreover, observing in its Fourier plane is 

possible, too.  

 

 

 
Figure 6. Outline of the experimental setup and method used for amplitude, phase and polarization modulation (APP-

Modulation): the reflective, phase-only SLM is used in split-sceen-mode, so that the first half can be utilized to modulate 

amplitude and phase (see sec. 2), the second half enclosed by two quarter wave plates (   ) creates the desired polarization 

distribution by acting as a SPM (see sec. 3), as indicated in b) - d). b) shows the used modulation holograms including the 

correction holograms, while c) indicates the light field achieved after the first half of the SLM – in the shown case an even 

Laguerre-Gaussian beam (LGe
5,3; grayscale image of the simulated intensity distribution is shown in the background) 

containing only horizontally linear polarized states (green arrows). After passing the SPM a complex light field modulated 

in amplitude, phase and polarization is realized as depicted in d): each wing of the LGe
5,3-beam got its own state of 

polarization (red/ blue ellipses indicating right/ left elliptical polarization states). In e) the chosen states for the polarization 

modulation are shown on the Poincaré sphere. In order to determine the states of polarization, a measurement system 

consisting of a rotatable quarter wave plate and a polarizer (Pol) can be included into the setup, while the complex light field 

can be observed in the image or the Fourier plane of the SLM. (   : half wave plate, M: mirror, A: aperture, BS: beam 

splitter, CCD/ CMOS: CCD/ CMOS camera) 

 

The camera in the Fourier plane is utilized to determine the phase correction pattern for the case of amplitude and phase 

modulation as described in section 2.2. For this measurement the second half of the SLM is chosen to be zero (just 

reflection, no modulation) and the QWPs of the SPM are removed. Note that in this case the phase correction pattern is 

determined to be a hologram on the first half of the SLM, while it corrects the uneven surface of the first and the second 

half: undesired phase shifts caused by any optical component following the first half of the SLM are corrected by 

measuring the interference of modes in the Fourier plane behind all these components. The correction plane is located 

behind the amplitude, phase and polarization modulation (APP-modulation).  

In the image plane, the polarization measurement of modulated beams is performed with the help of an additional, 

rotatable QWP and a polarizer (Pol.) [23]. Consequently, the correction for the polarization modulation is calculated for 

the image plane according to the procedure described in section 3.2.  

 



 

 
 

 

 

4.2 Realization of Poincaré beams 

If the correction methods are implemented, different Poincaré beams with spatially varying states of polarization in their 

transverse plane can be created accurately as depicted in figure 7 and in section 4.3, figure 8. Figure 7 shows two 

examples of beams modulated in amplitude, phase and polarization: a) illustrates the accessibl states of polarization for 

the used settings of         and        for the two QWPs of the SPM. b) and c) demonstrate two even Laguerre-

Gaussian beams (LG
e
5,3), while in b) every intensity ring of the LG beam and in c) each intensity spot got its own state of 

polarization. The Stokes parameters can be determined in each camera pixel by the help of the rotatable QWP and fixed 

polarizer [23], while the measured polarization of every fifth pixel is depicted by small, calculated polarization ellipses 

drawn upon the measured intensity image of the beam; red ellipses indicate right elliptical, blue left elliptical and green 

linear states of polarization, respectively. The holograms used for the polarization modulation (     , without 

correction pattern) are shown for both beams. Additionally, in b) the measured Stokes parameters are depicted and in c) 

the determined opening angle (      ) of the polarization ellipses is represented. The measured parameters clarify the 

efficiency of the modulation method – the full combination of amplitude, phase, and polarization modulation of the 

complete transverse plane is realized very precisely. 

 

 

 
Figure 7. Poincaré beams: even Laguerre-Gaussian beams (LGe

5,3) with spatially varying states of polarization. The 

reachable states of polarization for the used setting         and        are depicted on the Poincaré sphere in a). b) 

shows the measured transverse plane of a Laguerre-Gaussian beam, while each intensity ring has its own state of 

polarization (red/ blue: right/ left elliptical states of polarization, green: linear states of polarization). The LGe
5,3-beam is 

generated by the first half of the SLM (amplitude and phase modulation), while the SPM creates the desired distribution of 

polarization by the use of the phase hologram        (min   , max    ) illustrated in the subfigure. The measured 

Stokes parameters S1, S2 and S3 (min    , max    ) match the modulated ring structure. Subfigure c) also shows a 

modulated LGe
5,3-beam, while in this case each intensity spot in the transverse plane has its own state of polarization as 

additionally visible in the corresponding polarization modulation hologram       and the measured opening angle of 

polarization ellipses (      ; min    , max    ). 

 

4.3 Polarization singularities in the transverse plane of Poincaré beams 

Scalar singularities in the form of phase vortices have attracted considerable interest for already many years [24]. 

