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ABSTRACT

Light propagation in structured photonic media covers many fascinating wave phenomena resulting from the
band structure of the underlying lattice. Recently, the focus turned towards deterministic aperiodic structures
exhibiting distinctive band gap properties. To experimentally study these effects, optical induction of photonic
refractive index landscapes turned out to be the method of choice to fabricate these structures. In this contri-
bution, we present a paradigm change of photonic lattice design by introducing a holographic optical induction
method based on pixel-like spatially multiplexed single-site nondiffracting Bessel beams. This technique allows
realizing a huge class of two-dimensional photonic structures, including deterministic aperiodic golden-angle
Vogel spirals, as well as Fibonacci lattices.
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1. INTRODUCTION

Designing the optical properties of materials by tailoring their band structures is an active field of research and
has led to groundbreaking developments in various fields of optics1. These so-called photonic crystals exhibit
characteristic response properties, including complete photonic band gaps, a key requirement for exciting effects
and applications, e.g., band gap optical waveguides or lasing structures2,3. Recently, the focus of realizing spatial
band gap structures turned towards deterministic aperiodic structures showing distinctive band gap properties.
Due to the lack of rotational and translation symmetry, these aperiodic structures offer more isotropic band
diagrams which makes complete band gaps more easy to achieve. In particular, the golden angle Vogel spiral
has attracted much attention since its topology remarkably differs from many other lattices, implying effects
like optical angular momentum-bearing discrete diffraction4. However, fabrication of these kind of structures is
challenging and mostly relies on point-by-point methods which up to now excluded generation with the most
prominent method: optical induction of photorefractive index landscapes. In the past, the complexity of the
achievable structures has continuously increased5,6, nevertheless these approaches rely on extended nondiffracting
beams and thus are not capable to fabricate 2d deterministic aperiodic structures.

In this contribution, we present a new holographic optical induction method based on spatially multiplexed
nondiffracting Bessel beams, thereby allowing for the first time longitudinal extended point-by-point techniques
implemented in the optical induction of photorefractive index landscapes. This technique allows us to realize a
huge class of two-dimensional photonic structures, including deterministic aperiodic golden-angle Vogel spirals
as well as Fibonacci lattices.

2. DESIGN OF PHOTONIC STRUCTURES FOR OPTICAL INDUCTION

Photonic structures can be created by various methods that modulate the refractive index at small scales. The
most exciting techniques are based on light itself to alter the materials properties. Besides direct femtosecond
laser writing in silica glass7,8 and two-photon-initiated polymerization9, optically induced lattices in nonlinear
refractive index materials, especially photorefractive media10–12 are widely used. These photonic lattices repre-
sent an ultimate testbed to study fundamental linear and nonlinear physics in model experiments, confirmed by
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many convincingly demonstrated phenomena.10,13–15. Photorefractive structures are based on a reconfigurable
light-induced refractive index modulation, which are caused by an internal electric space charge field resulting
from the redistribution of the charge carriers due to illumination of the medium with the modulated light field
intensity. The resulting refractive index therefore mimics the light distribution, with small deviations due to
the directional mobility of the charge carriers. Because in general light is creating the refractive index lattice in
which subsequently light is propagating, this concept is known as "light is guiding light".

For periodic structures this optical induction method has proven its powerful ability to create a huge variety
of linear and nonlinear photonic lattices,6,16 and over the years the structural complexity of the realized pho-
tonic lattices was developed from two-dimensional periodic6,10 to quasi-periodic three-dimensional17 geometries.
Moreover, by transferring the concept of incoherent multiplexing known from holographic data storage to opti-
cal induction, the realization of multiperiodic superlattices18,19, defect lattices20, and asymmetric ratchet-like
structures21 becomes possible and further proves the flexibility of the optical induction approach in general.
However, all these approaches rely on coherent or incoherent superposition of spatially extended nondiffracting
beams with a high amount of regularity6,22.

Although the diversity of these photonic lattices is impressive, a number of advanced, especially non-periodic
structures cannot be fabricated with this actual tool set of optical induction. Consequently, we have further
refined these methods to be capable of fabricating a wider class of two-dimensional photonic refractive index
landscapes23,24, including aperiodic structures as will be shown in the following sections.

2.1 Two-dimensional deterministic aperiodic structures
Structures at the interface between regularity and disorder are deterministic aperiodic structures4. These exciting
intermediate states combine features of both, periodic and random structures, that are distinctive photonic band
diagrams1 on the one hand, and effects from the wide field of disordered photonics25 on the other, together
allows for molding the flow of light in completely new ways.

Regular photonic lattices show a high amount of symmetry and thus require dedicated methods to be re-
alized with a sufficient refractive index contrast that results in a complete photonic band gap. Reducing the
amount of periodicity, quasiperiodic photonic lattices with higher rotational symmetries are known to offer more
isotropic band diagrams.26 Moreover, considering deterministic aperiodic structures, which show no rotational
nor translation symmetries, the realizations of complete band gap materials becomes more readily achievable.4
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Figure 1: Two-dimensional deterministic aperiodic structures. (a) Illustration of the construction for
the Vogel spiral. (b) Sketch of a typical golden-angle Vogel spiral for N = 500. (c) Schematic of a two-
dimensional Fibonacci pattern.

Vogel spirals: Among the wide class of aperiodic structures, bio-inspired ones are most attractive because they
mimic biological relevant light propagation features. One particular aperiodic pattern that shows these features is
the golden angle spiral, a structure that belongs to the wider class of Vogel spirals27 whose remarkable properties
have been studied in many different fields of science. In optics, applications range from enhanced light-matter
coupling designs4 and optical angular momentum encoding schemes28 to studies about soliton propagation in
the nonlinear regime29.
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A schematic of a typical aperiodic Vogel spiral is shown in Figs. 1(a,b). The construction rule for the Vogel
spiral is given by the quantization of the radial and angular variables as:

r = r0
√
n and ϕ = αn, (1)

with n = 0 . . . N . Here, N is the number of individual sites, r0 is a scaling factor and α is an angle which is
incommensurable to π. In Fig. 1(a) the construction for the case of N = 6 is illustrated. For the two cases
presented in this contribution, α is set to be the golden angle and its half, respectively. The golden angle is
given by Ψ = 2π/Φ2, where Φ = (1 +

√
5)/2 is the golden ratio, which can also be approximated by Fibonacci

numbers fn as Φ = limn→∞ fn/fn−1
4.

Fibonacci lattices: Approaching from the mathematical side, the Fibonacci lattice often is referred to as
the embodiment of irregularity30,31 and numerous experiments and theoretical considerations were realized in
order to discover the secrets of aperiodic media in more detail by means of Fibonacci structures32–35. There are
different ways to construct Fibonacci lattices. Here we design it by varying the distance of adjacent waveguides
in terms of sections of the Fibonacci word, different ones for the two orthogonal directions.36

The Fibonacci wordW is a binary sequence where, according to the Fibonacci series, the nth word is generated
by putting together the two previous ones, such as

Wn = [Wn−1Wn−2]. (2)

By defining the first two words W0 = A and W1 = AB, all following words are determined. Here, we defined
two different waveguide distances A and B, with B = A/Φ where Φ = (1 +

√
5)/2 is the golden ratio. The first

5 Fibonacci words read as

W0 = A,

W1 = AB,

W2 = ABA,

W3 = ABAAB,

W4 = ABAABABA.

(3)

For the particular design of our Fibonacci lattice, we pick two subwords with a length of N from a very long Fi-
bonacci wordWn with n� N , starting with a different element. Accordingly, we receive an N×N quasiperiodic,
non-symmetric structure of waveguide with different distances, as depicted in Fig. 1(c). One typical characteristic
of the Fibonacci word is that the probability of the two states is not equal, but the golden ratio. The distance A
is more probable than B, as the probability for B is 0.62, and this bears typical structure groups: quad, double
and single waveguide elements.