Compared to this, vectorial singularities as polarization singularities form a young research area enjoying no less interest 

than scalar singularities [3]. With our described setup we are not only able to combine complex light fields as Laguerre-

Gaussian beams with spatially varying polarization structures as shown in figure 7,  but also to generate vectorial 

singularities as V-Points, L-Lines and C-Lines [3] in the transverse plane of Poincaré beams. For this purpose, the 

incoming light field is not modulated in amplitude and phase by the first half of the SLM. It is only the phase correction 

pattern that is implemented in this part in such way that that the beam is solely modulated with respect to its polarization 

by the SPM. By a suitable choice of the polarization modulation pattern       and superimposed correction pattern 

      polarization singularities in elliptic polarization fields [4] with spatially continuously changing polarization can be 

created efficiently. 

Figure 8 demonstrates this additional possibility of modulating polarization singularities. For the shown experimental 

results, the QWPs’ angles are again fixed at         and       , so that all reachable polarization states can be 

found on the ring in the   -  -plane on the Poincaré sphere (see fig. 7 a)).  

  

Figure 8 a) - c) show three different types of modulated beams with a continuously changing polarization structure 

including all three singularities. Depending on the modulation pattern, a desired number of singularities at chosen 



 

 
 

 

 

positions can be created. Each subfigure includes the measured polarization ellipses depicted upon the intensity image, 

the opening angle of polarization ellipses (      ) and a sketch of polarization singularities located in the transverse 

plane of the beam (black: V-Point, red/ blue: right/ left circular polarized C-Line, green: linear polarized L-Line).  

 

In contrast to figure 8 a) - c), figure 8 d) - f) only include line singularities as L-Lines and C-Lines. They form closed 

paths in the transverse plane of the beam, while different shapes are achieved as circular and elliptical rings (d) + e)) or 

even more complex shapes as shown in figure f). Again, the opening angle of the polarization ellipses and the sketch of 

included polarization singularities are shown.  

 

 
Figure 8. Polarization singularities in the transverse plane of Poincaré beams: Each shown beam contains a continuous 

change in polarization along the regarded transverse plane (see        ), while the beams are generated without amplitude 

and phase modulation by the first half of the SLM. Subfigure a) to c) depicts Poincaré beams including L- and C-Line 

singularities in its flowing structure ending in a V-Point singularity, where, as expected, the absence of intensity is caused. 

The included singularities are visualized by a sketch, where blue/ red lines symbolize left/ right circular polarized line 

singularities (C-Lines), green lines indicates linear polarized lines singularities (L-Lines), V-Points are shown in black. 

Subfigure d) - f) illustrate Poincaré beams without V-Points, but with L- and C-Line singularities. In this case, the line 

singularities form closed paths as obviously in the lines sketches. 

 

To summarize, our holographic setup is not only capable of tailoring complex light fields by amplitude and phase 

modulation but also allows arbitrarily modulating the states of polarization such that Poincaré beams even with 

polarization singularities can be created. Different kinds of Poincaré beams are possible: complex light fields modulated 

discretely in polarization, that means discrete areas of the beam are chosen to have the same state of polarization, or light 

fields modulated with continuously varying polarization. In continuously varying polarization structures polarization 

singularities can occur. Amount, position and kind of polarization singularities in the transverse plane of the Poincaré 

beam can be chosen, so that the form of line singularities can be influenced arbitrarily and e.g. closed paths as shown in 

figure 8 d) - f) become possible.  

 

5. CONCLUSION 

 

We demonstrated the ability of our holographic method to modulate amplitude, phase and polarization by using a phase-

only SLM as a main component. We fully combined these three aspects by modulating the beam’s complete transverse 

plane (section 4). In section 2, we have shown the effective modulation of amplitude and phase by the example of higher 

order Laguerre-Gaussian beams, while section 3 introduced the possibility of modulating spatially varying states of 

polarization with the help of the SPM – a modulation system consisting of two quarter wave plates and a SLM. In order 

to combine amplitude, phase and polarization modulation the used SLM operates in split-screen-mode. To enhance the 



 

 
 

 

 

quality of modulation several correction methods regarding phase and amplitude as well as polarization modulation have 

been introduced, whose application results in efficiently modulated Poincaré beams.  

We have shown different experimental results regarding the combination of amplitude, phase and polarization 

modulation: higher order Laguerre-Gaussian beams with different discrete polarization structures were created. Finally, 

we realized the generation of polarization singularities in the transverse plane of Poincaré beams. Our method even 

allows their arbitrary transverse location in fields of continuously varying states of polarization. V-Points, C-Lines and 

L-Lines were shown, while their amount is variable. Moreover, line singularities’ form can be influenced so that even 

closed paths could be modulated holographically in the beams’ transverse plane. 

 

Consequently, the described holographic setup allows the application and investigation of arbitrary kinds of polarization 

singularities and, moreover, of beams modulated in amplitude, phase and polarization simultaneously. Our results give 

rise to promising applications in optical micromanipulation and advanced information encoding, where the shown 

correction methods are beneficial in order to achieve efficiently modulated beams.  
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