2.2 Principles of the pixel-wise Bessel beam induction scheme
To overcome the already mentioned restriction of optical induction to a subset of two-dimensional structures, we
introduced a paradigm shift in optical lattice design: we perform the transition from parallel, spatially extended
induction schemes to sequential, pixel-wise ones23. The main idea behind this approach is to use zero-order
Bessel beams as basic entities to approximate aperiodic structures. Therefore, we place the nondiffracting Bessel
beams at the transverse positions of all sites of the addressed two-dimensional structure and consider the intensity
distribution resulting from incoherent superposition of all beams for the actual optical induction.

Figure 2 illustrates this basic idea exemplarily for the case of a Vogel spiral consisting of only 5 sites. If a
small Gaussian beam (Fig. 2(c)) is located at each site, the ideal pattern as shown in 2(a) would result. But this
light field would strongly diffract (cf. Fig. 2(f)) and thus not be suitable for the realization of two-dimensional
photonic structures. Instead, locating zero-order Bessel beams of corresponding transverse size (Fig. 2(d),(e)) at
each position, an intensity pattern as shown in 2(b) will result. Due to the unavoidable side lobes of the Bessel
beams the resulting total intensity also shows small additional intensity modulation, but in contrast to an equally
sized Gaussian beam (Fig. 2(f)), the Bessel beam (Fig. 2(g)) stays almost unchanged over the whole distance
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Figure 2: Principles of the pixel-wise optical induction method using multiplexed Bessel beams. (a),(b) Vo-
gel spiral with N = 5 convoluted with a small Gaussian and Bessel beams, respectively. (c) Experimental
intensity distribution of the corresponding Gaussian beam. (d),(e) Intensity of the Bessel beam in two
transverse planes separated by L = 20mm. (f) Diffraction of the Gaussian beam; cross section through the
experimentally recorded three-dimensional intensity volume along the line drawn in (c). (g) Nondiffracting
propagation of the experimentally realized Bessel beam.

of 20mm and provides a nondiffracting intensity distribution to induce one single two-dimensional waveguide.
The panels (a) and (b) in Fig. 2 are numerical calculations, while (c)–(g) are actual experimental results. The
realized zero-order Bessel beam has a main lobe size of w ≈ 8 µm (FWHM).

Within this approach, it is crucial to superpose the individual Bessel beams incoherently and thus loosing the
phase relation between them. In the opposite case, where the phase relation is preserved, interference will lead
to additional undesired transverse intensity modulations. The difference between the coherent and incoherent
superposition of 5 Bessel beams that resembles the inner part of Vogel spiral is shown in Fig. 3(a),(b). It is
obvious that interference significantly changes and destroys the desired intensity distribution and needs to be
avoided.

To bypass this interference, we illuminate the sample with the individually positioned Bessel beams one after
the other in a fast sequence, which is repeated multiple times. This approach is illustrated in Fig. 3. The ex-
perimentally recorded individual Bessel beam intensities are shown in (d1)–(d5), whose incoherent superposition
leads to the effective overall intensity distribution shown in Fig. 3(e). For the optical induction we utilize that
the buildup of the refractive index modulation is accumulative with time, which is one of the properties of the
used photorefractive material. Consequently, the multiplexing approach is expected to have the same effect on
the induced refractive index modulation as a continuous illumination with an effective two-dimensional intensity
pattern which would result from incoherent superposition all nondiffracting Bessel beams. For this assumption
to hold, it is important to ensure an illumination time of each Bessel beam that is small compared to the typical
intensity dependent dielectric relaxation time of the crystal, which is in the order of tens of seconds for the used
single beam intensities of approximately 2.2 µW.18

Figure 3(c) shows a sketch of our setup used to perform the experiments. The beam from a frequency-
doubled, continuous-wave Nd:YVO4 laser emitting at a wavelength of λ = 532nm illuminates a high-resolution,
programmable phase-only spatial light modulator (SLM). This modulator, in combination with two lenses and a
Fourier mask, is used to set up the nondiffracting Bessel beam by addressing a pre-calculated phase pattern for
each Bessel beam at its distinct position onto the SLM. This allows to computer-control every single Bessel beam’s
position in the transverse plane. Each beam then illuminates a 20mm long photorefractive Sr0.60Ba0.40Nb2O6

(SBN:Ce) crystal which is externally biased with a dc electric field of Eext ≈ 2000Vcm−1 applied along the
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Figure 3: Details of the pixel-wise optical induction method. (a) Incoherent superposition of 5 Bessel
beams, (b) coherent superposition in contrast. (c) Experimental setup. (d) Experimentally recorded inten-
sity distribution of 5 individual Bessel beams. (e) Effective intensity by summation.

optical c-axis. With an imaging lens and a camera mounted on a translation stage the intensity distribution can
be recorded in different transverse planes along the longitudinal axis.

3. EXPERIMENTAL FABRICATION OF APERIODIC PHOTONIC STRUCTURES

The introduced fabrication approach is not limited to structures consisting of only few waveguides as described
above for illustration reasons. The multiplexing scheme can readily be scaled up to a considerable number
of single waveguides and large, complex two-dimensional photonic structures. To demonstrate the capabilities
of this pixel-wise method we demonstrate the actual optical induction of a two-dimensional golden-angle and
half-golden-angle Vogel spiral with N = 100 single waveguides, as well as the realization of a two-dimensional
Fibonacci lattice of 9× 9 waveguides.

3.1 Golden-angle and half-golden-angle Vogel spiral
To realize the spatially extended two-dimensional Vogel spirals we use the corresponding number of individual
zero-order Bessel beam with a main lobe size of w ≈ 8 µm (FWHM) is shown in Fig. 2(d),(e),(g). It displays the
beam intensity at the front (d) and the back face (e) of the crystal, as well as a scan along the whole crystal
length of L = 20mm (g). Following the multiplexing idea, the nonlinear photorefractive SBN crystal is now
illuminated successively with all Bessel beams, each exposing the crystal for t = 0.8 s. The whole sequence is
repeated 30 times.

Figure 4 shows the experimentally obtained intensity profiles that will be used for the induction of the half-
golden-angle spiral (Fig. 4(a)) and the golden-angle spiral (Fig. 4(b)). Figures 4(a1),(b1) and (a2),(b2) show an
overlay of the experimentally realized Bessel beam intensities of the spirals at the front and the back face of
the crystal, respectively. To get a better impression of the accurate spatial placement of the beams an intensity
overlay Itot = (

∑
n I

p
n)1/p, with p = 4 of all individually recorded intensities (In) is shown, while the insets in

Figs. 4(a2),(b2) display the resulting effective intensity as digital summation of all single intensities (with p = 1).

We verify the nondiffracting nature of this light field structure in longitudinal direction by plotting the inten-
sity profile extracted from the recorded three-dimensional intensity volume along a spiral path in the transverse
plane. The spiral path, shown in Fig. 4(b1), is given by the construction rule of the Vogel spiral and thus
intersects all intensity peaks. For the first 10 Bessel beams along the spiral the intensity distribution is unreeled
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Figure 4: Two-dimensional Vogel spirals. (a1),(a2) Intensity of a half-golden-angle spiral at the front
and back face of the crystal. (b1),(b2) The same for a golden-angle spiral. (c) Unreeled two-dimensional
intensity cross section through the three-dimensional volume along the spiral depicted in (b1). The insets
in (a2) and (b2) show the digital superposition of the intensities (with p = 1).

into the two-dimensional map displayed in Fig. 4(c). The straight lines clearly verify, that all beams propagate
without diffracting or changing their relative distances over the whole length of the crystal.

In the final step, we transferred the resulting effective intensities via optical induction into a photonic refractive
index structure. To verify that the desired structure is actually written, we illuminate the crystals front face with
a plane wave after the induction is completed. The inscribed index modulation will guide and redistribute the
initial homogeneous intensity to be locally increased in regions of higher refractive index. Therefore, we are able

(a)

100 µm

(b) (c) (d)

min max min max

Figure 5: Optically induced refractive index modulation. (a),(b) Intensity distribution at the back face of
the crystal for a plane wave propagated through the golden-angle and the half-golden-angle spiral, respec-
tively. (c),(d) Corresponding numerically calculated refractive index modulations.
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to infer the induced refractive index modulation from the intensity profile that can be recorded at the output face
of the crystal. Figures 5(a) and (b) show the intensity profile of the guided waves for the half-golden-angle and
the golden-angle, respectively. They clearly indicate, that the desired two-dimensional Vogel spiral structure is
written with a high precision of the individual waveguide positions. For comparison, the numerically calculated
refractive index modulation in the full anisotropic model37 is shown in Figs. 5(c) and (d).

3.2 Fibonacci lattice
As a second example to demonstrate the flexibility of the proposed approach we realize a 9 × 9 aperiodic, two-
dimensional Fibonacci structure.36 The distances between the individual waveguides is set to be A = 42 µm,
and following B = 26 µm. With the typical statistics for the probability of the both elements A and B of the
Fibonacci word, this leads to a averaged waveguide distance and effective lattice constant of 32 µm. The size
of the used Bessel beams is optimized to result in an effective intensity with as less deviation from the ideal
Fibonacci lattice as possible. The main lobe size is w ≈ 10 µm (FWHM). For the optical induction we use a
similar, but shorter SBN crystal with L = 15mm, which is externally biased with the same electric dc field of
Eext ≈ 2000Vcm−1.

The experimentally achieved effective intensity pattern Itot for the optical induction of the Fibonacci lattice
is shown Fig. 6(a). After induction, this structure is also probed with a plane wave to visualize the induced
refractive index modulation. The guided plane wave at the output of this structure is shown in Fig. 6(b).
It clearly indicates, that the corresponding Fibonacci lattice is inscribed, but does not resemble the complete
resolution of the structure. The reason for this is, that due to the perpendicularly incident plane wave, the guided
modes of the waveguide that are only separated by B merge and appear as only one spot. For comparison, next
to these experimental results numerical calculations of the effective intensity distributions are shown. For the
case, that each structure site is approximated with a zero-order Bessel beam, the numerical calculation provides
the intensity shown in Fig. 6(c), which is in very good agreement to the experimentally realized counterpart (cf.
(a)). Figure 6(c) illustrates the idealized case where a Gaussian beam is places at each lattice site.

A B B BA A A A

A
B

B
A

A
A

A
B

100 µm

(a) (b) (c) (d) min max

Figure 6: Optical induction of two-dimensional Fibonacci lattice. (a) Experimentally realized effective
intensity for optical induction. (b) Intensity profile of the guided wave. (c) Numerically calculated intensity
corresponding to (a). (d) Idealized case, where a Gaussian beam is located at each site.

4. SUMMARY

In summary, we presented a paradigm-shift in optical lattice design by introducing a holographic optical induction
scheme based on pixel-wise multiplex Bessel beams. With this innovative experimental method we considerably
extend the class of two-dimensional photonic lattices that now can be fabricated by optical induction, which
was not possible with existing techniques. This wide class of now realizable structures contains, amongst others,
deterministic aperiodic structures, structures that are of high interest for several reasons. On the one hand
they exhibit new types of band diagrams useful to enhance light-matter interactions, on the other hand these
aperiodic structures can be considered as an intermediate state between regular and random structures.
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We have demonstrated the capabilities of this multiplexing approach by realizing both, two-dimensional
golden-angle Vogel spirals, as well as Fibonacci structures. By realizing spatially extended structures which
contain a considerable number of individual waveguides we further proved that this approach can easily be
scaled up and is not limited to only few waveguides. Additionally, the precise adjustment of the transverse
position, as well as the nondiffracting propagation of the Bessel beams and the whole structure, were proven by
showing the recorded intensities in different transverse planes along the crystal.
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